JPH10288067A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine

Info

Publication number
JPH10288067A
JPH10288067A JP10040556A JP4055698A JPH10288067A JP H10288067 A JPH10288067 A JP H10288067A JP 10040556 A JP10040556 A JP 10040556A JP 4055698 A JP4055698 A JP 4055698A JP H10288067 A JPH10288067 A JP H10288067A
Authority
JP
Japan
Prior art keywords
post
injection
cylinder
value
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10040556A
Other languages
Japanese (ja)
Other versions
JP4039500B2 (en
Inventor
Hajime Suguro
肇 勝呂
Tsukasa Kuboshima
司 窪島
Kanehito Nakamura
兼仁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP04055698A priority Critical patent/JP4039500B2/en
Publication of JPH10288067A publication Critical patent/JPH10288067A/en
Application granted granted Critical
Publication of JP4039500B2 publication Critical patent/JP4039500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent fuel post-injected for supplying hydrocarbon to NOx catalyst from adhering to cylinder walls and mixing into lubricating oil. SOLUTION: A temperature and pressure in a cylinder are estimated with engine operating conditions and post-injection timing and, based on the estimated results, the lower and upper limit set values of the post-injected amount are calculated (step 106, 107). When the post-injected amount Y1 for each cylinder calculated with the engine operating conditions and catalyst temperature is smaller than the lower limit set value, the post-injection is stopped, and the post-injected amount for several cycles is accumulated. When the accumulated value X reaches the lower limit set value or higher, the number of cylinders to be post-injected is calculated based on the supplied amount of light oil Z for each unit time and engine speed, and the post-injected amount Y for each cylinder (for each stroke) is calculated (steps 108 to 110). Then, when the post- injected amount Y is higher than the upper limit set value, the post-injected amount Y is corrected to the upper limit set value and the post-injection is performed (steps 111, 112, and 113).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気ガ
ス中に含まれる窒素酸化物を触媒で還元浄化する内燃機
関の排気浄化装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine for reducing and purifying nitrogen oxides contained in exhaust gas of an internal combustion engine with a catalyst.

【0002】[0002]

【従来の技術】ディーゼルエンジン等の酸素過剰下で燃
料の燃焼が行われる内燃機関から排出される排気中の窒
素酸化物(NOx)を浄化するために、排気管内にNO
x触媒を設置し、炭化水素(燃料)を還元剤としてNO
x触媒に供給してNOxを還元浄化する技術が提案され
ている。この触媒のNOx浄化特性は、図4に示すよう
に、所定の活性温度範囲(例えば200℃から400
℃)においてのみNOx浄化率が高くなり、また、NO
x触媒に供給する炭化水素の量に応じてNOx浄化率が
変化することが知られている。
2. Description of the Related Art In order to purify nitrogen oxides (NOx) in exhaust gas discharged from an internal combustion engine in which fuel is burned under an excessive amount of oxygen such as a diesel engine, a NO.
x catalyst is installed, and hydrocarbon (fuel) is used as a reducing agent and NO
A technique for reducing and purifying NOx by supplying it to an x catalyst has been proposed. As shown in FIG. 4, the NOx purification characteristics of this catalyst are determined in a predetermined activation temperature range (for example, from 200 ° C. to 400 ° C.).
° C), the NOx purification rate is high, and NO
It is known that the NOx purification rate changes according to the amount of hydrocarbon supplied to the x catalyst.

【0003】通常の内燃機関の排気ガス中には、ほとん
ど炭化水素が含まれていないため、NOx触媒でNOx
を還元浄化するためには、排気ガスに還元剤である炭化
水素を添加する必要がある。これを行うために、燃料噴
射弁から燃料噴射(主噴射)した後の膨張又は排気行程
で、燃料噴射弁から少量の燃料を後噴射し、この後噴射
により未燃燃料(炭化水素)を還元剤としてNOx触媒
に供給するようにしたものがある。
[0003] Since the exhaust gas of a normal internal combustion engine hardly contains hydrocarbons, NOx is generated by a NOx catalyst.
In order to reduce and purify the exhaust gas, it is necessary to add a hydrocarbon as a reducing agent to the exhaust gas. To do this, a small amount of fuel is post-injected from the fuel injection valve in the expansion or exhaust stroke after fuel injection (main injection) from the fuel injection valve, and the uninjected fuel (hydrocarbon) is reduced by this post-injection. Some agents are supplied to a NOx catalyst.

