JPH1031037A - Capacitor potential divider - Google Patents

Capacitor potential divider

Info

Publication number
JPH1031037A
JPH1031037A JP8187088A JP18708896A JPH1031037A JP H1031037 A JPH1031037 A JP H1031037A JP 8187088 A JP8187088 A JP 8187088A JP 18708896 A JP18708896 A JP 18708896A JP H1031037 A JPH1031037 A JP H1031037A
Authority
JP
Japan
Prior art keywords
capacitor
voltage
vacuum
voltage side
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8187088A
Other languages
Japanese (ja)
Inventor
Yoshihiko Matsui
芳彦 松井
Sachihiro Fukatsu
祥弘 深津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP8187088A priority Critical patent/JPH1031037A/en
Publication of JPH1031037A publication Critical patent/JPH1031037A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the frequency characteristic and reduce the size by using a vacuum capacitor as a potential dividing capacitor, and setting one of the low voltage side and high voltage side, or the both to a variable capacitor. SOLUTION: Vacuum capacitors are used as a high voltage side capacitor 1 and a low voltage side capacitor 2. A waveform observing device 3 is connected between a detecting terminal 4 and an earth terminal. The vacuum capacitor has no dielectric between electrodes, so that no dielectric loss is caused even in high frequency area. When the distance between the electrodes is regulated by moving at least one electrode, the electrostatic capacity is changed to form a variable capacitor. When an ac high voltage V is applied in waveform observation, distributed voltage, or the voltage to ground of the low voltage side capacitor 2 is added to the input end of the waveform observing device 3. Even when a high frequency component is contained in a voltage to be measured, the high frequency area can be precisely observed because of the vacuum capacity. Further, the withstand voltage characteristic is so excellent that a small size is enough.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、交流高電圧波形観
測用のコンデンサ分圧器に関する。
The present invention relates to a capacitor voltage divider for observing an AC high-voltage waveform.

【0002】[0002]

【従来の技術】交流高電圧波形を観測する場合、オシロ
スコープやディジタル式波形観測装置の入力可能レベル
まで電圧を下げる必要がある。このためには、一般に計
器用変圧器が用いられるが、過渡現象など、周波数の高
い成分を含む電圧波形の場合にはコンデンサ分圧器を用
いることがある。図1にその接続例を示す。
2. Description of the Related Art When observing an AC high-voltage waveform, it is necessary to lower the voltage to a level that can be input to an oscilloscope or a digital waveform observation device. For this purpose, an instrument transformer is generally used, but in the case of a voltage waveform including a high frequency component such as a transient phenomenon, a capacitor voltage divider may be used. FIG. 1 shows an example of the connection.

【0003】即ち、コンデンサ1(静電容量C1),コ
ンデンサ2(静電容量C2)を直列に接続し、両端間
(ここでは、コンデンサ2側を接地端子としている)に
交流高電圧Vを印加して、両コンデンサ1,2の接続点
(検出端子4)と接地端子の間に接続した波形観測装置
3で分圧電圧を観測する。コンデンサ1は、測定しよう
とする電圧に対し充分な耐電圧特性を有するもので、そ
の静電容量はC1≪C2である。この時、分圧比kは k=C1/(C1+C2)≒C1/C2 となり、V/kの電圧がコンデンサ2の対地電圧として
観測できる。
That is, a capacitor 1 (capacitance C1) and a capacitor 2 (capacitance C2) are connected in series, and an AC high voltage V is applied between both ends (here, the capacitor 2 side is used as a ground terminal). Then, the divided voltage is observed by the waveform observation device 3 connected between the connection point (detection terminal 4) of the capacitors 1 and 2 and the ground terminal. The capacitor 1 has a sufficient withstand voltage characteristic with respect to the voltage to be measured, and its capacitance is C12C2. At this time, the division ratio k becomes k = C1 / (C1 + C2) ≒ C1 / C2, and the voltage of V / k can be observed as the ground voltage of the capacitor 2.

