JPH10294485A - Module for large size solar cell - Google Patents

Module for large size solar cell

Info

Publication number
JPH10294485A
JPH10294485A JP9101804A JP10180497A JPH10294485A JP H10294485 A JPH10294485 A JP H10294485A JP 9101804 A JP9101804 A JP 9101804A JP 10180497 A JP10180497 A JP 10180497A JP H10294485 A JPH10294485 A JP H10294485A
Authority
JP
Japan
Prior art keywords
solar cell
frame
cell module
cell panel
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9101804A
Other languages
Japanese (ja)
Other versions
JP3674234B2 (en
Inventor
Masataka Kondo
正隆 近藤
Atsushi Takenaka
淳 竹中
Hideo Yamagishi
英雄 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14310334&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10294485(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP10180497A priority Critical patent/JP3674234B2/en
Publication of JPH10294485A publication Critical patent/JPH10294485A/en
Application granted granted Critical
Publication of JP3674234B2 publication Critical patent/JP3674234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/20Peripheral frames for modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means for maintaining the physical strength of a solar cell module without considerably increasing the number of the constituent members of a solar cell panel when increasing the area of the solar cell panel, and hence, to provide a solar cell module which is light in weight and low in cost and has excellent output characteristics. SOLUTION: A solar cell module 1 comprises a solar cell panel 2 including a solar cell element, a frame 3 for fixing the outer edges of the solar cell panel 2, and a means for outputting power from the solar cell panel 2. The solar cell module 1 has a structure wherein a single or a plurality of ribs 6 are provided for the frame 3 to support and fix the side surfaces of the solar cell panel 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽光発電に用い
られる太陽電池モジュールに関し、特に、大面積の大型
太陽電池モジュールに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell module used for photovoltaic power generation, and more particularly to a large-area large-sized solar cell module.

【0002】[0002]

【従来の技術】近年、太陽光発電システムの実用化と低
コスト化技術の開発が進められている。特に次世代の太
陽電池として注目を集めているのが、薄膜系の太陽電池
である。薄膜系太陽電池は、単結晶シリコン太陽電池や
多結晶シリコン太陽電池などに比べて、製造に要する原
材料が少なく、大面積の集積型太陽電池として絶縁体基
板上に直接作成することが容易なことから、低コストの
太陽電池として注目されている。薄膜系太陽電池には、
薄膜多結晶シリコン太陽電池、アモルファスシリコン太
陽電池、化合物多結晶太陽電池(CdS, CdTe, C
IGS)などがあるが、そのなかで最も実用化が進んで
いるのがアモルファスシリコン太陽電池である。ただ
し、アモルファスシリコン太陽電池は、屋外で長時間使
用すると太陽光の影響で変換効率が低下してしまう現
象、いわゆる光劣化が生じるという問題があった。この
ため、従来の実用例としては、電卓や腕時計など屋内で
使用する用途に限られていた。
2. Description of the Related Art In recent years, practical use of a photovoltaic power generation system and development of cost reduction technology have been promoted. In particular, thin-film solar cells are drawing attention as next-generation solar cells. Thin-film solar cells require less raw materials for manufacturing than single-crystal silicon solar cells and polycrystalline silicon solar cells, and can be easily fabricated directly on insulator substrates as large-area integrated solar cells. Therefore, it is attracting attention as a low-cost solar cell. Thin-film solar cells include
Thin-film polycrystalline silicon solar cells, amorphous silicon solar cells, compound polycrystalline solar cells (CdS, CdTe, C
(IGS), among which amorphous silicon solar cells are the most practically used. However, the amorphous silicon solar cell has a problem that when used outdoors for a long time, a phenomenon that conversion efficiency is reduced due to the influence of sunlight, that is, so-called light deterioration occurs. For this reason, conventional practical examples are limited to applications used indoors, such as calculators and watches.

【0003】近年、光劣化はゼロにはならないものの、
光劣化後の変換効率が10%前後と高いアモルファスシ
リコン太陽電池が開発されている。それに伴い、太陽電
池を屋根に載せて家庭の電力を賄うといった、屋外で使
用する太陽電池発電システムの需要が拡大しつつある。
こうした太陽電池は、単体の光電変換素子(太陽電池素
子)の形ではなく、力学的な強度および耐候性を持たせ
た太陽電池パネルの形で利用される。この太陽電池パネ
ルは、フレームにはめ込まれて太陽電池モジュールの形
で用いられる。図9に示すように、従来の太陽電池モジ
ュール21は、太陽電池パネル22と、このパネル22
をはめ込む枠状フレーム23と、パネルから光電変換さ
れた電力を取り出すための端子ボックス24とから構成
される。枠状フレームは、パネルの保護および屋根など
に据え付けるときのために用いられる。枠状フレームの
素材には、アルミニウム合金、または樹脂製のものを使
うことが多い。
[0003] In recent years, although light degradation has not become zero,
2. Description of the Related Art Amorphous silicon solar cells having a high conversion efficiency after photodegradation of about 10% have been developed. Along with this, the demand for a solar cell power generation system used outdoors, such as mounting solar cells on a roof to cover household power, is increasing.
Such a solar cell is used not in the form of a single photoelectric conversion element (solar cell element) but in the form of a solar cell panel having mechanical strength and weather resistance. This solar cell panel is used in the form of a solar cell module by being fitted into a frame. As shown in FIG. 9, a conventional solar cell module 21 includes a solar cell panel 22 and this panel 22.
And a terminal box 24 for extracting photoelectrically converted power from the panel. The frame-shaped frame is used for panel protection and for installation on a roof or the like. The material of the frame is often made of aluminum alloy or resin.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の大型太
陽電池モジュールでは、枠状フレームを構成するアルミ
ニウム合金は、鉄などと比較して、耐候性に優れ軽量で
はあるが、高価な材料なので、太陽電池モジュールの製
作コストを上昇させる原因の一つとなっている。また、
樹脂製の素材を使う場合でも、押出し成型法によるもの
では、フレーム構成材の板厚の下限に制限があり、それ
以上板厚を薄くできないので、材料費を上昇させて、製
作コストを上昇させる一因となっている。
However, in the conventional large-sized solar cell module, the aluminum alloy constituting the frame is excellent in weather resistance and light in weight compared with iron or the like, but is an expensive material. This is one of the causes for increasing the manufacturing cost of the solar cell module. Also,
Even when using a resinous material, the extrusion molding method has a lower limit on the thickness of the frame components, and the thickness cannot be reduced any more. It has contributed.