【0004】しかし、この方法では、後噴射する燃料量
が多い場合や後噴射圧力が高い場合には、後噴射した燃
料の一部がシリンダ壁に到達して付着し、潤滑油に混入
することで、潤滑油の粘性が低下して潤滑油が劣化した
り、最悪の場合には、ピストンが焼き付きを起こすおそ
れがある。しかも、後噴射した燃料の一部がシリンダ壁
に付着すれば、その分、NOx触媒に供給する後噴射の
燃料量が不足して、NOx浄化率が低下することにもな
る。
However, in this method, when the amount of post-injected fuel is large or the post-injection pressure is high, a part of the post-injected fuel reaches the cylinder wall and adheres to the lubricating oil. Thus, the viscosity of the lubricating oil may be reduced to deteriorate the lubricating oil, or in the worst case, the piston may be seized. In addition, if a part of the post-injected fuel adheres to the cylinder wall, the amount of post-injected fuel supplied to the NOx catalyst is insufficient, and the NOx purification rate is reduced.

【0005】そこで、特開平8−74561号公報で
は、排気弁と吸気弁が両方開いてシリンダ内の空気の流
れが強い時に、後噴射を行うことで、後噴射燃料のシリ
ンダ壁への付着を回避することを提案している。
Therefore, in Japanese Patent Application Laid-Open No. 8-74561, after the exhaust valve and the intake valve are both opened and the air flow in the cylinder is strong, the post-injection is performed to prevent the post-injected fuel from adhering to the cylinder wall. Propose to avoid.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記公報のよ
うに、シリンダ内の空気の流れを利用するだけでは、後
噴射する燃料の量が多い場合や、後噴射する燃料の圧力
が高い場合は、やはり、後噴射した燃料の一部がシリン
ダ壁に付着する場合が生じる。また、燃料噴射弁は、主
噴射時の噴射量の調整範囲で精度良く動作するように設
計されており、後噴射時のように少量の燃料噴射量の調
整は、本来的に得意としていない。従って、後噴射する
燃料の量が少ない場合は、燃料噴射弁の個体差(ばらつ
き)や経時変化等の影響をより強く受けて後噴射量が変
動しやすく、実際の後噴射量が目標値からずれてばらつ
いてしまい、最適な炭化水素量をNOx触媒に供給でき
なくなる。
However, as described in the above-mentioned publication, if the amount of fuel to be post-injected is large or the pressure of fuel to be post-injected is high only by utilizing the air flow in the cylinder, Again, a part of the post-injected fuel may adhere to the cylinder wall. Further, the fuel injection valve is designed to operate accurately within the adjustment range of the injection amount at the time of main injection, and is not originally good at adjusting a small amount of fuel injection as at the time of post-injection. Therefore, when the amount of fuel to be post-injected is small, the post-injection amount is likely to fluctuate due to the influence of individual differences (variation) and aging of the fuel injection valve, and the actual post-injection amount is deviated from the target value. As a result, the optimum amount of hydrocarbons cannot be supplied to the NOx catalyst.

【0007】そこで、本発明の第1の目的は、後噴射し
た燃料がシリンダ壁に付着することを防止することであ
り、更に、第2の目的は、後噴射量が少ない場合の後噴
射量のばらつきの問題を解決することである。
Accordingly, a first object of the present invention is to prevent the post-injected fuel from adhering to the cylinder wall, and a second object is to provide a post-injection amount when the post-injection amount is small. Is to solve the problem of variation in

【0008】[0008]

【課題を解決するための手段】本発明の請求項1では、
内燃機関の運転状態を運転状態検出手段により検出する
と共に、触媒の活性状態を触媒活性状態検出手段により
検出し、噴射制御手段は、前記運転状態検出手段の検出
値と前記触媒活性状態検出手段の検出値に基づいて触媒
へ供給する炭化水素量(以下「目標後噴射量」という)
を算出すると共に後噴射時期を設定し、更にこの目標後
噴射量と運転状態検出手段の検出値とに基づいて後噴射
する気筒数と1気筒当りの後噴射量を算出し、その算出
結果に応じて燃料噴射手段に後噴射指令を出力する。
According to claim 1 of the present invention,
The operating state of the internal combustion engine is detected by the operating state detecting means, and the active state of the catalyst is detected by the catalyst active state detecting means, and the injection control means detects the detected value of the operating state detecting means and the catalyst active state detecting means. The amount of hydrocarbon supplied to the catalyst based on the detected value (hereinafter referred to as "target post-injection amount")
And the post-injection timing is set. Further, the number of cylinders to be post-injected and the post-injection amount per cylinder are calculated based on the target post-injection amount and the detection value of the operating state detecting means. In response, a post-injection command is output to the fuel injection means.