【0004】[0004]

【発明が解決しようとする課題】コンデンサ1,2に
は、一般的に電極間に誘電体を挟んだ構造のコンデンサ
を使用しており、高周波領域ではコンデンサの誘電体損
失を考慮する必要がある。また、コンデンサ1には高い
耐電圧性能が要求されるため、実際には複数のコンデン
サを直列接続して耐電圧性能を確保する構成となり、分
圧器が大形となる。更に、分圧比が固定されているた
め、観測電圧が限定されたり、測定精度やSN比が低下
する、といった問題点がある。例えば、k=1000
0、波形観測装置3の入力レンジが±1Vの時、測定で
きる交流高電圧は±10000V(ピーク値)の範囲で
ある。従って、これを超える電圧は測定できないことに
なる。測定対象の電圧が±1000Vの範囲の時は、波
形観測装置3へは入力レンジに比べてかなり小さい±
0.1Vの分圧電圧が加わることになり、測定精度やS
N比が低下する。
Generally, capacitors 1 and 2 have a structure in which a dielectric is sandwiched between electrodes, and it is necessary to consider the dielectric loss of the capacitor in a high frequency region. . In addition, since the capacitor 1 is required to have high withstand voltage performance, in practice, a plurality of capacitors are connected in series to ensure the withstand voltage performance, and the voltage divider becomes large. Furthermore, since the voltage division ratio is fixed, there are problems that the observation voltage is limited, the measurement accuracy and the SN ratio are reduced. For example, k = 1000
0, when the input range of the waveform observation device 3 is ± 1 V, the measurable AC high voltage is in a range of ± 10000 V (peak value). Therefore, a voltage exceeding this cannot be measured. When the voltage of the measurement target is in the range of ± 1000 V, the waveform observation device 3 has a voltage that is considerably smaller than the input range.
A divided voltage of 0.1 V will be applied, and measurement accuracy and S
The N ratio decreases.

【0005】そこで本発明は、上記課題を解決し、周波
数特性の改善と小形化が図れ、かつ分圧比の設定変更が
容易なコンデンサ分圧器を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems, and to provide a capacitor voltage divider which can improve the frequency characteristics and reduce the size, and can easily change the setting of the voltage division ratio.

【0006】[0006]

【課題を解決するための手段】本発明は、分圧用コンデ
ンサとして真空コンデンサを用いたことを特徴とする。
The present invention is characterized in that a vacuum capacitor is used as a voltage dividing capacitor.

【0007】本発明は、分圧用コンデンサとして真空コ
ンデンサを用い、その低圧側、高圧側の一方、または両
方を可変コンデンサとしたことを特徴とする。
The present invention is characterized in that a vacuum capacitor is used as a voltage dividing capacitor, and one or both of the low voltage side and the high voltage side are variable capacitors.

【0008】また本発明は、直列接続または並列接続の
複数の真空コンデンサ素子を分圧用コンデンサとして用
いたことを特徴とする。
Further, the present invention is characterized in that a plurality of vacuum capacitor elements connected in series or in parallel are used as voltage dividing capacitors.

【0009】[0009]

【発明の実施の形態】本発明を図面に示す実施形態を例
に説明する。本発明は分圧用コンデンサとして真空コン
デンサを用いたことを特徴とするものであり、回路的に
は従来と同様である。図1に示す実施形態1は基本的な
回路で、高圧側分圧用コンデンサ1と低圧側コンデンサ
2として真空コンデンサを用いており、両コンデンサ
1,2の接続点(検出端子4)と接地端子との間に波形
観測装置3を接続している。真空コンデンサは、真空中
で電極を対向させたものであり、電極間に誘電体が存在
しない。つまり、高周波領域でも誘電体損失を生じるこ
とがない。しかも、小形でも充分な耐電圧性能を有す
る。また、電極間距離を、少なくとも一方の電極の移動
させて調整すると、静電容量が変化する。つまり、可変
コンデンサとなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described by way of an embodiment shown in the drawings. The present invention is characterized in that a vacuum capacitor is used as a voltage dividing capacitor, and the circuit is the same as the conventional one. Embodiment 1 shown in FIG. 1 is a basic circuit in which a vacuum capacitor is used as a high-voltage-side voltage dividing capacitor 1 and a low-voltage side capacitor 2, and a connection point (detection terminal 4) between the two capacitors 1 and 2 and a ground terminal. The waveform observation device 3 is connected between the two. A vacuum capacitor has electrodes facing each other in a vacuum, and there is no dielectric between the electrodes. That is, no dielectric loss occurs even in the high frequency region. Moreover, it has a sufficient withstand voltage performance even with a small size. In addition, when the distance between the electrodes is adjusted by moving at least one of the electrodes, the capacitance changes. That is, it becomes a variable capacitor.