【0005】また、大型のモジュールを用いると、配線
の簡素化や発電面積の増大に関して有利ではあるが、モ
ジュールの強度を維持するために、枠状フレームの板厚
を増加させたり、パネルの構成部材の厚みを増加させた
り、特殊な強化ガラスなどの軽量で強度のあるものを用
いる必要があり、小面積のパネルを複数枚使用すること
と比べて、全体の重量の増加や、構成部材のコストの増
加に結びつき易かった。しかも、光入射側にガラス板な
どの透明部材を用いる太陽電池パネルの場合、必要な強
度を得るために透明部材の厚みを増やすと、それに伴う
光吸収の増加により、太陽電池素子に入射する光量が減
り、光電変換効率が大幅に減少する問題が生じていた。
Although the use of a large-sized module is advantageous in terms of simplifying wiring and increasing the power generation area, in order to maintain the strength of the module, it is necessary to increase the thickness of the frame-like frame or to increase the panel structure. It is necessary to increase the thickness of the members and use lightweight and strong materials such as special tempered glass, which results in an increase in the overall weight and a reduction in the number of components compared to using multiple small-area panels. It was easy to lead to increased costs. Moreover, in the case of a solar cell panel using a transparent member such as a glass plate on the light incident side, if the thickness of the transparent member is increased to obtain the required strength, the amount of light incident on the solar cell element is increased due to an increase in light absorption accompanying the thickness. And the photoelectric conversion efficiency is greatly reduced.

【0006】本発明は、従来技術の有するこのような問
題点に鑑みなされたものであり、太陽電池パネルの大面
積化の際に、太陽電池パネルの構成部材の厚みをほとん
ど増やすことなく、太陽電池モジュールの力学的強度を
維持する手段を提供し、それによって、軽量、かつ安価
で出力特性の優れた太陽電池モジュールを提供すること
を目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and when increasing the area of a solar cell panel, the thickness of the solar cell panel is hardly increased without increasing the thickness of the components. It is an object of the present invention to provide a means for maintaining the mechanical strength of a battery module, thereby providing a lightweight, inexpensive, solar cell module having excellent output characteristics.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る大型太陽電池モジュールは、太陽電池
素子を含む太陽電池パネルと、該太陽電池パネルの外縁
部を固定する枠状フレームと、前記太陽電池パネルから
電力を出力する手段とからなる太陽電池モジュールであ
って、太陽電池パネルの側面を支持して固定するため
に、前記枠状フレームに単または複数本のリブを設ける
という構成を有する。
In order to achieve the above object, a large-sized solar cell module according to the present invention comprises a solar cell panel including a solar cell element and a frame-like frame for fixing an outer edge of the solar cell panel. And a means for outputting power from the solar cell panel, wherein one or more ribs are provided on the frame to support and fix the side surface of the solar cell panel. Having a configuration.

【0008】具体的には、枠状フレームに、単または複
数本のリブを十字形または梯子形に配置して設ける方法
や、単または複数本のリブを筋交い形に配置して設ける
方法を採用すると、モジュールの力学的強度が高まる。
また、太陽電池パネルの裏面側に断熱材を設けて太陽電
池モジュールを構成すると、アニール効果を促すという
点で好ましい。さらに、前記リブの断面形状をI型また
はH型、もしくは、中空円筒形状、中空三角形、または
中空四角形状とすると、リブの力学的強度が高まり、モ
ジュールの力学的強度が向上する。
More specifically, a method of arranging one or more ribs in a cross shape or a ladder shape on a frame-shaped frame, or a method of arranging one or more ribs in a brace shape is adopted. Then, the mechanical strength of the module increases.
In addition, it is preferable to provide a heat insulating material on the back surface side of the solar cell panel to configure the solar cell module in that the annealing effect is promoted. Further, when the cross-sectional shape of the rib is I-shaped or H-shaped, or a hollow cylindrical shape, a hollow triangular shape, or a hollow rectangular shape, the mechanical strength of the rib is increased, and the mechanical strength of the module is improved.

【0009】[0009]

【発明の実施の形態】以下、図面を参照しながら、具体
的に本発明に係る太陽電池モジュールの種々の実施例を
説明する。図1は、本発明に係る大型太陽電池モジュー
ル1を裏面側から見た場合の図である。この太陽電池モ
ジュール1は、太陽電池パネル2と、この太陽電池パネ
ルの裏面に設けられたフォーム基材8と、この太陽電池
パネル2から電力を出力する手段である端子ボックス5
と、この太陽電池パネル2の外縁部を保持する枠状フレ
ーム3と、この枠状フレーム3に固定したリブ6とから
なる。このリブ6は、フォーム基材8および太陽電池パ
ネル2の裏面を支持するとともに、モジュールの変形を
防止して剛性を持たせ、モジュールの強度を高める役割
を果たすものである。リブ6には、その断面がH型のア
ルミ棒を採用する。枠状フレーム3は、ロール成形加工
により作られたアルミニウム合金製の構成部材3a〜3
dを、太陽電池パネルの外縁形状に合わせて矩形に継ぎ
合わせて作られたものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of a solar cell module according to the present invention will be specifically described below with reference to the drawings. FIG. 1 is a diagram when the large-sized solar cell module 1 according to the present invention is viewed from the back side. The solar cell module 1 includes a solar cell panel 2, a foam base material 8 provided on a back surface of the solar cell panel 2, and a terminal box 5 serving as a unit for outputting power from the solar cell panel 2.
And a frame-shaped frame 3 for holding the outer edge of the solar cell panel 2, and ribs 6 fixed to the frame-shaped frame 3. The ribs 6 serve to support the foam base material 8 and the back surface of the solar cell panel 2, prevent deformation of the module, increase rigidity, and increase the strength of the module. The rib 6 employs an aluminum rod having an H-shaped cross section. The frame 3 is made of aluminum alloy constituent members 3a to 3 made by roll forming.
d is formed by joining the rectangular shape according to the outer edge shape of the solar cell panel.