【0009】このようにすれば、目標後噴射量が多い場
合には、後噴射する気筒数を多くして、1気筒当りの後
噴射量を適正範囲内にすることができ、シリンダ壁への
後噴射燃料の付着を防止できる。これにより、目標後噴
射量が多い場合でも、潤滑油への後噴射燃料の混入を防
止できて、潤滑油の寿命を延ばすことができると共に、
NOxの還元浄化に必要な後噴射量を目標値に合わせて
精度良く制御することができ、NOx浄化率を向上でき
る。
In this way, when the target post-injection amount is large, the number of post-injection cylinders can be increased to make the post-injection amount per cylinder within an appropriate range. Adhesion of post-injection fuel can be prevented. As a result, even when the target post-injection amount is large, mixing of post-injection fuel into the lubricating oil can be prevented, and the life of the lubricating oil can be extended, and
The post-injection amount required for NOx reduction purification can be accurately controlled in accordance with the target value, and the NOx purification rate can be improved.

【0010】更に、本発明では運転状態検出手段の検出
値(内燃機関の運転状態)と触媒活性状態検出手段の検
出値に基づいて後噴射時期を設定している。後噴射時期
によって筒内の温度や筒内の空気の流れの強さが変化す
るため、内燃機関の運転状態や触媒の活性状態に応じて
最適な後噴射時期を設定することで、後噴射燃料の高改
質化とシリンダ壁への後噴射燃料の付着防止の効果を更
に高めることができる。
Further, in the present invention, the post-injection timing is set based on the detected value of the operating state detecting means (the operating state of the internal combustion engine) and the detected value of the catalyst active state detecting means. Since the temperature in the cylinder and the strength of the air flow in the cylinder vary depending on the post-injection timing, the optimal post-injection timing is set according to the operating state of the internal combustion engine and the activation state of the catalyst, so that the post-injection fuel And the effect of preventing post-injection fuel from adhering to the cylinder wall can be further enhanced.

【0011】また、請求項2のように、1気筒当りの後
噴射量の下限設定値と上限設定値を設定し、算出した1
気筒当りの後噴射量が下限設定値と上限設定値の範囲内
の場合にのみ後噴射指令を出力するようにしても良い。
このようにすれば、算出した1気筒当りの後噴射量が下
限設定値(つまり燃料噴射手段が精度良く噴射動作でき
る噴射量の下限値)以上にならないと、後噴射しないた
め、後噴射量のばらつきを防止でき、触媒への炭化水素
の供給量を目標値通りに制御することができる。しか
も、1気筒当りの後噴射量が上限設定値(つまり後噴射
燃料がシリンダ壁に付着しない後噴射量の上限値)を越
える場合には、後噴射しないため、シリンダ壁への後噴
射燃料の付着を確実に防止することができる。
The lower limit value and the upper limit value of the post-injection amount per cylinder are set and calculated.
The post-injection command may be output only when the post-injection amount per cylinder is within the range between the lower limit set value and the upper limit set value.
With this configuration, the post-injection is not performed unless the calculated post-injection amount per cylinder does not exceed the lower limit set value (that is, the lower limit of the injection amount at which the fuel injection means can perform the injection operation with high accuracy). Variation can be prevented, and the amount of hydrocarbon supplied to the catalyst can be controlled to a target value. Moreover, when the post-injection amount per cylinder exceeds the upper limit set value (that is, the upper limit value of the post-injection amount where the post-injection fuel does not adhere to the cylinder wall), the post-injection is not performed. Adhesion can be reliably prevented.