【0010】波形観測時に、真空コンデンサを用いた、
コンデンサ1,2からなる分圧器の両端間に交流高電圧
Vを印加すると、分圧電圧、つまりコンデンサ2の対地
電圧が波形観測装置3の入力端に加わる。この場合、測
定対象の電圧に高周波成分が含まれていても、分圧用コ
ンデンサ1,2が真空コンデンサであるため、高周波領
域まで適確に観測できる。また、真空コンデンサは優れ
た耐電圧特性を有しており、分担電圧の大きい高圧側コ
ンデンサ1も小形のもので十分である。
At the time of waveform observation, a vacuum capacitor was used.
When an AC high voltage V is applied across the voltage divider composed of the capacitors 1 and 2, the divided voltage, that is, the ground voltage of the capacitor 2 is applied to the input terminal of the waveform observation device 3. In this case, even if a high frequency component is contained in the voltage to be measured, since the voltage dividing capacitors 1 and 2 are vacuum capacitors, accurate observation up to a high frequency region is possible. Further, the vacuum capacitor has excellent withstand voltage characteristics, and a small high-voltage capacitor 1 having a large shared voltage is sufficient.

【0011】本発明の他の実施形態(実施形態2〜8)
を図2〜図8に示す。実施形態2(図2)では高圧側に
可変コンデンサ1´を、実施形態3(図3)では低圧側
に可変コンデンサ2´、実施形態4(図4)では高圧側
及び低圧側に可変コンデンサ1´,2´をそれぞれ用い
ている。
Another embodiment of the present invention (Embodiments 2 to 8)
Are shown in FIGS. In the second embodiment (FIG. 2), the variable capacitor 1 ′ is provided on the high voltage side, in the third embodiment (FIG. 3), the variable capacitor 2 ′ is provided on the low voltage side, and in the fourth embodiment (FIG. 4), the variable capacitor 1 ′ is provided on the high voltage side and the low voltage side. 'And 2' are used, respectively.

【0012】このように可変コンデンサ1´,2´を用
いると、観測時に分圧比kを電圧に応じた適切な値に選
定とすることが容易であり、波形観測装置3の能力を十
分に活用できる。即ち、常に高い測定精度とSN比を確
保できるようになる。
When the variable capacitors 1 'and 2' are used as described above, it is easy to select the voltage division ratio k to an appropriate value according to the voltage at the time of observation, and to make full use of the capability of the waveform observation device 3. it can. That is, it is possible to always ensure high measurement accuracy and SN ratio.

【0013】実施形態5(図5)は複数のコンデンサ素
子を直列接続して高圧側(低圧側)の分圧用コンデンサ
1s(2s)を構成した場合、実施形態(図6)は複数
のコンデンサ素子を並列接続して高圧側(低圧側)の分
圧用コンデンサ1p(2p)を構成した場合である。分
圧用コンデンサ1s(2s),1p(2p)は、固定コ
ンデンサ素子C11と可変コンデンサ素子C12を用いて構
成するか、あるいは全てに可変コンデンサ素子C12を用
いて構成する。
In a fifth embodiment (FIG. 5), a plurality of capacitor elements are connected in series to constitute a high voltage side (low voltage side) voltage dividing capacitor 1s (2s). Are connected in parallel to form a high-voltage side (low-voltage side) voltage dividing capacitor 1p (2p). Dividing capacitor 1s (2s), 1p (2p ) is constructed using the variable capacitor element C 12 or configuration, or all with a fixed capacitor element C 11 and the variable capacitor element C 12.