【0010】また、図2に、図1に示した太陽電池モジ
ュール1のA−A断面図を示すとともに、図3に、太陽
電池パネル2、H型リブ6、および枠状フレーム3が互
いに固定されている様子を示す。太陽電池モジュール1
は、太陽電池パネル2と、クッション性および断熱性に
優れたアクリル系フォーム基材8と、H型リブ6とを順
次積層したものが、枠状フレーム3に嵌入接着されて構
成されるものである。ここで、太陽電池パネル2の裏面
とフォーム基材8、およびフォーム基材8とH型リブ6
とは、アクリル系の接着剤を用いた両面テープで互いに
粘着固定される。フォーム基材8は、パネル2とH型リ
ブ6との間に挟まれることで、太陽電池モジュールにか
かる外力の一部を吸収したり、後述するアニール効果を
高める役目をも果たす。また、太陽電池パネル2の外縁
部は、ブチルゴムなどの接着剤7でもって枠状フレーム
上部に形成した溝部4a, 4aに嵌入接着されるととも
に、リブ6の両端部は、接着性樹脂でもって枠状フレー
ム下部に形成した溝部4b, 4bに嵌入接着される。但
し、本発明では、リブの端部とフレーム下部に形成した
溝部4bとの固定方法を接着性樹脂によるものに限ら
ず、単に、ネジで固定する方法を採用しても良い。枠状
フレーム3には、太陽電池モジュール1を屋上等などに
据え付けるための穴9, 9が開けられている。
FIG. 2 is a sectional view taken along the line AA of the solar cell module 1 shown in FIG. 1. FIG. 3 shows that the solar cell panel 2, the H-shaped ribs 6, and the frame 3 are fixed to each other. It shows how it is being done. Solar cell module 1
Is formed by sequentially laminating a solar cell panel 2, an acrylic foam base material 8 having excellent cushioning and heat insulating properties, and an H-shaped rib 6, which are fitted into and adhered to the frame 3. is there. Here, the back surface of the solar cell panel 2 and the foam base material 8, and the foam base material 8 and the H-shaped rib 6
Is adhesively fixed to each other with a double-sided tape using an acrylic adhesive. When sandwiched between the panel 2 and the H-shaped rib 6, the foam base material 8 also serves to absorb a part of the external force applied to the solar cell module and to enhance an annealing effect described later. The outer edge of the solar cell panel 2 is fitted and bonded to the grooves 4a, 4a formed in the upper portion of the frame-shaped frame with an adhesive 7 such as butyl rubber, and both ends of the rib 6 are formed of an adhesive resin. It is fitted and bonded to the grooves 4b, 4b formed in the lower part of the frame. However, in the present invention, the method of fixing the end of the rib and the groove 4b formed in the lower part of the frame is not limited to the method using an adhesive resin, and a method of simply fixing with a screw may be adopted. The frame 3 is provided with holes 9, 9 for mounting the solar cell module 1 on a rooftop or the like.

【0011】このように、枠状フレームにリブを設ける
構造を採用することによって、ガラス板にかかる力学的
負荷が減るため、ガラス板の板厚を薄くすることができ
る。ガラスの板厚が大きくなると、光の吸収、特に近赤
外域の波長についての吸収が大きくなり、これがロスと
なってパネルの発電特性が低下する問題も、この様に厚
みを薄くすることで解決するのである。
As described above, by adopting the structure in which the ribs are provided on the frame-shaped frame, the mechanical load applied to the glass plate is reduced, so that the thickness of the glass plate can be reduced. Increasing the thickness of the glass increases light absorption, especially at wavelengths in the near-infrared region, and this loss also reduces the problem of panel power generation characteristics. You do it.

【0012】また、太陽電池パネル2は、光入射側にガ
ラス板などからなる透光性基板10を配置し、この透光
性基板10の裏面側に、アモルファスシリコン膜を含む
光電変換素子11、接着性を有する充填材12、および
光入射側の反対面を保護する封止材13を順次積層して
構成されるものである。ここで、充填材には、EVA
(エチレンビニールアセテート)、PVB(ポリビニー
ルブチラール)、ポリイソブチレン系樹脂、シリコン樹
脂などを用い、封止材には、テドラー(フッ化ビニール
でデュポン社の登録商標)、またはこのテドラーとアル
ミニウム箔をサンドイッチ状に積層したものなど用い
る。
In the solar cell panel 2, a light-transmitting substrate 10 made of a glass plate or the like is disposed on the light incident side, and a photoelectric conversion element 11 including an amorphous silicon film is provided on the back surface of the light-transmitting substrate 10. It is configured by sequentially laminating a filler 12 having adhesive properties and a sealing material 13 for protecting the surface opposite to the light incident side. Here, the filler is EVA
(Ethylene vinyl acetate), PVB (polyvinyl butyral), polyisobutylene-based resin, silicone resin, etc., and the sealing material is Tedlar (registered trademark of DuPont in the form of polyvinyl fluoride), or this Tedlar and aluminum foil A material laminated in a sandwich shape or the like is used.

【0013】本実施例では、最も好ましい光電変換素子
11として、アモルファス系半導体太陽電池素子を採用
する。なぜならば、アモルファス太陽電池に代表される
薄膜系太陽電池は、上述したように、単結晶シリコン太
陽電池や多結晶シリコン太陽電池などに比べて、製造に
要する原材料が少なく安価に製作でき、しかも大面積の
集積型太陽電池として絶縁体基板上に直接作成すること
が容易であるという利点を有するからである。また、そ
のセル面積が広ければ、太陽電池を架台に取り付けるコ
ストなどが低くなり、太陽電池モジュール製作の低コス
ト化に貢献し得る。アニール効果を生ぜしめるために断
熱材を密着させた太陽電池パネル(例えば、特開平7ー
297435号)を採用する場合、枠状フレームにリブ
を設けると太陽電池モジュールの強度が増すので、パネ
ル内の断熱材の量を増やし、断熱層の形状をより効果的
に定めることができて、アニール効果を向上させること
が可能となる。
In this embodiment, an amorphous semiconductor solar cell element is adopted as the most preferable photoelectric conversion element 11. This is because, as described above, thin-film solar cells typified by amorphous solar cells require less raw materials and can be manufactured at lower cost than single-crystal silicon solar cells and polycrystalline silicon solar cells. This is because it has an advantage that it can be easily formed directly on an insulator substrate as an integrated solar cell having a large area. In addition, if the cell area is large, the cost of attaching the solar cell to the gantry and the like can be reduced, which can contribute to the cost reduction of the solar cell module production. When a solar cell panel (for example, Japanese Patent Application Laid-Open No. 7-297435) to which a heat insulating material is adhered to produce an annealing effect is employed, providing a rib on a frame-shaped frame increases the strength of the solar cell module. By increasing the amount of the heat insulating material, the shape of the heat insulating layer can be more effectively determined, and the annealing effect can be improved.

【0014】但し、本発明では、薄膜系太陽電池とし
て、CdTe/CdS 太陽電池、CIGS(Cu(InGa)Se2) 太陽電池
をも採用することができる。これらは、アモルファスシ
リコン太陽電池よりも変換効率を高くすることができ
て、光劣化が少なくという特徴を有するが、CdやInを含
むため、環境に悪影響を与えやすいという欠点も有す
る。また、太陽電池パネルとして、ガラスに直接薄膜太
陽電池素子を形成する構造、薄膜系太陽電池素子以外の
結晶系太陽電池素子を有する構造、および鉄板にフレキ
シブルな素子を張り付けた構造などの、太陽電池の機能
を有する板状の形状を有するもの全てを適用することも
可能である。
However, in the present invention, a CdTe / CdS solar cell and a CIGS (Cu (InGa) Se 2 ) solar cell can be adopted as the thin-film solar cell. These have characteristics that conversion efficiency can be made higher than that of amorphous silicon solar cells and that there is little light degradation, but they also have the disadvantage that they contain Cd and In and therefore easily affect the environment. In addition, solar cells such as a structure in which a thin-film solar cell element is directly formed on glass, a structure having a crystalline solar cell element other than a thin-film solar cell element, and a structure in which a flexible element is attached to an iron plate as a solar cell panel. It is also possible to apply all those having a plate-like shape having the above function.