【0012】この場合、請求項3のように、1気筒当り
の後噴射量が下限設定値より小さい場合は、後噴射を中
止して数サイクル分の後噴射量を積算し、その積算値が
下限設定値以上になった時に後噴射指令を出力し、1気
筒当りの後噴射量が前記上限設定値を超えた場合は、1
気筒当りの後噴射量を上限設定値に補正して後噴射指令
を出力することが好ましい。このようにすれば、後噴射
量のばらつきやシリンダ壁への後噴射燃料の付着を防止
しながら、NOxの還元浄化に必要な後噴射量を目標値
に合わせて精度良く制御することができ、NOx浄化率
を向上することができる。
In this case, if the post-injection amount per cylinder is smaller than the lower limit set value, the post-injection is stopped and the post-injection amount for several cycles is integrated, and the integrated value is calculated. A post-injection command is output when the post-injection amount is equal to or greater than the lower limit set value. If the post-injection amount per cylinder exceeds the upper limit set value, 1 is output.
It is preferable that the post-injection command is output after correcting the post-injection amount per cylinder to the upper limit set value. In this way, it is possible to accurately control the post-injection amount required for NOx reduction purification in accordance with the target value while preventing the post-injection amount from fluctuating and the post-injection fuel from adhering to the cylinder wall. The NOx purification rate can be improved.

【0013】更に、請求項4のように、1気筒当りの後
噴射量の下限設定値を内燃機関の1気筒の排気量1リッ
トル当り1〜8mm3 /ストローク(1回の噴射動作)
の範囲内で設定し、上限設定値を8〜20mm3 /スト
ロークの範囲内で設定することが好ましい。本発明者の
実験結果によれば1気筒の排気量1リットル当りの後噴
射量が1mm3 /ストロークよりも小さくなると、後噴
射量のばらつきが顕著になるため、下限設定値を1mm
3 /ストローク以上に設定する必要がある。また、1気
筒の排気量1リットル当りの後噴射量が20mm3 /ス
トロークを越えると、シリンダ壁への後噴射燃料の付着
が顕著になるため、上限設定値を20mm3 /ストロー
ク以下にする必要がある。これらの下限設定値と上限設
定値は、燃料噴射手段の固体差(ばらつき)や経時変
化、運転状態等によって変化するため、下限設定値を1
〜8mm3 /ストロークの範囲内、上限設定値を8〜2
0mm3 /ストロークの範囲内で適宜設定すれば、後噴
射量のばらつきやシリンダ壁への後噴射燃料の付着を防
止することができる。
Further, the lower limit of the post-injection amount per cylinder is set to 1 to 8 mm 3 / stroke per liter of displacement of one cylinder of the internal combustion engine (one injection operation).
And the upper limit set value is preferably set within a range of 8 to 20 mm 3 / stroke. According to the experimental results of the present inventor, when the post-injection amount per liter of displacement of one cylinder is smaller than 1 mm 3 / stroke, the post-injection amount varies significantly, so the lower limit set value is set to 1 mm.
Must be set to 3 / stroke or more. Also, if the post-injection amount per liter of displacement per cylinder exceeds 20 mm 3 / stroke, the post-injection fuel adheres to the cylinder wall remarkably, so the upper limit set value must be 20 mm 3 / stroke or less. There is. Since the lower limit set value and the upper limit set value change depending on the individual difference (variation) of the fuel injection means, aging, the operating state, and the like, the lower limit set value is set to 1
~8mm 3 / in the range of the stroke, the upper limit set value 8-2
By appropriately setting the value within the range of 0 mm 3 / stroke, it is possible to prevent the post-injection amount from scattering and the post-injection fuel from adhering to the cylinder wall.

【0014】この場合、請求項5のように、前記運転状
態検出手段の検出値と前記後噴射時期に基づいて各気筒
の筒内状態を推定し、推定した各気筒の筒内状態に基づ
いて前記下限設定値と前記上限設定値を設定するように
しても良い。つまり、各気筒の筒内状態によって筒内に
後噴射した燃料の挙動や改質度が異なってくるため、各
気筒の筒内状態に基づいて下限設定値と上限設定値を設
定すれば、幅広い運転条件下で後噴射量のばらつきやシ
リンダ壁への後噴射燃料の付着を防止することができ
る。
In this case, the in-cylinder state of each cylinder is estimated based on the detected value of the operating state detecting means and the post-injection timing, and based on the estimated in-cylinder state of each cylinder. The lower limit set value and the upper limit set value may be set. That is, since the behavior and the reforming degree of the fuel post-injected into the cylinder differ depending on the in-cylinder state of each cylinder, if the lower limit set value and the upper limit set value are set based on the in-cylinder state of each cylinder, a wide range is obtained. Variations in the post-injection amount and adhesion of post-injection fuel to the cylinder wall under operating conditions can be prevented.