【0014】この場合も、前述の実施形態2〜4と同様
に分圧比kを電圧に応じて適切な値に選定できる。
Also in this case, the voltage dividing ratio k can be selected to an appropriate value according to the voltage, as in the above-described embodiments 2 to 4.

【0015】実施形態7(図7)及び実施形態8(図
8)は、抵抗とコンデンサを組み合わせた抵抗容量分圧
器に適用した場合である。実施形態7では、真空コンデ
ンサを用いた高圧側、低圧側分圧用コンデンサ1,2に
抵抗5,6を直列に接続している。実施形態8では、真
空コンデンサを用いた高圧側、低圧側分圧用コンデンサ
1,2に抵抗5´,6´を並列に接続している。
The seventh embodiment (FIG. 7) and the eighth embodiment (FIG. 8) show a case where the present invention is applied to a resistance-capacitance voltage divider combining a resistor and a capacitor. In the seventh embodiment, the resistors 5 and 6 are connected in series to the high voltage side and low voltage side voltage dividing capacitors 1 and 2 using a vacuum capacitor. In the eighth embodiment, the resistors 5 ′ and 6 ′ are connected in parallel to the high voltage side and low voltage side voltage dividing capacitors 1 and 2 using a vacuum capacitor.

【0016】このように抵抗容量分圧器に真空コンデン
サを用いると、直流高電圧の分圧時にも静電容量が一定
に保たれるため、高い測定精度が得られる。
When a vacuum capacitor is used as the resistance-capacitance voltage divider as described above, the capacitance is kept constant even when the DC voltage is divided, so that high measurement accuracy can be obtained.

【0017】[0017]

【発明の効果】以上のように本発明によれば、分圧用コ
ンデンサの誘電体損失は無視し得るので、周波数特性が
改善される。また、真空コンデンサは優れた耐電圧特性
を有しているので、直列接続となっても小個数で済み、
小形化が図れる。更に、電極間距離の加減操作により静
電容量が容易に、かつ正確に変化するため、分圧比を任
意に設定することが可能であり、測定精度及びSN比の
向上が図れる。
As described above, according to the present invention, since the dielectric loss of the voltage dividing capacitor can be ignored, the frequency characteristics are improved. In addition, vacuum capacitors have excellent withstand voltage characteristics, so even if they are connected in series, only a small number is required.
The size can be reduced. Further, since the capacitance easily and accurately changes by adjusting the distance between the electrodes, the voltage division ratio can be set arbitrarily, and the measurement accuracy and the SN ratio can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1を示す接続図。FIG. 1 is a connection diagram showing a first embodiment of the present invention.

【図2】本発明の実施形態2を示す接続図。FIG. 2 is a connection diagram showing a second embodiment of the present invention.

【図3】本発明の実施形態3を示す接続図。FIG. 3 is a connection diagram showing a third embodiment of the present invention.

【図4】本発明の実施形態4を示す接続図。FIG. 4 is a connection diagram showing a fourth embodiment of the present invention.

【図5】本発明の実施形態5を示す接続図。FIG. 5 is a connection diagram showing a fifth embodiment of the present invention.

【図6】本発明の実施形態6を示す接続図。FIG. 6 is a connection diagram showing a sixth embodiment of the present invention.

【図7】本発明の実施形態7を示す接続図。FIG. 7 is a connection diagram showing a seventh embodiment of the present invention.

