JPH10304589A - Complementary charging of battery by charging battery with pulse current and keeping it in full-charged state - Google Patents

Complementary charging of battery by charging battery with pulse current and keeping it in full-charged state

Info

Publication number
JPH10304589A
JPH10304589A JP9107447A JP10744797A JPH10304589A JP H10304589 A JPH10304589 A JP H10304589A JP 9107447 A JP9107447 A JP 9107447A JP 10744797 A JP10744797 A JP 10744797A JP H10304589 A JPH10304589 A JP H10304589A
Authority
JP
Japan
Prior art keywords
battery
charging
pulse
self
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9107447A
Other languages
Japanese (ja)
Inventor
Tetsuya Okada
哲也 岡田
Takahiro Yamashita
孝浩 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9107447A priority Critical patent/JPH10304589A/en
Publication of JPH10304589A publication Critical patent/JPH10304589A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To keep a battery in a full-charged state and effectively prevent the deterioration of the battery characteristics by charging the battery with a pulse current at a specified duty radio by which chargings and pauses are repeated in a specified cycle. SOLUTION: A charging circuit is provided with a semiconductor control element 7 connected between connection terminals 4 located at the output side and a positive side of a constant-current and constant-voltage power supply 6 and a control circuit 8 for controlling the charged condition of a pack battery 1 by controlling the semiconductor control element 7. When a discharged pack battery 1 is connected to the charging circuit, it is rapidly charged until it is charged full and then charged with pulse current for complementary charging. In order to prevent the decline in the discharge capacity due to self discharging, the control circuit 8 controls the semiconductor control element 7, so as to charge the pack battery 1 with pulse current. At that time, the control circuit 8 having a built-in microcomputer calculates a quantity of self discharge of the battery from the detected battery temperature and then calculates a duty ratio of pulse charging for complementary charging of the battery for a quantity equal to the self discharged quantity. By this method, the battery can be kept in a nearly fully charged state, and the deterioration of the battery characteristics can be effectively prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池の自己放電に
相当するパルス充電を行い、電池を常に満充電状態に保
持する充電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging method for performing pulse charging corresponding to self-discharge of a battery and always keeping the battery in a fully charged state.

【0002】[0002]

【従来の技術】電池は、使用しない状態において自己放
電する。自己放電は、実際に使用できる放電容量を次第
に減少させる。このため、常に満充電状態にしておく必
要のある電池、たとえば、携帯電話の電源等に使用され
る電池は、自己放電に相当する一定の電流でトリクル充
電して満充電状態に保持させている。
2. Description of the Related Art Batteries self-discharge when not in use. The self-discharge gradually reduces the actually usable discharge capacity. For this reason, a battery that needs to be kept in a fully charged state, for example, a battery used for a power supply of a mobile phone or the like, is trickle-charged at a constant current corresponding to self-discharge and is held in a fully charged state. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、電池を
常に補充電して、自己放電を解消する充電方法は、電池
を常に満充電された状態に保持できる特長はあるが、電
池の寿命が相当に短くなる欠点がある。とくに、ニッケ
ル−水素電池等の二次電池は、満充電後に、連続して補
充電すると、過充電されて電池寿命が相当に短くなる欠
点がある。この弊害をさけるためにトリクル充電を中止
すると、自己放電で日数とともに放電容量が減少する。
このため、実際に使用するときに、使用時間が相当に短
くなってしまう弊害がある。たとえば、携帯電話等の場
合は、実際に使用できる時間が相当に短くなることがあ
る。すなわち、携帯電話等の電気機器を、実際に使用す
るときに、最大時間使用できることと、電池性能を低下
させないことは、互いに相反する特性であって、両方を
同時に満足させることはできない。実際の電池の使用状
態においては、満充電状態で使用できることが大切であ
る。このため、自己放電を、トリクル充電による補充電
で解消しているのが実状である。したがって、二次電池
は、理想的な状態で充放電させると、300〜500回
以上も繰り返し使用できるが、満充電状態に保持する充
放電では、サイクル寿命が相当に短縮されるのが実状で
ある。さらに、困ったことに、二次電池は、多くの用途
においては使用時期が決っておらず、常に満充電してお
かないと便利に使用できない。このような使用環境が、
電池寿命を相当に短縮しているのが実状である。
However, the charging method for eliminating the self-discharge by always supplementarily charging the battery has a feature that the battery can always be kept fully charged, but the life of the battery is considerably long. There is a disadvantage that it becomes shorter. In particular, when a secondary battery such as a nickel-metal hydride battery is continuously charged after being fully charged, there is a disadvantage that the battery life is considerably shortened due to overcharging. If trickle charging is stopped to avoid this adverse effect, the discharge capacity decreases with the number of days due to self-discharge.
For this reason, there is a problem that the use time is considerably shortened when actually used. For example, in the case of a mobile phone or the like, the actual usable time may be considerably shortened. That is, when an electric device such as a mobile phone is actually used, the ability to use it for a maximum time and the ability to keep the battery performance from being deteriorated are mutually contradictory characteristics, and both cannot be satisfied at the same time. It is important that the battery can be used in a fully charged state in actual use of the battery. Therefore, the actual situation is that self-discharge is eliminated by supplementary charging by trickle charging. Therefore, when a secondary battery is charged and discharged in an ideal state, it can be used repeatedly 300 to 500 times or more. However, in a charge and discharge that is maintained in a fully charged state, the cycle life is considerably shortened in reality. is there. In addition, it is troublesome that the rechargeable battery is not used in many applications without a fixed timing, and cannot be conveniently used unless it is fully charged at all times. Such use environment,
The reality is that the battery life is considerably shortened.