【0015】更に、請求項6のように、前記運転状態検
出手段の検出値と前記後噴射時期に基づいて推定した各
気筒の筒内圧力又は筒内温度が高くなるほど、前記下限
設定値と前記上限設定値を大きく設定するようにしても
良い。つまり、各気筒の筒内圧力温度が高くなるほど、
後噴射燃料の熱改質が良くなり、また、筒内圧力が高く
なるほど、筒内を流れる空気の流れが強くなり、後噴射
燃料がシリンダ壁に付着しにくくなる。それ故、各気筒
の筒内圧力又は筒内温度が高くなるほど、前記下限設定
値と前記上限設定値を大きく設定すれば、各気筒の筒内
圧力又は筒内温度に応じた最適な設定値を得ることがで
きる。
Further, as the in-cylinder pressure or the in-cylinder temperature of each cylinder estimated based on the detected value of the operating state detecting means and the after-injection timing increases, the lower limit set value and the lower limit value of the cylinder may be increased. The upper limit set value may be set large. In other words, the higher the in-cylinder pressure temperature of each cylinder,
The better the thermal reforming of the post-injected fuel and the higher the in-cylinder pressure, the stronger the flow of air flowing in the cylinder, and the less likely the post-injected fuel adheres to the cylinder wall. Therefore, if the in-cylinder pressure or in-cylinder temperature of each cylinder increases, the lower limit set value and the upper limit set value are set to be larger, so that an optimal set value according to the in-cylinder pressure or in-cylinder temperature of each cylinder is obtained. Obtainable.

【0016】[0016]

【発明の実施の形態】 [実施形態(1)]以下、本発明を例えば4気筒ディー
ゼルエンジンに適用した実施形態(1)を図1乃至図1
1に基づいて説明する。まず、図1に基づいてエンジン
制御システム全体の構成を説明する。内燃機関であるデ
ィーゼルエンジン10の各気筒には、吸気管11を通し
て吸入される吸入空気が吸気マニホールド13を通して
吸入される。ディーゼルエンジン10の各気筒には、燃
料噴射手段として蓄圧式の燃料噴射弁14が取り付けら
れ、各燃料噴射弁14には、高圧燃料ポンプ15から高
圧に蓄圧された燃料がコモンレール16を通して分配さ
れる。このコモンレール16には、各燃料噴射弁14に
分配する燃料の圧力(コモンレール燃圧)を検出する燃
料圧力センサ12(燃料圧力検出手段)が取り付けられ
ている。
[Embodiment (1)] Hereinafter, an embodiment (1) in which the present invention is applied to, for example, a 4-cylinder diesel engine will be described with reference to FIGS.
1 will be described. First, the configuration of the entire engine control system will be described with reference to FIG. To each cylinder of the diesel engine 10 which is an internal combustion engine, intake air taken in through an intake pipe 11 is taken in through an intake manifold 13. Each cylinder of the diesel engine 10 is provided with a pressure-accumulation type fuel injection valve 14 as a fuel injection means. To each fuel injection valve 14, fuel stored at a high pressure from a high-pressure fuel pump 15 is distributed through a common rail 16. . The common rail 16 is provided with a fuel pressure sensor 12 (fuel pressure detecting means) for detecting the pressure of fuel (common rail fuel pressure) distributed to each fuel injection valve 14.

【0017】ディーゼルエンジン10の各気筒から排出
される排気ガスは、排気マニホールド17(排気通路)
を通して1本の排気管18(排気通路)に排出され、こ
の排気管18の途中には、排気中のNOxを還元浄化す
る触媒、すなわちNOx触媒19が設置されている。こ
のNOx触媒19の母材は、セラミック等の多孔質部材
からなるハニカム状格子により多数の流路が形成された
ものであり、多孔質部材の表面には、ゼオライト、シリ
カ等のコート層が設けられ、更にその表面にはPt等の
貴金属,Cuなどの遷移金属、或は、アルカリ金属、ア
ルカリ土類金属が担持されている。
The exhaust gas discharged from each cylinder of the diesel engine 10 is supplied to an exhaust manifold 17 (exhaust passage).
The exhaust gas is discharged to one exhaust pipe 18 (exhaust passage). A catalyst for reducing and purifying NOx in the exhaust gas, that is, a NOx catalyst 19 is provided in the exhaust pipe 18. The base material of the NOx catalyst 19 has a large number of flow paths formed by a honeycomb lattice made of a porous member such as a ceramic. A coating layer such as zeolite or silica is provided on the surface of the porous member. Further, a noble metal such as Pt, a transition metal such as Cu, or an alkali metal or an alkaline earth metal is supported on the surface.