【0015】また、枠状フレームの素材は、アルミニウ
ム合金に限らない。他に、木材、鋼材、または合成樹脂
製のものからなる枠状フレームを採用することも可能で
あり、さらに、耐候性を向上させるために、塩化ビニル
樹脂、フッ素系樹脂、またはアクリル系樹脂などから成
る樹脂皮膜で被覆した金属板を用いることも可能であ
る。また、リブの断面はH型に限るものではなく、I型
の断面を有するリブを用いることも有効である。I型お
よびH型の棒のように、座屈やねじれが生じない程度
に、棒の中立面から遠い位置に材料が集まるように構成
すると、棒の強度が増すので好ましい。さらに、リブと
して中空円筒、中空三角柱、中空四角柱などを採用する
ことも、リブの力学的強度の点から有効である。
The material of the frame is not limited to aluminum alloy. In addition, it is also possible to adopt a frame-shaped frame made of wood, steel, or synthetic resin, and further, in order to improve weather resistance, a vinyl chloride resin, a fluorine resin, an acrylic resin, or the like. It is also possible to use a metal plate covered with a resin film consisting of The cross section of the rib is not limited to the H-shape, and it is also effective to use a rib having an I-shape. Like the I-type and H-type rods, it is preferable that the material is collected at a position far from the neutral surface of the rod to the extent that buckling and twisting do not occur, because the strength of the rod increases. Furthermore, adopting a hollow cylinder, a hollow triangular prism, a hollow quadrangular prism, or the like as the rib is also effective from the viewpoint of the mechanical strength of the rib.

【0016】図1では、一本のリブが枠状フレームの構
成部材3c−3d間に架けられて、その両端部が固定さ
れている。しかし、枠状フレームに固定するリブの数は
一本に限らず、複数本でも良いし、リブの配置方法は図
1に示したものに限らず、図4〜図8に示すように、種
々の配置方法が可能である。図4では、2本のリブが構
成部材3c−3d間に、これらの構成部材を三等分する
位置に梯子形に架けられている。また、図5では、2本
のリブが構成部材3c−3d間および3a−3b間に、
これらの構成部材の中間位置に十字形に架けられてい
る。そして、図6では、1本のリブが枠状フレーム対角
間に筋交い状に架けられている状態を示す。
In FIG. 1, one rib is hung between the constituent members 3c-3d of the frame-shaped frame, and both ends thereof are fixed. However, the number of ribs fixed to the frame is not limited to one, and a plurality of ribs may be used. The method of arranging the ribs is not limited to that shown in FIG. 1 and may be various as shown in FIGS. Is possible. In FIG. 4, two ribs are placed between the components 3c-3d in a ladder-like manner at positions that divide these components into three equal parts. In FIG. 5, two ribs are provided between the constituent members 3c and 3d and between the constituent members 3a and 3b.
It is crucifixed at an intermediate position between these components. FIG. 6 shows a state in which one rib is bridged between the frame-shaped frame diagonally.

【0017】そして、図1、図4、図5で示した本発明
に係る大型太陽電池モジュールと、枠状フレームにリブ
を用いなかった従来型太陽電池モジュールとの比較実験
について以下に説明する。この実験は、太陽電池モジュ
ールの表面が風速60 mの風圧を受けた場合に、透光性基
板であるガラス板の中央部が、どの程度変位するのかを
計測したものである。一般に、透光性基板であるガラス
板の中央部の変位がガラス板の板厚を越えないことが、
安全基準内にあるとされている。図4および図5に示し
た太陽電池モジュール1は、リブの配置方法とガラス板
の板厚を除いて、図1に示した太陽電池モジュールの構
造と同じものを使用する。この比較試験に用いた太陽電
池モジュールには、1メートル角の大きさのものを使用
した。
A comparison experiment between the large-sized solar cell module according to the present invention shown in FIGS. 1, 4 and 5 and a conventional solar cell module without using a rib in a frame-shaped frame will be described below. In this experiment, when the surface of the solar cell module was subjected to a wind pressure at a wind speed of 60 m, the degree of displacement of the central portion of the glass plate, which is a translucent substrate, was measured. In general, the displacement of the central part of the glass plate which is a translucent substrate does not exceed the thickness of the glass plate,
It is said to be within safety standards. The solar cell module 1 shown in FIGS. 4 and 5 uses the same structure as the solar cell module shown in FIG. 1 except for the method of arranging the ribs and the thickness of the glass plate. The solar cell module used in this comparative test had a size of one meter square.

【0018】図7は、図2と同じ断面図であって、リブ
を除いた図である。この図に示すように、パネルには一
辺の長さSが略1000 mm の正方形状のものを使用し、枠
状フレームには、肉厚が略1 mm、高さHが略30 mm 、上
部固定部14aおよび中間固定部14bの横幅T1が略
7 mm、下部固定部14cの横幅T2が略20 mm 、枠状フ
レーム上部に形成した溝部の幅D1がガラス板の板厚に
略2 mm加えたものを使用した。そして、図8は、図1、
図4、および図5で用いたリブの断面を示す図である。
この図に示すように、リブは、肉厚が略2 mm、幅kが略
20 mm のものを用いた。その比較試験結果を表1に示
す。
FIG. 7 is the same sectional view as FIG. 2, but without the ribs. As shown in this figure, the panel used was a square with a side length S of about 1000 mm, and the frame had a thickness of about 1 mm, a height H of about 30 mm, The lateral width T1 of the fixing portion 14a and the intermediate fixing portion 14b is substantially
7 mm, the width T2 of the lower fixing portion 14c was approximately 20 mm, and the width D1 of the groove formed in the upper portion of the frame-like frame was approximately 2 mm added to the thickness of the glass plate. FIG. 8 shows FIG.
It is a figure which shows the cross section of the rib used in FIG. 4, and FIG.
As shown in this figure, the rib has a thickness of approximately 2 mm and a width k of approximately
A 20 mm one was used. Table 1 shows the results of the comparative test.