【0004】したがって、本発明の第1の目的は、互い
に相反する特性である、満充電状態に保持して、電池特
性が低下するのを有効に防止することにある。
Accordingly, a first object of the present invention is to maintain a fully charged state, which is a contradictory characteristic, to effectively prevent the battery characteristic from deteriorating.

【0005】さらに、二次電池をトリクル充電して自己
放電を解消する方法は、電池の温度が低下すると過充電
になって、電池性能を著しく低下させる欠点もある。そ
れは、電池の温度が低下すると、自己放電が少なくなる
ので、一定の電流でトリクル充電して補充電すると、充
電量が放電量よりも多くなって、過充電になってしま
う。電池が過充電された状態で保存されることは、電池
にとって極めて好ましくいない環境であって、この状態
で電池性能は著しく低下してしまう。この弊害を防止す
るために、トリクル充電して補充電する充電電流を小さ
くすると、電池の充電を補償できなくなり、電池が自己
放電によって次第に放電されて、実際の使用時間が短縮
される欠点がある。このことからも、電池を常に満充電
状態に保持することと、使用時間を最大にすることとは
互いに相反する特性であって、両方を同時に満足させる
ことは極めて難しい。とくに、電池の自己放電による放
電量と、トリクル充電による補充電の充電量とを、ぴっ
たりと合致させることは、実際には不可能である。とく
に、時間が経過するにしたがって、その差は次第に大き
くなる。このため、実際の使用状態においては、電池が
過充電されて電池性能が低下してしまうか、あるいは、
使用時間が短縮されるかの何れかとなってしまうのが実
状である。
Further, the method of eliminating the self-discharge by trickle charging the secondary battery has a drawback that when the temperature of the battery is lowered, the battery is overcharged and the performance of the battery is significantly reduced. That is, when the temperature of the battery decreases, self-discharge decreases. Therefore, when trickle charging is performed at a constant current and supplementary charging is performed, the amount of charge becomes larger than the amount of discharge, resulting in overcharging. Storing a battery in an overcharged state is an extremely unfavorable environment for the battery, and in this state, the battery performance is significantly reduced. If the charging current for trickle charging and supplementary charging is reduced to prevent this adverse effect, the charging of the battery cannot be compensated, and the battery is gradually discharged by self-discharge, resulting in a reduction in the actual use time. . From this, maintaining the battery in a fully charged state and maximizing the use time are mutually contradictory characteristics, and it is extremely difficult to satisfy both at the same time. In particular, it is practically impossible to exactly match the amount of discharge due to self-discharge of the battery with the amount of charge for auxiliary charging by trickle charging. In particular, the difference gradually increases with time. For this reason, in an actual use state, the battery is overcharged and the battery performance is reduced, or
The actual situation is that the use time is either shortened.

【0006】本発明の第2の目的は、さらにこの弊害を
解消すること、すなわち、電池の過充電を防止して、し
かも使用時間を最大限に延長することにある。
A second object of the present invention is to further solve this problem, that is, to prevent the battery from being overcharged and to maximize the use time.

【0007】[0007]

【課題を解決するための手段】本発明の補充電方法は、
電池の自己放電に相当する補充電をして、満充電状態に
保持する充電方法を改良したもので、電池を、所定の周
期で充電と休止を繰り返して、所定のデューティー比で
パルス充電して補充電する。さらに、本発明の補充電方
法は、電池温度を検出して、検出した電池温度から電池
の自己放電量を演算し、自己放電を補うように、パルス
充電するときのデューティー比を変更する。電池温度が
高くなると、自己放電量が多くなるので、休止時間に対
する充電時間の比率を大きくするようにデューティー比
を調整してパルス充電する。
The auxiliary charging method according to the present invention comprises:
This is an improved charging method that performs a supplementary charge equivalent to the self-discharge of the battery and holds the battery in a fully charged state.The battery is repeatedly charged and paused at a predetermined cycle, and pulse-charged at a predetermined duty ratio. Make a supplementary charge. Further, the auxiliary charging method of the present invention detects the battery temperature, calculates the amount of self-discharge of the battery from the detected battery temperature, and changes the duty ratio at the time of pulse charging so as to compensate for the self-discharge. When the battery temperature increases, the amount of self-discharge increases. Therefore, pulse charging is performed by adjusting the duty ratio so as to increase the ratio of the charging time to the pause time.