【0018】このNOx触媒19の下流側には排気温度
センサ20が設置されている。この排気温度センサ20
は、NOx触媒19の出口の排気温度を検出し、その排
気温度から触媒温度(触媒活性状態)を推定する触媒活
性状態検出手段として機能する。ディーゼルエンジン1
0の運転中は、エンジン電子制御回路(以下「ECU」
と表記する)25によって各気筒の燃料噴射弁14が制
御される。このECU25は、アクセルセンサ26及び
エンジン回転数センサ27(これらはいずれも運転状態
検出手段に相当)から出力される信号を読み込んでディ
ーゼルエンジン10の運転状態を検出すると共に、排気
温度センサ20の出力信号を読み込んでNOx触媒19
の温度を推定する。
An exhaust gas temperature sensor 20 is provided downstream of the NOx catalyst 19. This exhaust temperature sensor 20
Functions as a catalyst active state detecting means for detecting the exhaust gas temperature at the outlet of the NOx catalyst 19 and estimating the catalyst temperature (catalytic active state) from the exhaust gas temperature. Diesel engine 1
0, the engine electronic control circuit (hereinafter referred to as “ECU”).
25) controls the fuel injection valve 14 of each cylinder. The ECU 25 reads signals output from an accelerator sensor 26 and an engine speed sensor 27 (both of which correspond to operating state detecting means) to detect the operating state of the diesel engine 10 and to output the output of the exhaust temperature sensor 20. The signal is read and the NOx catalyst 19
Estimate the temperature of

【0019】このECU25は、マイクロコンピュータ
を主体として構成され、内蔵されたROM(記憶媒体)
には、主噴射制御プログラム(図示せず)や図2に示す
後噴射制御プログラム、図3乃至図7に示すマップデー
タ等が記憶されている。このECU25は、主噴射制御
プログラムを実行することで、各気筒の燃料噴射弁14
にエンジン出力発生のための主噴射指令を出力し、更
に、図2の後噴射制御プログラムを実行することで、後
噴射する気筒数と1気筒当りの後噴射量を算出し、その
算出結果に応じて各気筒の燃料噴射弁14にNOx触媒
19への炭化水素供給のための後噴射指令を出力する噴
射制御手段として機能する。
The ECU 25 is mainly composed of a microcomputer, and has a built-in ROM (storage medium).
Stores a main injection control program (not shown), a post-injection control program shown in FIG. 2, map data shown in FIGS. 3 to 7, and the like. The ECU 25 executes the main injection control program to execute the fuel injection valve 14 of each cylinder.
The main injection command for generating the engine output is output to the engine, and the post-injection control program shown in FIG. 2 is executed to calculate the number of post-injection cylinders and the post-injection amount per cylinder. Accordingly, the fuel injection valve 14 of each cylinder functions as an injection control unit that outputs a post-injection command for supplying hydrocarbons to the NOx catalyst 19.

【0020】以下、このECU25によって実行される
後噴射制御プログラムの処理内容を図2のフローチャー
トに従って説明する。本プログラムは、後噴射する直前
に実行される。本プログラムが起動されると、まず、ス
テップ101で、後噴射量積算値Xを初期化してX=0
とし、次のステップ102で、エンジン回転数センサ2
7、アクセルセンサ26、排気温度センサ20から出力
されるエンジン回転数、アクセル開度、排気温度の信号
を読み込む。この後、ステップ103で、エンジン回転
数とアクセル開度とに基づいて、エンジン10から排出
されるNOx排出量を図3に示すマップデータより算出
する。
Hereinafter, the processing contents of the post-injection control program executed by the ECU 25 will be described with reference to the flowchart of FIG. This program is executed immediately before the post injection. When the program is started, first, in step 101, the post-injection amount integrated value X is initialized and X = 0.
In the next step 102, the engine speed sensor 2
7. The signals of the engine speed, the accelerator opening, and the exhaust temperature output from the accelerator sensor 26 and the exhaust temperature sensor 20 are read. Thereafter, in step 103, the amount of NOx emitted from the engine 10 is calculated from the map data shown in FIG. 3 based on the engine speed and the accelerator opening.