【0019】[0019]

【表1】 [Table 1]

【0020】ここで、実施例1が図1、実施例2が図
4、実施例3が図5のモジュール構造に相当する。従来
例の場合、安全基準内にあるためには、ガラスの板厚が
6 mmのものを必要とした。しかし、本発明の場合、安全
基準内にあるためには、実施例1の場合が4 mmの板厚、
実施例2の場合が3 mmの板厚、実施例3の場合が2 mmの
板厚で充分な強度を得られることが分かり、ガラスの板
厚を少なくとも3割程度薄くして、軽量化できることが
分かった。従って、上述したように、ガラスが表面にあ
る構造を有する太陽電池パネルの場合には、ガラスの板
厚を薄くして、パネルの発電効率を向上させることがで
き、断熱層を設けた非晶質半導体太陽電池パネルの場合
には、断熱材の量や断熱層の形状を定める自由度が増す
ので、アニーリングの効果を高めることが可能となる。
Here, the first embodiment corresponds to the module structure of FIG. 1, the second embodiment corresponds to FIG. 4, and the third embodiment corresponds to the module structure of FIG. In the case of the conventional example, the thickness of the glass is
I needed a 6mm one. However, in the case of the present invention, in order to be within the safety standards, the case of Example 1 has a plate thickness of 4 mm,
It can be seen that sufficient strength can be obtained with a plate thickness of 3 mm in the case of Example 2 and 2 mm in the case of Example 3, and that the thickness of the glass can be reduced by at least about 30% to reduce the weight. I understood. Therefore, as described above, in the case of a solar cell panel having a structure with glass on the surface, it is possible to reduce the thickness of the glass, improve the power generation efficiency of the panel, and provide an amorphous layer provided with a heat insulating layer. In the case of a high-quality semiconductor solar cell panel, the degree of freedom in determining the amount of heat insulating material and the shape of the heat insulating layer is increased, so that the effect of annealing can be enhanced.

【0021】さらに、本発明では、図1〜図4のリブの
配置を組み合わせたものを使用することも可能であるこ
とは、云うまでもない。このようにリブの形状を組み合
わせることで、リブにかかる荷重が分散されるため、よ
り細い形状のリブを採用することが可能となる。
Further, in the present invention, it is needless to say that a combination of the rib arrangements shown in FIGS. 1 to 4 can be used. By combining the shapes of the ribs in this manner, the load applied to the ribs is dispersed, so that a thinner rib can be employed.

【0022】[0022]

【発明の効果】以上の如く、本発明によれば、枠状フレ
ームにリブを設けることによって、太陽電池パネルの大
面積化をする際に、太陽電池パネルを構成する部材、特
に透光性基板などのガラス板の板厚を増やすことなく力
学的強度を維持できるので、軽量かつ低コストの太陽電
池モジュールを製作することが可能となり、また、ガラ
ス板の厚みを薄くすることが可能になるため、入射光の
近遠赤外領域の波長についての吸収が減り、出力特性の
優れた太陽電池パネルを製作することが可能になる。さ
らに、太陽電池パネルにかかる力学的負荷が減るため、
断熱材の使用量や断熱層の形状を定める自由度が増すの
で、アニーリングの効果を高めることが可能となる。
As described above, according to the present invention, when the solar cell panel is made to have a large area by providing the frame-shaped frame with ribs, the members constituting the solar cell panel, especially the light-transmitting substrate are provided. Since the mechanical strength can be maintained without increasing the thickness of the glass plate, it is possible to manufacture a lightweight and low-cost solar cell module, and it is also possible to reduce the thickness of the glass plate. In addition, absorption of incident light at wavelengths in the near-far infrared region is reduced, and a solar cell panel having excellent output characteristics can be manufactured. Furthermore, because the mechanical load on the solar panel is reduced,
Since the degree of freedom in determining the amount of the heat insulating material and the shape of the heat insulating layer is increased, the effect of the annealing can be enhanced.

【0023】そして、枠状フレームに、単または複数本
のリブを十字形または梯子形に配置して設ける方法や、
単または複数本のリブを筋交い形に配置して設ける方法
を採用すると、モジュールの力学的強度が高まり、上記
した効果を一層高めることが可能となる。さらに、前記
リブの断面形状をI型またはH型、もしくは、中空円筒
形、中空三角形、または中空四角形状とすると、リブお
よび太陽電池モジュールの力学的強度が向上し、上記し
た効果をさらに高めることが可能となる。
A method in which one or a plurality of ribs are arranged in a cross shape or a ladder shape on a frame-shaped frame,
When a method in which one or a plurality of ribs are arranged in a strut is provided, the mechanical strength of the module is increased, and the above-described effect can be further enhanced. Furthermore, when the cross-sectional shape of the rib is an I-shape or an H-shape, or a hollow cylindrical shape, a hollow triangular shape, or a hollow square shape, the mechanical strength of the rib and the solar cell module is improved, and the above-described effect is further enhanced. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽電池モジュールの第1の実施
例を示す図。
FIG. 1 is a diagram showing a first embodiment of a solar cell module according to the present invention.

【図2】第1の実施例を示す図のA−A断面を示す図。FIG. 2 is a diagram showing a cross section AA of the diagram showing the first embodiment.

【図3】第1の実施例での枠状フレーム、パネル、およ
びリブの接合状態を示す斜視図。
FIG. 3 is a perspective view showing a joint state of the frame, the panel, and the rib in the first embodiment.

【図4】本発明に係る太陽電池モジュールの第2の実施
例を示す図。
FIG. 4 is a view showing a second embodiment of the solar cell module according to the present invention.

【図5】本発明にに係る太陽電池モジュールの第3の実
施例を示す図。
FIG. 5 is a view showing a third embodiment of the solar cell module according to the present invention.

【図6】本発明に係る太陽電池モジュールの第4の実施
例を示す図。
FIG. 6 is a view showing a fourth embodiment of the solar cell module according to the present invention.

【図7】太陽電池モジュールを示す断面図。FIG. 7 is a cross-sectional view showing a solar cell module.

【図8】本発明に係るリブの断面図。FIG. 8 is a sectional view of a rib according to the present invention.

【図9】従来の太陽電池モジュールを示す図。FIG. 9 is a view showing a conventional solar cell module.