【0008】さらに、本発明の請求項2の電池をパルス
充電して満充電状態に保持する補充電方法は、電池の電
圧が設定電圧以下になると、あらかじめ設定されたデュ
ーティー比でパルス充電する。この充電方法は、たとえ
ば、電池の自己放電量よりも、補充電量が少なくて、電
池の電圧が低下すると、あらかじめ設定されたデューテ
ィー比でパルス充電して、自己放電による不足を補充す
る。
Further, according to the second aspect of the present invention, in the auxiliary charging method for maintaining a full charge state by pulse charging a battery, when the voltage of the battery falls below a set voltage, pulse charging is performed at a preset duty ratio. In this charging method, for example, when the amount of supplementary charge is smaller than the amount of self-discharge of the battery and the voltage of the battery decreases, pulse charging is performed at a preset duty ratio to supplement shortage due to self-discharge.

【0009】本発明の電池をパルス充電して満充電状態
に保持する補充電方法は、パルス充電のデューティー比
を変更して、補充電する量を調整するが、デューティー
比は、充電時間を一定として充電を休止する時間を変更
し、あるいは、充電を休止する時間を一定として、充電
時間を変更して調整し、あるいはまた、充電時間と休止
時間の両方を変更して調整する。
According to the supplementary charging method of the present invention for maintaining a fully charged state by pulse-charging a battery, the duty ratio of pulse charging is changed to adjust the amount of supplementary charging. The charging suspension time is changed, or the charging suspension time is fixed, and the charging time is changed and adjusted, or both the charging time and the suspension time are changed and adjusted.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。ただし、以下に示す実施例は、本発明
の技術思想を具体化するための補充電方法を例示するも
のであって、本発明は補充電方法を下記の方法に特定し
ない。
Embodiments of the present invention will be described below with reference to the drawings. However, the following examples illustrate a supplementary charging method for embodying the technical idea of the present invention, and the present invention does not specify the supplementary charging method to the following method.

【0011】図1は、本発明の補充電方法に使用する充
電回路を示す。この図の充電回路は、脱着自在に連結さ
れるパック電池1を充電する。パック電池1は、携帯電
話等の携帯用電子機器2に脱着自在に装着されている。
充電回路は、携帯用電子機器2に装着されたパック電池
1、あるいは、機器から外されたパック電池を充電す
る。パック電池1は、ニッケル−水素電池、ニッケル−
カドミウム電池、あるいはリチウムイオン二次電池等の
二次電池3を内蔵している。
FIG. 1 shows a charging circuit used in the auxiliary charging method of the present invention. The charging circuit in this figure charges a battery pack 1 that is detachably connected. The battery pack 1 is detachably attached to a portable electronic device 2 such as a mobile phone.
The charging circuit charges the battery pack 1 attached to the portable electronic device 2 or the battery pack removed from the device. The battery pack 1 is a nickel-metal hydride battery,
A secondary battery 3 such as a cadmium battery or a lithium ion secondary battery is built in.

【0012】充電回路は、接続端子4を介して、パック
電池1の+−端子と、温度端子5に接続される。充電回
路は、パック電池1の+端子に接続される。この充電回
路は、入力される商用電源、日本では交流の100V
を、パック電池1を充電できる直流電圧に変換する定電
流定電圧電源6と、この定電流定電圧電源6の出力側と
+側の接続端子4との間に接続された半導体制御素子7
と、この半導体制御素子7を制御してパック電池1の充
電状態を制御する制御回路8とを備える。
The charging circuit is connected to the + and-terminals of the battery pack 1 and the temperature terminal 5 via the connection terminal 4. The charging circuit is connected to the + terminal of the battery pack 1. This charging circuit is an input commercial power supply, 100 V AC in Japan
Constant current power supply 6 for converting the power to a DC voltage capable of charging the battery pack 1, and a semiconductor control element 7 connected between the output side of the constant current constant voltage power supply 6 and the + connection terminal 4.
And a control circuit 8 for controlling the semiconductor control element 7 to control the state of charge of the battery pack 1.

【0013】制御回路8は、パック電池1に内蔵される
電池の電圧と温度とを検出して、充電状態を制御する。
放電されたパック電池1が充電回路に接続されると、制
御回路8は、パック電池1を急速充電して満充電した
後、パルス充電して補充電する。補充電は、電池が自己
放電して使用できる放電容量が低下するのを防止する。
急速充電は、パック電池1に内蔵される二次電池3のタ
イプに最適な状態で充電される。内蔵される二次電池3
が、ニッケル−水素電池またはニッケル−カドミウム電
池とするパック電池1は、電池電圧を検出しながら定電
流充電して満充電する。この種の二次電池3は、満充電
になると電池電圧が低下するので、電池電圧がピーク値
から低下したこと、すなわちΔVを検出して満充電を終
了させる。
The control circuit 8 detects the voltage and temperature of the battery contained in the battery pack 1 and controls the state of charge.
When the discharged battery pack 1 is connected to the charging circuit, the control circuit 8 rapidly charges the battery pack 1 to a full charge, and then performs pulse charge and supplementary charge. The supplementary charge prevents the battery from self-discharging and reducing the usable discharge capacity.
In the quick charging, the battery is charged in a state optimal for the type of the secondary battery 3 built in the battery pack 1. Built-in secondary battery 3
However, the battery pack 1, which is a nickel-hydrogen battery or a nickel-cadmium battery, is fully charged by constant current charging while detecting the battery voltage. Since the battery voltage of this type of secondary battery 3 drops when it is fully charged, it is detected that the battery voltage has dropped from its peak value, that is, ΔV, and the full charge is terminated.