【図8】本発明の実施形態8を示す接続図。FIG. 8 is a connection diagram showing an eighth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,1´,1s,1p…高圧側分圧用コンデンサ(真空
コンデンサ) 2,2´,2s,2p…低圧側分圧用コンデンサ(真空
コンデンサ) 3…波形観測装置 5,6…抵抗 C1…高圧側分圧用コンデンサ1の静電容量 C2…低圧側分圧用コンデンサ2の静電容量 V…測定対象の交流高電圧 k…分圧比
1, 1 ', 1s, 1p: High-voltage side voltage dividing capacitor (vacuum capacitor) 2, 2', 2s, 2p: Low-voltage side voltage dividing capacitor (vacuum capacitor) 3: Waveform observation device 5, 6: Resistance C1: High voltage side Capacitance of voltage dividing capacitor 1 C2 ... Capacitance of low voltage side voltage dividing capacitor 2 V ... AC high voltage to be measured k ... Division ratio

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 分圧用コンデンサとして真空コンデンサ
を用いたことを特徴とするコンデンサ分圧器。
1. A capacitor voltage divider using a vacuum capacitor as a voltage dividing capacitor.
【請求項2】 分圧用コンデンサの低圧側、高圧側の一
方、または両方を可変コンデンサとしたことを特徴とす
る請求項1に記載のコンデンサ分圧器。
2. The capacitor voltage divider according to claim 1, wherein one or both of the low voltage side and the high voltage side of the voltage dividing capacitor are variable capacitors.
【請求項3】 分圧用コンデンサを直列接続または並列
接続の複数のコンデンサ素子で構成したことを特徴とす
る請求項1または2に記載のコンデンサ分圧器。
3. The capacitor voltage divider according to claim 1, wherein the voltage dividing capacitor is composed of a plurality of capacitor elements connected in series or in parallel.
JP8187088A 1996-07-17 1996-07-17 Capacitor potential divider Pending JPH1031037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8187088A JPH1031037A (en) 1996-07-17 1996-07-17 Capacitor potential divider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8187088A JPH1031037A (en) 1996-07-17 1996-07-17 Capacitor potential divider

Publications (1)

Publication Number Publication Date
JPH1031037A true JPH1031037A (en) 1998-02-03

Family

ID=16199907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8187088A Pending JPH1031037A (en) 1996-07-17 1996-07-17 Capacitor potential divider

Country Status (1)

Country Link
JP (1) JPH1031037A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521670A (en) * 1998-07-23 2002-07-16 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Capacitive voltage divider for measurement of high voltage pulses during millisecond pulse duration
US6465327B1 (en) * 1999-06-30 2002-10-15 Commissariat A L'energie Atomique Method for producing a thin membrane and resulting structure with membrane
JP2007205785A (en) * 2006-01-31 2007-08-16 Energy Support Corp Voltage measuring device of power apparatus
JP2007212204A (en) * 2006-02-08 2007-08-23 Hioki Ee Corp Voltage detector
JP2010127725A (en) * 2008-11-27 2010-06-10 Hioki Ee Corp Noncontact voltage measuring apparatus and noncontact voltage measuring method
WO2011027797A1 (en) * 2009-09-02 2011-03-10 株式会社明電舎 Vacuum capacitor-voltage-transformer
JP2012114135A (en) * 2010-11-22 2012-06-14 Meidensha Corp Transformer for capacitor type instrument
JP2012242331A (en) * 2011-05-23 2012-12-10 Mitsubishi Electric Corp Amplitude control voltage sensor
WO2019138632A1 (en) * 2018-01-10 2019-07-18 株式会社明電舎 Transformer for vacuum capacitor type instrument
CN110297121A (en) * 2019-08-01 2019-10-01 贵州电网有限责任公司 A kind of capacitive divider low pressure measurement circuit and measurement method
WO2020027026A1 (en) * 2018-07-30 2020-02-06 日本電産株式会社 Measurement device and measurement method
JP2021032854A (en) * 2019-08-29 2021-03-01 富士電機株式会社 Discharge detector and discharge detection method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521670A (en) * 1998-07-23 2002-07-16 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Capacitive voltage divider for measurement of high voltage pulses during millisecond pulse duration
US6465327B1 (en) * 1999-06-30 2002-10-15 Commissariat A L'energie Atomique Method for producing a thin membrane and resulting structure with membrane
JP2007205785A (en) * 2006-01-31 2007-08-16 Energy Support Corp Voltage measuring device of power apparatus
JP2007212204A (en) * 2006-02-08 2007-08-23 Hioki Ee Corp Voltage detector
JP2010127725A (en) * 2008-11-27 2010-06-10 Hioki Ee Corp Noncontact voltage measuring apparatus and noncontact voltage measuring method
DE112010003127B4 (en) * 2009-09-02 2019-01-03 Meidensha Corporation VOLTAGE TRANSFORMER WITH VACUUM CONDENSER
WO2011027797A1 (en) * 2009-09-02 2011-03-10 株式会社明電舎 Vacuum capacitor-voltage-transformer
JP2011054796A (en) * 2009-09-02 2011-03-17 Meidensha Corp Transformer for vacuum capacitor instrumentation
CN102483990A (en) * 2009-09-02 2012-05-30 株式会社明电舍 Vacuum capacitor-voltage-transformer
US20120153932A1 (en) * 2009-09-02 2012-06-21 Meidensha Corporation Vacuum capacitor-voltage-transformer
US9159488B2 (en) 2009-09-02 2015-10-13 Meidensha Corporation Vacuum capacitor-voltage-transformer
JP2012114135A (en) * 2010-11-22 2012-06-14 Meidensha Corp Transformer for capacitor type instrument
JP2012242331A (en) * 2011-05-23 2012-12-10 Mitsubishi Electric Corp Amplitude control voltage sensor
WO2019138632A1 (en) * 2018-01-10 2019-07-18 株式会社明電舎 Transformer for vacuum capacitor type instrument
JP2019121739A (en) * 2018-01-10 2019-07-22 株式会社明電舎 Vacuum capacitor type instrument transformer
CN111587467A (en) * 2018-01-10 2020-08-25 株式会社明电舍 Transformer for vacuum capacitance instrument
US11342127B2 (en) 2018-01-10 2022-05-24 Meidensha Corporation Transformer for vacuum capacitor type instrument
WO2020027026A1 (en) * 2018-07-30 2020-02-06 日本電産株式会社 Measurement device and measurement method
CN110297121A (en) * 2019-08-01 2019-10-01 贵州电网有限责任公司 A kind of capacitive divider low pressure measurement circuit and measurement method
JP2021032854A (en) * 2019-08-29 2021-03-01 富士電機株式会社 Discharge detector and discharge detection method