【符号の説明】[Explanation of symbols]

1 太陽電池モジュール 2 太陽電池パネル 3 枠状フレーム 3a〜3b フレーム構成部材 4a, 4b 枠状フレームに形成した溝部 5 端子ボックス 6 リブ 7 接着剤 8 フォーム基材 9 据え付け穴 10 透光性基板 11 光電変換素子 12 充填材 13 封止材 14a 上部固定部 14b 中間固定部 14c 下部固定部 21 従来の太陽電池モジュール 22 太陽電池パネル 23 枠状フレーム 24 端子ボックス REFERENCE SIGNS LIST 1 solar cell module 2 solar cell panel 3 frame-shaped frame 3 a to 3 b frame component 4 a, 4 b groove formed in frame-shaped frame 5 terminal box 6 rib 7 adhesive 8 foam base material 9 mounting hole 10 light-transmitting substrate 11 photoelectric Conversion element 12 Filler 13 Sealant 14a Upper fixing part 14b Intermediate fixing part 14c Lower fixing part 21 Conventional solar cell module 22 Solar cell panel 23 Frame-shaped frame 24 Terminal box

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に太陽電池素子を形成した太陽電
池パネルと、該太陽電池パネルの外縁部を固定する枠状
フレームと、前記枠状フレームに固定された単または複
数本のリブであって、太陽電池パネルをその裏面側から
支持する単または複数本のリブと、を備えたことを特徴
とする大型太陽電池モジュール。
1. A solar cell panel having a solar cell element formed on a substrate, a frame-shaped frame for fixing an outer edge portion of the solar cell panel, and one or more ribs fixed to the frame-shaped frame. A single or plural ribs for supporting the solar cell panel from the back side thereof.
【請求項2】 前記枠状フレームに、単または複数本の
リブを十字形または梯子形に配置し、もしくは単または
複数本のリブを筋交い形に配置して設けることを特徴と
する請求項1記載の大型太陽電池モジュール。
2. The frame-shaped frame, wherein one or more ribs are arranged in a cross shape or a ladder shape, or one or more ribs are arranged in a brace shape. The large-sized solar cell module described in the above.
【請求項3】 太陽電池パネルの裏面側に断熱材を設け
て構成されることを特徴とする請求項1または請求項2
記載の大型太陽電池モジュール。
3. The solar battery panel according to claim 1, wherein a heat insulating material is provided on the back side of the solar cell panel.
The large-sized solar cell module described in the above.
【請求項4】 前記リブの断面形状をI型またはH型と
することを特徴とする請求項1〜3の何れかの項に記載
の大型太陽電池モジュール。
4. The large-sized solar cell module according to claim 1, wherein said rib has an I-shaped or H-shaped cross-sectional shape.
【請求項5】 前記リブの断面形状が中空円筒形状、中
空三角形状、または中空四角形状であることを特徴とす
る請求項1〜3の何れかの項に記載の大型太陽電池モジ
ュール。
5. The large-sized solar cell module according to claim 1, wherein the rib has a cross-sectional shape of a hollow cylinder, a triangle, or a square.
JP10180497A 1997-04-18 1997-04-18 Large solar cell module Expired - Lifetime JP3674234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10180497A JP3674234B2 (en) 1997-04-18 1997-04-18 Large solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10180497A JP3674234B2 (en) 1997-04-18 1997-04-18 Large solar cell module

Publications (2)

Publication Number Publication Date
JPH10294485A true JPH10294485A (en) 1998-11-04
JP3674234B2 JP3674234B2 (en) 2005-07-20

Family

ID=14310334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10180497A Expired - Lifetime JP3674234B2 (en) 1997-04-18 1997-04-18 Large solar cell module

Country Status (1)

Country Link
JP (1) JP3674234B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006625A (en) * 2002-03-27 2004-01-08 Kyocera Corp Solar cell module and solar cell array
CN100377367C (en) * 2003-11-14 2008-03-26 佳能株式会社 Solar cell module and manufacturing method therefor
WO2008136095A1 (en) * 2007-04-24 2008-11-13 Mitsubishi Electric Corporation Solar battery module
WO2008139610A1 (en) * 2007-05-14 2008-11-20 Mitsubishi Electric Corporation Solar battery module device
WO2008139609A1 (en) * 2007-05-14 2008-11-20 Mitsubishi Electric Corporation Solar battery module device
EP2019435A2 (en) 2007-07-23 2009-01-28 Kaneka Corporation Solar cell module
JP2009057757A (en) * 2007-08-31 2009-03-19 Sharp Corp Solar-cell module
JP2009135304A (en) * 2007-11-30 2009-06-18 Sharp Corp Solar cell module
WO2009119774A1 (en) 2008-03-26 2009-10-01 京セラ株式会社 Solar cell module
WO2009154221A1 (en) * 2008-06-17 2009-12-23 シャープ株式会社 Solar cell module, mount for solar cell module, and photovoltaic power generation system
WO2010013691A1 (en) 2008-07-30 2010-02-04 シャープ株式会社 Solar cell module
JP2010515272A (en) * 2006-12-27 2010-05-06 ダウ・コーニング・コーポレイション Structural mounting of solar cell modules to the frame by glass mounting
WO2010061878A1 (en) * 2008-11-27 2010-06-03 シャープ株式会社 Solar battery module
JP2010206229A (en) * 2010-06-21 2010-09-16 Mitsubishi Electric Corp Solar cell module device
WO2010117018A1 (en) * 2009-04-08 2010-10-14 シャープ株式会社 Solar cell module, pedestal for solar cells, and photovoltaic power generation system
JP2010283397A (en) * 2010-09-22 2010-12-16 Sharp Corp Solar cell module and mounting frame for the same
DE102009035644A1 (en) * 2009-07-29 2011-02-03 Anicca Ag Arrangement for reduction of deflection of frame-enclosed laminates of photovoltaic modules, comprises rod-shaped component connected to frame under laminate, where sliding block is guided in rod-shaped component
WO2011039863A1 (en) * 2009-09-30 2011-04-07 三菱重工業株式会社 Solar cell panel
JP2011114035A (en) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp Solar cell module and manufacturing method thereof
WO2011090160A1 (en) * 2010-01-21 2011-07-28 京セラ株式会社 Solar cell module
EP2448009A1 (en) * 2010-10-28 2012-05-02 Lg Electronics Inc. Photovoltaic module frame with reinforcement beam
WO2012105494A1 (en) * 2011-01-31 2012-08-09 京セラ株式会社 Solar cell module
KR101172315B1 (en) * 2010-10-11 2012-08-14 한국철강 주식회사 Photovoltaic module and manufacturing method of the same
JPWO2010122638A1 (en) * 2009-04-21 2012-10-22 三菱電機株式会社 Solar cell module
JP2013084768A (en) * 2011-10-11 2013-05-09 Act Co Ltd Solar cell panel
EP2733368A1 (en) * 2012-11-20 2014-05-21 LG Electronics, Inc. Solar cell module and photovoltaic power generation system including the same
WO2014129053A1 (en) * 2013-02-22 2014-08-28 三洋電機株式会社 Solar cell module
WO2014153693A1 (en) * 2013-03-27 2014-10-02 友达光电股份有限公司 Frame structure and solar module having same
JP2015070033A (en) * 2013-09-27 2015-04-13 三洋電機株式会社 Solar cell module and method for manufacturing solar cell module
JP2015227558A (en) * 2014-05-30 2015-12-17 パナソニックIpマネジメント株式会社 Photovoltaic power generator
CN105322878A (en) * 2015-12-09 2016-02-10 江苏宇兆能源科技有限公司 Aluminum alloy frame with reinforcement ribs of solar component
CN110945780A (en) * 2017-06-01 2020-03-31 瑞科斯太阳能源私人有限公司 Cost-effective frame design for thin wafers