【0014】満充電されたパック電池1は、充電を停止
した後、自己放電して次第に放電容量が低下する。自己
放電による放電容量の低下を防止するために、制御回路
8は、半導体制御素子7を制御してパック電池1をパル
ス充電する。制御回路8は、マイコンを内蔵している。
マイコンは、電池温度を検出して、検出した電池温度か
ら、電池の自己放電量を演算し、その自己放電量に相当
する補充電をするように、パルス充電するデューティー
比を演算する。マイコンは、演算結果で半導体制御素子
7を制御して、パック電池1を補充電する。
A fully charged battery pack 1 self-discharges after charging is stopped, and the discharge capacity gradually decreases. In order to prevent a decrease in discharge capacity due to self-discharge, the control circuit 8 controls the semiconductor control element 7 to pulse-charge the battery pack 1. The control circuit 8 has a built-in microcomputer.
The microcomputer detects the battery temperature, calculates the self-discharge amount of the battery from the detected battery temperature, and calculates the duty ratio for pulse charging so as to perform supplementary charging corresponding to the self-discharge amount. The microcomputer controls the semiconductor control element 7 on the basis of the operation result to supplementarily charge the battery pack 1.

【0015】制御回路8が、満充電されたパック電池1
をパルス充電して補充電するフローチャートを図2に示
す。ただし、このパック電池は、ニッケル−水素電池を
内蔵するタイプである。以下のステップで、半導体制御
素子7をオンオフに切り換えるマイコンは、メモリに、
電池温度に対するデューティー比を記憶しており、電池
温度に対する自己放電量に相当する補充電をする。
The control circuit 8 controls the fully charged battery 1
FIG. 2 shows a flowchart for supplementary charging by pulse-charging. However, this battery pack is a type that incorporates a nickel-hydrogen battery. In the following steps, the microcomputer that switches the semiconductor control element 7 on and off stores in the memory
The duty ratio with respect to the battery temperature is stored, and the auxiliary charge corresponding to the self-discharge amount with respect to the battery temperature is performed.

【0016】[S=1のステップ]このステップで、制
御回路8は、検出した電池温度が10℃よりも低いかど
うかを判定する。電池温度が10℃よりも低いと判定さ
れると、制御回路8は、半導体制御素子7を制御して、
0.1Cの充電電流で2秒充電し、その後、248秒充
電を休止する状態を繰り返して、パルス充電する。すな
わち、0.8%のデューティー比で、0.1Cの充電電
流でパルス充電する。
[Step S = 1] In this step, the control circuit 8 determines whether the detected battery temperature is lower than 10 ° C. When it is determined that the battery temperature is lower than 10 ° C., the control circuit 8 controls the semiconductor control element 7 to
The battery is charged for 2 seconds with a charging current of 0.1 C, and thereafter, the charging is paused for 248 seconds, and pulse charging is repeated. That is, pulse charging is performed at a duty ratio of 0.8% and a charging current of 0.1 C.

【0017】[S=2のステップ]電池温度が、10℃
よりも低くないと判定されると、このステップにおい
て、検出した電池温度が30℃よりも低いかどうかが判
定される。電池温度が30℃よりも低いと判定される
と、すなわち、電池温度が10〜30℃の範囲にあると
判定されると、制御回路8は、半導体制御素子7を制御
して、0.1Cの充電電流で4秒充電し、その後、24
6秒充電を休止する状態を繰り返して、パルス充電す
る。すなわち、1.6%のデューティー比で、0.1C
の充電電流でパルス充電する。
[Step S = 2] Battery temperature is 10 ° C.
If not, it is determined in this step whether the detected battery temperature is lower than 30 ° C. When it is determined that the battery temperature is lower than 30 ° C., that is, when it is determined that the battery temperature is in the range of 10 to 30 ° C., the control circuit 8 controls the semiconductor control element 7 to For 4 seconds with a charging current of
The state in which charging is suspended for 6 seconds is repeated, and pulse charging is performed. That is, at a duty ratio of 1.6%, 0.1C
Pulse charging with the charging current of.

【0018】[S=3のステップ]電池温度が、30℃
よりも低くないと判定されると、このステップにおい
て、検出した電池温度が50℃よりも低いかどうかが判
定される。電池温度が50℃よりも低いと判定される
と、すなわち、電池温度が30〜50℃の範囲にあると
判定されると、制御回路8は、半導体制御素子7を制御
して、0.1Cの充電電流で7秒充電し、その後、24
3秒充電を休止する状態を繰り返して、パルス充電す
る。すなわち、2.8%のデューティー比で、0.1C
の充電電流でパルス充電する。
[Step S = 3] Battery temperature is 30 ° C.
If not, it is determined in this step whether the detected battery temperature is lower than 50 ° C. When it is determined that the battery temperature is lower than 50 ° C., that is, when it is determined that the battery temperature is in the range of 30 to 50 ° C., the control circuit 8 controls the semiconductor control element 7 to For 7 seconds and then 24
Pulse charging is repeated by repeating a state in which charging is suspended for 3 seconds. That is, at a duty ratio of 2.8%, 0.1C
Pulse charging with the charging current of.