【0021】この後、ステップ104で、上記ステップ
102で読み込んだ排気温度とステップ103で算出し
たNOx排出量とに基づいて、後噴射によりNOx触媒
19に供給すべき単位時間当りの軽油供給量Z(目標後
噴射量に相当)を図4に示すマップデータより算出し、
この単位時間当りの軽油供給量Zを1気筒で後噴射する
場合の燃料噴射弁14の1ストローク(1噴射動作)当
りの後噴射量Y1 を上記ステップ102で読み込んだエ
ンジン回転数を基にして算出する。
Thereafter, in step 104, based on the exhaust gas temperature read in step 102 and the NOx emission amount calculated in step 103, the light oil supply amount Z per unit time to be supplied to the NOx catalyst 19 by post-injection. (Corresponding to the target post-injection amount) is calculated from the map data shown in FIG.
The post-injection amount Y1 per stroke (one injection operation) of the fuel injection valve 14 when the light oil supply amount Z per unit time is post-injected by one cylinder is based on the engine speed read in step 102. calculate.

【0022】この後、ステップ105で、エンジン負荷
と排気温度とに基づいて、後噴射時期を図5に示すマッ
プデータより算出し、次のステップ106で、エンジン
運転条件(エンジン回転数、アクセル開度)と後噴射時
期とに基づいて、ECU25のROMに記憶されたマッ
プデータから筒内状態(筒内温度と筒内圧力)を推定す
る。そして、次のステップ107で、上記ステップ10
5から推定した筒内温度と筒内圧力とに基づいて、後噴
射量の下限設定値と上限設定値を図6に示すマップデー
タより算出する。
Thereafter, in step 105, the post-injection timing is calculated from the map data shown in FIG. 5 based on the engine load and the exhaust gas temperature, and in the next step 106, the engine operating conditions (engine speed, accelerator opening The in-cylinder state (in-cylinder temperature and in-cylinder pressure) is estimated from the map data stored in the ROM of the ECU 25 based on the temperature and the post-injection timing. Then, in the next step 107, the above step 10
Based on the in-cylinder temperature and the in-cylinder pressure estimated from 5, the lower limit set value and the upper limit set value of the post-injection amount are calculated from the map data shown in FIG.

【0023】この場合、下限設定値と上限設定値は、筒
内温度、筒内圧力が高くなるほど大きく設定する。下限
設定値は、燃料噴射弁14が精度良く噴射動作できる噴
射量の下限値であり、具体的にはエンジンの1気筒の排
気量1リットル当り1〜8mm3 /ストローク(望まし
くは2〜6mm3 /ストローク)の範囲内で設定し、上
限設定値は、後噴射燃料がシリンダ壁に付着しない後噴
射量の上限値であり、具体的にはエンジンの1気筒の排
気量1リットル当り8〜20mm3 /ストローク(望ま
しくは8〜12mm3 /ストローク)の範囲内で設定す
る。例えば、排気量2リットルの4気筒エンジンでは、
下限設定値は、0.5〜4mm3 /ストローク、上限設
定値は、4〜10mm3 /ストロークの範囲内で設定
し、排気量12リットルの8気筒エンジンでは、下限設
定値は、1.5〜12mm3 /ストローク、上限設定値
は、12〜30mm3 /ストロークの範囲内で設定す
る。
In this case, the lower limit set value and the upper limit set value are set larger as the in-cylinder temperature and the in-cylinder pressure increase. Lower limit setting values, the fuel injection valve 14 is the lower limit of the accuracy injection operation can injection amount, specifically 1 cylinder exhaust amount per liter of the engine 1 to 8 mm 3 / stroke (preferably 2 to 6 mm 3 / Stroke), and the upper limit set value is the upper limit value of the post-injection amount at which the post-injection fuel does not adhere to the cylinder wall, and specifically, 8 to 20 mm per liter of displacement of one cylinder of the engine. 3 / stroke (preferably 8 to 12 mm 3 / stroke). For example, in a 4-cylinder engine with a displacement of 2 liters,
The lower limit set value is set within a range of 0.5 to 4 mm 3 / stroke, and the upper limit set value is set within a range of 4 to 10 mm 3 / stroke. For an eight-cylinder engine with a displacement of 12 liters, the lower limit set value is 1.5. ~12mm 3 / stroke, the upper limit set value is set in the range of 12~30mm 3 / stroke.