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445587A (en) * 1977-08-24 1979-04-10 Exxon Research Engineering Co Solar battery array supporting structure
JPS59217378A (en) * 1983-05-25 1984-12-07 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JPS60160387A (en) * 1984-01-31 1985-08-21 Shimizu Constr Co Ltd Solar light power generator
JPS61158186A (en) * 1984-12-28 1986-07-17 ザ スタンダード オイル カンパニー Semi-rigid optical battery module assembly
JPS6211100U (en) * 1985-07-05 1987-01-23
JPS62158845U (en) * 1986-03-31 1987-10-08
JPH0114080B2 (en) * 1981-08-05 1989-03-09 Gen Electric
JPH0181400U (en) * 1987-11-24 1989-05-31
JPH067261U (en) * 1990-12-27 1994-01-28 昭和アルミニウム株式会社 Solar cell module
JPH0610705Y2 (en) * 1988-12-27 1994-03-16 シャープ株式会社 Solar cell module
JPH0790995A (en) * 1993-09-28 1995-04-04 Sharp Corp Solar cell panel
JPH07292908A (en) * 1994-04-26 1995-11-07 Kanegafuchi Chem Ind Co Ltd Roof with power generating function
JPH07297435A (en) * 1994-04-26 1995-11-10 Kanegafuchi Chem Ind Co Ltd Solar battery panel
JPH08120827A (en) * 1994-10-20 1996-05-14 Topcon:Kk Precast concrete panel
JPH08186280A (en) * 1994-12-28 1996-07-16 Showa Shell Sekiyu Kk Solar-cell module and solar-cell device
JPH08260639A (en) * 1995-03-23 1996-10-08 Kanegafuchi Chem Ind Co Ltd Cladding panel for construction having power generation function
JPH0996071A (en) * 1995-09-29 1997-04-08 Sharp Corp Fitting structure of solar battery module
JPH09148612A (en) * 1995-11-28 1997-06-06 Sharp Corp Solar battery module and its mount fixing structure

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445587A (en) * 1977-08-24 1979-04-10 Exxon Research Engineering Co Solar battery array supporting structure
JPH0114080B2 (en) * 1981-08-05 1989-03-09 Gen Electric
JPS59217378A (en) * 1983-05-25 1984-12-07 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JPS60160387A (en) * 1984-01-31 1985-08-21 Shimizu Constr Co Ltd Solar light power generator
JPS61158186A (en) * 1984-12-28 1986-07-17 ザ スタンダード オイル カンパニー Semi-rigid optical battery module assembly
JPS6211100U (en) * 1985-07-05 1987-01-23
JPS62158845U (en) * 1986-03-31 1987-10-08
JPH0181400U (en) * 1987-11-24 1989-05-31
JPH0610705Y2 (en) * 1988-12-27 1994-03-16 シャープ株式会社 Solar cell module
JPH067261U (en) * 1990-12-27 1994-01-28 昭和アルミニウム株式会社 Solar cell module
JPH0790995A (en) * 1993-09-28 1995-04-04 Sharp Corp Solar cell panel
JPH07292908A (en) * 1994-04-26 1995-11-07 Kanegafuchi Chem Ind Co Ltd Roof with power generating function
JPH07297435A (en) * 1994-04-26 1995-11-10 Kanegafuchi Chem Ind Co Ltd Solar battery panel
JPH08120827A (en) * 1994-10-20 1996-05-14 Topcon:Kk Precast concrete panel
JPH08186280A (en) * 1994-12-28 1996-07-16 Showa Shell Sekiyu Kk Solar-cell module and solar-cell device
JPH08260639A (en) * 1995-03-23 1996-10-08 Kanegafuchi Chem Ind Co Ltd Cladding panel for construction having power generation function
JPH0996071A (en) * 1995-09-29 1997-04-08 Sharp Corp Fitting structure of solar battery module
JPH09148612A (en) * 1995-11-28 1997-06-06 Sharp Corp Solar battery module and its mount fixing structure