【0019】電池温度が、50℃よりも低くない、いい
かえると、電池温度が50℃以上であると判定される
と、制御回路8は、半導体制御素子7を制御して、0.
1Cの充電電流で16秒充電し、その後、234秒充電
を休止する状態を繰り返して、パルス充電する。すなわ
ち、6.4%のデューティー比で、0.1Cの充電電流
でパルス充電する。
If the battery temperature is not lower than 50 ° C., in other words, if it is determined that the battery temperature is 50 ° C. or higher, the control circuit 8 controls the semiconductor control element 7 to control
The battery is charged for 16 seconds with a charging current of 1 C, and thereafter, the state of suspending the charging for 234 seconds is repeated, and pulse charging is performed. That is, pulse charging is performed at a duty ratio of 6.4% and a charging current of 0.1 C.

【0020】パルス充電するデューティー比は、図3に
示す、パック電池の自己放電特性から計算した。この図
に示すように、パック電池は、自己放電して、次第に放
電容量が低下する。自己放電による放電容量の低下は、
電池温度が高くなるに従って大きくなる。たとえば、電
池温度を0℃、25℃、40℃、60℃とするパック電
池は、順番に、1日で約2%、約4%、約7%、約16
%自己放電して補充電が少なくなる。
The duty ratio for pulse charging was calculated from the self-discharge characteristics of the battery pack shown in FIG. As shown in this figure, the battery pack self-discharges, and the discharge capacity gradually decreases. The decrease in discharge capacity due to self-discharge
It increases as the battery temperature increases. For example, a battery pack with a battery temperature of 0 ° C., 25 ° C., 40 ° C., and 60 ° C. has a power of about 2%, about 4%, about 7%, and about 16% in one day.
% Self-discharge and less supplementary charge.

【0021】パルス充電による補充電が、0.1Cの充
電電流で、デューティー比を0.8%として24時間す
ると、補充電量は1.92%(約2%)となり、0℃の
パック電池の自己放電にほぼ匹敵する充電を行うことが
できる。同じように、デューティー比を1.6%、2.
8%、6.4%とすると、1日の補充電量は、下記のよ
うになる。テ゛ューティー 比1.6%………3.84%(約4%)テ゛ューティー 比2.8%………6.72%(約7%)テ゛ューティー 比6.4%………15.4%(約16%)
When the supplementary charge by pulse charge is performed for 24 hours at a charging current of 0.1 C and a duty ratio of 0.8%, the supplementary charge amount becomes 1.92% (about 2%), and the battery pack at 0 ° C. Charging almost equivalent to self-discharge can be performed. Similarly, the duty ratio is 1.6%, 2.
Assuming 8% and 6.4%, the supplementary charge amount per day is as follows. Duty ratio 1.6% 3.84% (approximately 4%) Duty ratio 2.8% 6.72% (approximately 7%) Duty ratio 6.4% 15.4% About 16%)

【0022】したがって、前述の条件でパルス充電する
と、自己放電にほぼ匹敵する補充電をすることができ
る。このため、自己放電による放電容量の低下を解消し
て、電池を常にほぼ満充電状態に保持できる。
Therefore, when pulse charging is performed under the above-described conditions, it is possible to perform supplementary charging substantially equal to self-discharge. For this reason, a decrease in the discharge capacity due to self-discharge is eliminated, and the battery can always be maintained in a substantially fully charged state.

【0023】以上の実施例の補充電方法は、パルス充電
による補充電量を、電池の自己放電量よりもわずかに少
なく設定している。この補充電方法は、電池の性能の低
下を極めて少なくして、しかも電池をほぼ満充電状態に
保持できる特長がある。それは、満充電された電池が、
補充電で過充電されることがないからである。ただ、以
上の補充電方法は、長時間経過すると、実際に使用でき
る放電容量が、満充電状態よりも少し低下する傾向にあ
る。放電容量が低下すると、電池の使用時間が短くな
る。
In the auxiliary charging method of the above embodiment, the amount of auxiliary charging by pulse charging is set slightly smaller than the amount of self-discharge of the battery. This auxiliary charging method has a feature that the deterioration of the battery performance is extremely small, and the battery can be maintained in a substantially fully charged state. It is a fully charged battery,
This is because overcharging is not performed by supplementary charging. However, in the above supplementary charging method, the discharge capacity that can be actually used tends to be slightly lower than the full charge state after a long time. When the discharge capacity decreases, the battery usage time decreases.

【0024】この弊害を防止するために、制御回路8
は、電池の電圧を検出し、電池電圧が設定電圧よりも低
下すると、決められたデューティー比と充電電流で、パ
ルス充電して、電池を再び満充電する。このときのパル
ス充電する充電量は、自己放電量よりも大きく設定され
る。
In order to prevent this adverse effect, the control circuit 8
Detects the voltage of the battery, and when the battery voltage falls below the set voltage, performs pulse charging with the determined duty ratio and charging current to fully charge the battery again. At this time, the charge amount for pulse charging is set to be larger than the self-discharge amount.