Similar Documents

Publication Publication Date Title
JPH1031037A (en) Capacitor potential divider
US6456094B2 (en) Capacitive voltage divider for measuring high voltage pulses with millisecond pulse duration
KR19990067099A (en) Frequency-independent voltage divider
EP0088561A1 (en) Capacitor monitoring circuit
KR0161274B1 (en) Ratiometric measurement circuit with improved noise rejection
US4492932A (en) Amplifier circuit having a high-impedance input and a low-impedance output
RU2250471C1 (en) Voltage divided for measurements conducting at commutation tests of high-voltage equipment and method of compensation of influence on division ratio of grounded voltage divider capacitance
Shields Measurement of four-pair admittances witk two-pair bridges
JPS6142133Y2 (en)
JPS6133579Y2 (en)
JPS5916835Y2 (en) Input circuit of electronic equipment
JPS6020927B2 (en) variable damping device
JP2600274Y2 (en) IC tester direct connection and voltage division connection switching circuit
JPH0740220Y2 (en) Protection circuit in signal input section
JPS5821502A (en) Electrostatic capacity type displacement detecting circuit
JPS5932736B2 (en) Leakage current detection method of overvoltage protection device for AC system
JPS6144395B2 (en)
US4250448A (en) Voltmeter apparatus for cascaded transformers
Hubli et al. A new impulse peak voltmeter
SU813686A1 (en) Rc-filter
DE1948260C3 (en) Measuring device for converting the position of a movable instrument or device part into the phase angle of an electrical alternating voltage
SU1397839A1 (en) Device for registering voltage in high-voltage units
DE837137C (en) Double bridge circuit for determining the electrical properties of very small measuring objects or for determining extremely small changes in the electrical properties, especially of small measuring objects
SU588509A1 (en) Device for simultaneous and independent measuring of impedance components
SU1552124A2 (en) Capacity meter for force-balance transducers of mechanical quantities