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006625A (en) * 2002-03-27 2004-01-08 Kyocera Corp Solar cell module and solar cell array
CN100377367C (en) * 2003-11-14 2008-03-26 佳能株式会社 Solar cell module and manufacturing method therefor
JP2010515272A (en) * 2006-12-27 2010-05-06 ダウ・コーニング・コーポレイション Structural mounting of solar cell modules to the frame by glass mounting
US8347564B2 (en) 2007-04-24 2013-01-08 Mitsubishi Electric Corporation Solar cell module
WO2008136095A1 (en) * 2007-04-24 2008-11-13 Mitsubishi Electric Corporation Solar battery module
US8109049B2 (en) 2007-05-14 2012-02-07 Mitsubishi Electric Corporation Solar battery module device
EP2157620A4 (en) * 2007-05-14 2010-10-20 Mitsubishi Electric Corp Solar battery module device
EP2228829A3 (en) * 2007-05-14 2010-10-20 Mitsubishi Electric Corporation Solar battery module device
WO2008139610A1 (en) * 2007-05-14 2008-11-20 Mitsubishi Electric Corporation Solar battery module device
JPWO2008139610A1 (en) * 2007-05-14 2010-07-29 三菱電機株式会社 Solar cell module device
JP5159770B2 (en) * 2007-05-14 2013-03-13 三菱電機株式会社 Solar cell module device
JPWO2008139609A1 (en) * 2007-05-14 2010-07-29 三菱電機株式会社 Solar cell module device
US8316591B2 (en) 2007-05-14 2012-11-27 Mitsubishi Electric Corporation Solar cell module device
EP2157620A1 (en) * 2007-05-14 2010-02-24 Mitsubishi Electric Corporation Solar battery module device
WO2008139609A1 (en) * 2007-05-14 2008-11-20 Mitsubishi Electric Corporation Solar battery module device
EP2019435A2 (en) 2007-07-23 2009-01-28 Kaneka Corporation Solar cell module
JP2009057757A (en) * 2007-08-31 2009-03-19 Sharp Corp Solar-cell module
JP2009135304A (en) * 2007-11-30 2009-06-18 Sharp Corp Solar cell module
US8418416B2 (en) 2008-03-26 2013-04-16 Kyocera Corporation Solar cell module
WO2009119774A1 (en) 2008-03-26 2009-10-01 京セラ株式会社 Solar cell module
JP4722164B2 (en) * 2008-06-17 2011-07-13 シャープ株式会社 Solar cell module and solar cell module mount
WO2009154221A1 (en) * 2008-06-17 2009-12-23 シャープ株式会社 Solar cell module, mount for solar cell module, and photovoltaic power generation system
JP2009302485A (en) * 2008-06-17 2009-12-24 Sharp Corp Solar cell module and mount for solar cell module
JP4515514B2 (en) * 2008-07-30 2010-08-04 シャープ株式会社 Solar cell module
WO2010013691A1 (en) 2008-07-30 2010-02-04 シャープ株式会社 Solar cell module
JP2010034417A (en) * 2008-07-30 2010-02-12 Sharp Corp Solar cell module
JPWO2010061878A1 (en) * 2008-11-27 2012-04-26 シャープ株式会社 Solar cell module
WO2010061878A1 (en) * 2008-11-27 2010-06-03 シャープ株式会社 Solar battery module
WO2010117018A1 (en) * 2009-04-08 2010-10-14 シャープ株式会社 Solar cell module, pedestal for solar cells, and photovoltaic power generation system
US9040810B2 (en) 2009-04-21 2015-05-26 Mitsubishi Electric Corporation Solar cell module
JP5289560B2 (en) * 2009-04-21 2013-09-11 三菱電機株式会社 Solar cell module
JPWO2010122638A1 (en) * 2009-04-21 2012-10-22 三菱電機株式会社 Solar cell module
DE102009035644A1 (en) * 2009-07-29 2011-02-03 Anicca Ag Arrangement for reduction of deflection of frame-enclosed laminates of photovoltaic modules, comprises rod-shaped component connected to frame under laminate, where sliding block is guided in rod-shaped component
WO2011039863A1 (en) * 2009-09-30 2011-04-07 三菱重工業株式会社 Solar cell panel
JPWO2011039863A1 (en) * 2009-09-30 2013-02-21 三菱重工業株式会社 Solar panel
JP2011114035A (en) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp Solar cell module and manufacturing method thereof
US8933325B2 (en) 2010-01-21 2015-01-13 Kyocera Corporation Solar cell module
JPWO2011090160A1 (en) * 2010-01-21 2013-05-23 京セラ株式会社 Solar cell module
WO2011090160A1 (en) * 2010-01-21 2011-07-28 京セラ株式会社 Solar cell module
JP2010206229A (en) * 2010-06-21 2010-09-16 Mitsubishi Electric Corp Solar cell module device
JP2010283397A (en) * 2010-09-22 2010-12-16 Sharp Corp Solar cell module and mounting frame for the same
KR101172315B1 (en) * 2010-10-11 2012-08-14 한국철강 주식회사 Photovoltaic module and manufacturing method of the same
US8418417B2 (en) 2010-10-28 2013-04-16 Lg Electronics Inc. Photovoltaic module
EP2448009A1 (en) * 2010-10-28 2012-05-02 Lg Electronics Inc. Photovoltaic module frame with reinforcement beam
WO2012105494A1 (en) * 2011-01-31 2012-08-09 京セラ株式会社 Solar cell module
CN103329283A (en) * 2011-01-31 2013-09-25 京瓷株式会社 Solar cell module
JP5465343B2 (en) * 2011-01-31 2014-04-09 京セラ株式会社 Solar cell module
JP2013084768A (en) * 2011-10-11 2013-05-09 Act Co Ltd Solar cell panel
EP2733368A1 (en) * 2012-11-20 2014-05-21 LG Electronics, Inc. Solar cell module and photovoltaic power generation system including the same
US9331223B2 (en) 2012-11-20 2016-05-03 Lg Electronics Inc. Solar cell module and photovoltaic power generation system including the same
WO2014129053A1 (en) * 2013-02-22 2014-08-28 三洋電機株式会社 Solar cell module
WO2014153693A1 (en) * 2013-03-27 2014-10-02 友达光电股份有限公司 Frame structure and solar module having same
JP2015070033A (en) * 2013-09-27 2015-04-13 三洋電機株式会社 Solar cell module and method for manufacturing solar cell module
JP2015227558A (en) * 2014-05-30 2015-12-17 パナソニックIpマネジメント株式会社 Photovoltaic power generator
CN105322878A (en) * 2015-12-09 2016-02-10 江苏宇兆能源科技有限公司 Aluminum alloy frame with reinforcement ribs of solar component
CN110945780A (en) * 2017-06-01 2020-03-31 瑞科斯太阳能源私人有限公司 Cost-effective frame design for thin wafers
JP2020522228A (en) * 2017-06-01 2020-07-27 アールイーシー ソーラー プライベート リミテッド Cost-effective frame design for thinner wafers
US20200313605A1 (en) * 2017-06-01 2020-10-01 Rec Solar Pte. Ltd. Cost Effective Frame Design for Thinner Wafers
US11671051B2 (en) * 2017-06-01 2023-06-06 Rec Solar Pte. Ltd. Cost effective frame design for thinner wafers

Also Published As

Publication number Publication date
JP3674234B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
JP3674234B2 (en) Large solar cell module
US6729081B2 (en) Self-adhesive photovoltaic module
JPH065782B2 (en) Solar cell module
AU2001268279A1 (en) Self-adhesive photovoltaic module
JP2007123725A (en) Cis thin film solar cell module and its manufacturing method
US20120031465A1 (en) Solar module in an insulating glass composite method for production and use
US20110126888A1 (en) Solar cell module
WO2011065543A1 (en) Solar cell module and manufacturing method of same
US20140137939A1 (en) Solar-cell module and manufacturing method therefor
EP2019435A2 (en) Solar cell module
US20130312814A1 (en) Solar cell module
JPWO2013061995A1 (en) Solar cell module and solar cell array
JP2006269609A (en) Process for manufacturing solar cell module
EP3163629A1 (en) A semi-elastic photovoltaic module
JP2011238761A (en) Solar cell module
US20140318603A1 (en) All Plastic Solar Panel
JP2008282944A (en) Solar cell module and manufacturing method
JP6391929B2 (en) Solar cell module
JP3760569B2 (en) Solar cell module
JP3932012B2 (en) Installation method of solar cell module
JP2004324233A (en) Method of mounting solar battery module
JP2019537283A (en) Improved solar panel system
JP3952249B2 (en) Installation method of solar cell module
JP4132023B2 (en) Solar cell module
JPH034047Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term