【0025】パルス充電して電池を補充電する充電量
は、パルス充電するときの、デューティー比と充電電流
の積に比例して大きくなる。したがって、パルス充電の
充電電流を大きくすると、デューティー比を小さくし、
反対に、パルス充電の充電電流を小さくするとデューテ
ィー比を大きくする。たとえば、充電電流を1/2にす
ると、デューティー比を2倍にして、自己放電を補う充
電容量を調整する。以上の実施例は、電池温度で、充電
時間と、充電を休止する時間の両方を変更して、デュー
ティー比を変更している。ただし、電池を補充電するた
めのパルス充電は、電池温度で充電時間のみを変更し、
あるいは、充電を休止する時間のみを変更して、デュー
ティー比を変更することもできる。
The amount of charge for supplementing the battery by pulse charging increases in proportion to the product of the duty ratio and the charging current during pulse charging. Therefore, when the charging current of pulse charging is increased, the duty ratio is reduced,
Conversely, when the charging current of the pulse charging is reduced, the duty ratio is increased. For example, if the charging current is halved, the duty ratio is doubled to adjust the charging capacity to compensate for self-discharge. In the above embodiments, the duty ratio is changed by changing both the charging time and the charging pause time at the battery temperature. However, pulse charging for supplementary charging of the battery changes only the charging time at the battery temperature,
Alternatively, the duty ratio can be changed by changing only the time during which charging is suspended.

【0026】さらに、以上の実施例は、ニッケル−水素
電池を内蔵するパック電池をパルス充電して補充電する
方法を例示するが、ニッケル−カドミウム電池を内蔵す
るパック電池、あるいは、リチウムイオン二次電池を内
蔵するパック電池も同じようにして、補充電できる。た
だ、電池の自己放電は、電池の種類によって一定ではな
いので、パック電池に内蔵される二次電池の自己放電量
を考慮して、パルス充電して補充電するときに、デュー
ティー比と充電電流を最適値に設定する。
Further, the above embodiment illustrates a method of supplementarily charging a battery pack containing a nickel-hydrogen battery by pulse-charging. The battery pack contains a nickel-cadmium battery, or a lithium ion secondary battery. Battery packs with built-in batteries can be supplementarily charged in the same manner. However, since the self-discharge of the battery is not constant depending on the type of the battery, the duty ratio and the charge current when performing the pulse charge and the supplementary charge in consideration of the self-discharge amount of the secondary battery built in the battery pack are considered. Is set to the optimal value.

【0027】以上のようにパルス充電して補充電された
パック電池の放電容量が低下する状態を図4に示す。こ
の図は、満充電されたパック電池を、パルス充電して補
充電する本発明の前述の方法と、満充電されたパック電
池を、一定の電流でトリクル充電して補充電する方法と
で、電池を実際に使用できる補充電が低下する状態を示
している。本発明の実施例の方法でパルス充電して補充
電する補充電方法は、30カ月経過後も、ほとんど放電
容量が低下せず、35カ月(3年以上)経過後において
も、放電容量は定格容量の70%以上もあった。これに
対して、一定の電流でトリクル充電して補充電する従来
の方法は、約25カ月経過後に次第に放電容量が低下し
始め、30カ月経過後には、放電容量が定格容量の約6
5%に低下し、その後、急激に放電容量が低下して、3
年経過後には、放電容量が定格容量の50%に極減し
た。
FIG. 4 shows a state in which the discharge capacity of the battery pack that has been supplemented by pulse charging as described above decreases. This figure shows the above-mentioned method of the present invention in which a fully charged pack battery is supplementarily charged by pulse charging, and the method in which a fully charged pack battery is trickle-charged with a constant current to supplementarily charge the battery. This shows a state where the auxiliary charge that can actually use the battery decreases. In the auxiliary charging method in which pulse charging and auxiliary charging are performed by the method of the embodiment of the present invention, the discharge capacity hardly decreases even after 30 months, and the discharge capacity is rated even after 35 months (3 years or more). More than 70% of the capacity. On the other hand, in the conventional method of trickle charging and supplementary charging with a constant current, the discharge capacity starts to gradually decrease after about 25 months, and after 30 months, the discharge capacity becomes about 6 times the rated capacity.
5%, and then the discharge capacity sharply decreases to 3%
After one year, the discharge capacity was extremely reduced to 50% of the rated capacity.

【0028】[0028]

【発明の効果】本発明の電池をパルス充電して満充電状
態に保持する補充電方法は、電池を満充電状態に保持し
て、しかも、電池特性の低下を有効に防止できる特長が
ある。さらに、本発明の補充電方法は、電池の過充電を
防止しながら、電池を満充電に近い状態に保持して、使
用時間を長くできる特長がある。それは、本発明の補充
電方法が、電池をパルス充電して補充電すると共に、電
池温度を検出して、検出した電池温度から電池の自己放
電量を演算し、この自己放電を補うように、デューティ
ー比を電池温度で変更して補充電するからである。
The supplementary charging method of the present invention in which a battery is charged in a pulsed manner to maintain the battery in a fully charged state has the features that the battery can be maintained in a fully charged state and the deterioration of battery characteristics can be effectively prevented. Furthermore, the auxiliary charging method of the present invention has a feature that the battery can be kept close to full charge and the usage time can be extended while preventing overcharging of the battery. That is, the supplementary charge method of the present invention performs supplementary charge by pulse-charging the battery, detects the battery temperature, calculates the self-discharge amount of the battery from the detected battery temperature, and compensates for this self-discharge. This is because the duty ratio is changed at the battery temperature to perform auxiliary charging.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の補充電方法に使用する充電回
路の回路図
FIG. 1 is a circuit diagram of a charging circuit used in a supplementary charging method according to an embodiment of the present invention.

【図2】制御回路が満充電されたパック電池をパルス充
電して補充電する工程を示すフローチャート図
FIG. 2 is a flowchart showing a process in which a control circuit performs pulse charging of a fully charged pack battery to perform supplementary charging.

【図3】パック電池の自己放電特性を示すグラフFIG. 3 is a graph showing self-discharge characteristics of a battery pack.

【図4】パック電池の放電容量が低下する状態を示すグ
ラフ
FIG. 4 is a graph showing a state in which the discharge capacity of the battery pack decreases.

【符号の説明】[Explanation of symbols]

1…パック電池 2…携帯用電子機器 3…二次電池 4…接続端子 5…温度端子 6…定電流定電圧電源 7…半導体制御素子 8…制御回路 DESCRIPTION OF SYMBOLS 1 ... Battery pack 2 ... Portable electronic equipment 3 ... Secondary battery 4 ... Connection terminal 5 ... Temperature terminal 6 ... Constant current constant voltage power supply 7 ... Semiconductor control element 8 ... Control circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電池をパルス充電して満充電された状態
に保持する補充電方法において、 電池を、所定の周期で充電と休止を繰り返して、所定の
デューティー比でパルス充電して補充電すると共に、電
池温度を検出して、検出した電池温度から電池の自己放
電量を演算して、自己放電を補うように、パルス充電す
るときのデューティー比を変更し、電池温度が高くなる
と、休止時間に対する充電時間の比率を大きくするよう
にデューティー比を調整してパルス充電することを特徴
とする、電池をパルス充電して満充電状態に保持する補
充電方法。
1. A supplementary charging method for maintaining a fully charged state by pulse-charging a battery, wherein the battery is repeatedly charged and paused at a predetermined cycle, and pulse-charged at a predetermined duty ratio to perform supplementary charging. At the same time, the battery temperature is detected, the self-discharge amount of the battery is calculated from the detected battery temperature, and the duty ratio for pulse charging is changed so as to compensate for the self-discharge. A pulse charging method in which the duty ratio is adjusted so as to increase the ratio of the charging time to pulse charging, and the battery is pulse charged and held in a fully charged state.
【請求項2】 電池電圧が設定電圧以下になると、あら
かじめ設定されたデューティー比でパルス充電する請求
項1の電池をパルス充電して満充電状態に保持する補充
電方法。
2. The auxiliary charging method according to claim 1, wherein when the battery voltage becomes equal to or less than a set voltage, the battery is pulse-charged at a preset duty ratio.
【請求項3】 充電時間を一定として充電を休止する時
間を変更してパルス充電するデューティー比を変更する
請求項1の電池をパルス充電して満充電状態に保持する
補充電方法。
3. The supplementary charging method according to claim 1, wherein the duty ratio for pulse charging is changed by changing the time for suspending charging while keeping the charging time constant.
【請求項4】 充電を休止する時間を一定として、充電
時間を変更してパルス充電するデューティー比を変更す
る請求項1の電池をパルス充電して満充電状態に保持す
る補充電方法。
4. The auxiliary charging method according to claim 1, wherein the charging pause time is fixed, and the charging time is changed to change the duty ratio of the pulse charging.
JP9107447A 1997-04-24 1997-04-24 Complementary charging of battery by charging battery with pulse current and keeping it in full-charged state Pending JPH10304589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9107447A JPH10304589A (en) 1997-04-24 1997-04-24 Complementary charging of battery by charging battery with pulse current and keeping it in full-charged state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9107447A JPH10304589A (en) 1997-04-24 1997-04-24 Complementary charging of battery by charging battery with pulse current and keeping it in full-charged state

Publications (1)

Publication Number Publication Date
JPH10304589A true JPH10304589A (en) 1998-11-13

Family

ID=14459392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9107447A Pending JPH10304589A (en) 1997-04-24 1997-04-24 Complementary charging of battery by charging battery with pulse current and keeping it in full-charged state

Country Status (1)

Country Link
JP (1) JPH10304589A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020720A (en) * 1997-10-16 2000-02-01 Nec Corporation Fast charging method and apparatus for secondary cells
JP2007259633A (en) * 2006-03-24 2007-10-04 Nec Personal Products Co Ltd Charging circuit and charging control method
JP2007259632A (en) * 2006-03-24 2007-10-04 Nec Personal Products Co Ltd Charging circuit and charging control method
KR100784019B1 (en) 2005-01-13 2007-12-10 델 프로덕트 엘 피 System and Method for Regulating Pre-charge Current in a Battery System
US7391184B2 (en) 2005-02-16 2008-06-24 Dell Products L.P. Systems and methods for integration of charger regulation within a battery system
US7436149B2 (en) 2006-09-26 2008-10-14 Dell Products L.P. Systems and methods for interfacing a battery-powered information handling system with a battery pack of a physically separable battery-powered input or input/output device
JP2009239989A (en) * 2008-03-25 2009-10-15 Sanyo Electric Co Ltd Charger
JP2011103761A (en) * 2009-08-31 2011-05-26 Sumitomo Electric Ind Ltd Power conversion device
JP2013160582A (en) * 2012-02-03 2013-08-19 Ntt Facilities Inc Battery pack system and management method of battery pack system
JP6156568B1 (en) * 2016-12-02 2017-07-05 富士電機株式会社 Lead storage battery control device, lead storage battery device, uninterruptible power supply, power supply system, lead storage battery control method, and program
CN111001588A (en) * 2019-11-01 2020-04-14 安徽绿沃循环能源科技有限公司 Battery pack echelon recycling method
US10756557B2 (en) 2015-12-01 2020-08-25 Fuji Electric Co., Ltd. Charge apparatus to repeatedly apply a pulsed high voltage and a low voltage to charge a battery
JP2023058465A (en) * 2021-10-13 2023-04-25 邑達電子股▲ふん▼有限公司 Supporting base plate and storage rack suitable for placing battery pack, and corresponding battery pack

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020720A (en) * 1997-10-16 2000-02-01 Nec Corporation Fast charging method and apparatus for secondary cells
KR100784019B1 (en) 2005-01-13 2007-12-10 델 프로덕트 엘 피 System and Method for Regulating Pre-charge Current in a Battery System
KR100812419B1 (en) * 2005-01-13 2008-03-10 델 프로덕트 엘 피 System and Method for Regulating Pre-charge Current in a Battery System
US7378819B2 (en) 2005-01-13 2008-05-27 Dell Products Lp Systems and methods for regulating pulsed pre-charge current in a battery system
US7391184B2 (en) 2005-02-16 2008-06-24 Dell Products L.P. Systems and methods for integration of charger regulation within a battery system
JP2007259633A (en) * 2006-03-24 2007-10-04 Nec Personal Products Co Ltd Charging circuit and charging control method
JP2007259632A (en) * 2006-03-24 2007-10-04 Nec Personal Products Co Ltd Charging circuit and charging control method
US7436149B2 (en) 2006-09-26 2008-10-14 Dell Products L.P. Systems and methods for interfacing a battery-powered information handling system with a battery pack of a physically separable battery-powered input or input/output device
JP2009239989A (en) * 2008-03-25 2009-10-15 Sanyo Electric Co Ltd Charger
JP2011103761A (en) * 2009-08-31 2011-05-26 Sumitomo Electric Ind Ltd Power conversion device
JP2013160582A (en) * 2012-02-03 2013-08-19 Ntt Facilities Inc Battery pack system and management method of battery pack system
US10756557B2 (en) 2015-12-01 2020-08-25 Fuji Electric Co., Ltd. Charge apparatus to repeatedly apply a pulsed high voltage and a low voltage to charge a battery
JP6156568B1 (en) * 2016-12-02 2017-07-05 富士電機株式会社 Lead storage battery control device, lead storage battery device, uninterruptible power supply, power supply system, lead storage battery control method, and program
JP2018093631A (en) * 2016-12-02 2018-06-14 富士電機株式会社 Controller of lead storage battery, lead storage battery device, uninterruptible power supply device, power supply system, and method and program for controlling lead storage battery
CN111001588A (en) * 2019-11-01 2020-04-14 安徽绿沃循环能源科技有限公司 Battery pack echelon recycling method
JP2023058465A (en) * 2021-10-13 2023-04-25 邑達電子股▲ふん▼有限公司 Supporting base plate and storage rack suitable for placing battery pack, and corresponding battery pack

Similar Documents

Publication Publication Date Title
US6137265A (en) Adaptive fast charging of lithium-ion batteries
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
US5510693A (en) Method for battery charging
US6337560B1 (en) Life cycle charging for batteries
US5637413A (en) Overvoltage disconnect circuit for lithium ion batteries
JP4246399B2 (en) Battery cell maintenance charging system and method
JPH09121461A (en) Self-charging battery and electric apparatus employing it
Wong et al. Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation
JPH0997629A (en) Plural lithium ion secondary battery charging method
JPH10304589A (en) Complementary charging of battery by charging battery with pulse current and keeping it in full-charged state
JPH077866A (en) Circuit for charging secondary battery
JPH0869820A (en) Charging method of pack battery enclosing plural secondary batteries
JPH11341694A (en) Charging method of secondary battery
JPH09149556A (en) Secondary battery charging method
US11710978B2 (en) Battery charger and method for charging a battery
US6097176A (en) Method for managing back-up power source
JP2001045674A (en) Charging of secondary battery pack for backup, charging system, and control thereof
JP3428895B2 (en) Charging method of alkaline aqueous secondary battery for backup
JPH09163624A (en) Secondary battery charging method
JP3216595B2 (en) Rechargeable battery charger
JPH1174001A (en) Charging method for lead-acid battery
JP3271138B2 (en) Rechargeable battery charger and charging method
JP3238938B2 (en) Battery charger
JP3496312B2 (en) Charging device
JPH11185824A (en) Primary battery compatible battery pack