【0024】そして、次のステップ108で、上記ステ
ップ104で算出した後噴射量Y1を前回の後噴射量積
算値X(初回処理時はX=0)に積算して後噴射量積算
値Xを更新する。この後、ステップ109で、後噴射量
積算値Xを前記ステップ107で設定した下限設定値と
比較し、後噴射量積算値Xが下限設定値よりも小さけれ
ば、ステップ102に戻り、ステップ102からステッ
プ109までの処理を繰り返す。
In the next step 108, the post-injection amount Y1 calculated in step 104 is integrated with the previous post-injection amount integrated value X (X = 0 at the time of the first processing) to obtain the post-injection amount integrated value X. Update. Thereafter, in step 109, the post-injection amount integrated value X is compared with the lower limit set value set in step 107, and if the post-injection amount integrated value X is smaller than the lower limit set value, the process returns to step 102, and The processing up to step 109 is repeated.

【0025】このような処理により、1気筒当りの後噴
射量Y1 が下限設定値より小さい場合は、後噴射を中止
して数サイクル分の後噴射量を積算し、その積算値Xが
下限設定値以上になった時に、ステップ109からステ
ップ110に進み、前記ステップ104で算出した単位
時間当りの軽油供給量Zとエンジン回転数とに基づい
て、後噴射する気筒数を図7に示すマップデータより算
出する。つまり、軽油供給量Zが多いほど、後噴射気筒
数を多くし、エンジン回転数が低くなるほど、後噴射気
筒数を多くする。そして、このようにして算出した後噴
射気筒数と単位時間当りの軽油供給量Zとエンジン回転
数とに基づいて1気筒当りの後噴射量Y(1ストローク
当り)を算出する。この際、算出した1気筒当りの後噴
射量Yが下限設定値より小さくなる場合には、1気筒当
りの後噴射量Yが下限設定値以上となるまで、後噴射気
筒数を減少して1気筒当りの後噴射量Yを算出し直す。
If the post-injection amount Y1 per cylinder is smaller than the lower limit set value, the post-injection is stopped and the post-injection amount for several cycles is integrated, and the integrated value X is set to the lower limit value. When it becomes equal to or more than the value, the process proceeds from step 109 to step 110, and based on the light oil supply amount Z per unit time and the engine speed calculated in step 104, the number of cylinders to be post-injected is shown in the map data shown in FIG. It is calculated from: That is, the number of post-injection cylinders increases as the light oil supply amount Z increases, and the number of post-injection cylinders increases as the engine speed decreases. Then, the post-injection amount Y per cylinder (per stroke) is calculated based on the number of post-injection cylinders thus calculated, the light oil supply amount Z per unit time, and the engine speed. At this time, if the calculated post-injection amount Y per cylinder becomes smaller than the lower limit set value, the number of post-injection cylinders is decreased by 1 until the post-injection amount Y per cylinder becomes equal to or more than the lower limit set value. The post-injection amount Y per cylinder is calculated again.

【0026】この後、ステップ111で、1気筒当りの
後噴射量Yを前記ステップ107で設定した上限設定値
と比較し、1気筒当りの後噴射量Yが上限設定値よりも
大きければ、ステップ112に進み、1気筒当りの後噴
射量Yを上限設定値に補正して、ステップ113に進
む。また、上記ステップ111で、1気筒当りの後噴射
量Yが上限設定値以下であれば、1気筒当りの後噴射量
Yを補正せずにステップ113に進む。このステップ1
13では、上述した処理により算出した1気筒当りの後
噴射量Y、後噴射時期、後噴射気筒数に従って後噴射指
令を燃料噴射弁14に出力し、後噴射を実行して本プロ
グラムを終了する。
Thereafter, at step 111, the post-injection amount Y per cylinder is compared with the upper limit set value set at step 107, and if the post-injection amount Y per cylinder is larger than the upper limit set value, the routine proceeds to step 111. Proceeding to 112, the post-injection amount Y per cylinder is corrected to the upper limit set value, and proceeding to step 113. If the post-injection amount Y per cylinder is equal to or less than the upper limit set value in step 111, the process proceeds to step 113 without correcting the post-injection amount Y per cylinder. This step 1
In step 13, a post-injection command is output to the fuel injection valve 14 in accordance with the post-injection amount Y per cylinder, post-injection timing, and post-injection cylinder number calculated by the above-described processing, post-injection is executed, and the present program ends. .

【0027】後噴射を実行する場合には、後噴射する気
筒が一部の気筒に偏らないように後噴射する気筒を随時
変更する。例えば、エンジンの全気筒数より少ないN個
の気筒で後噴射する場合には、全気筒からN個の気筒を
選択する組み合わせを考慮し、その全ての組み合わせで
後噴射するように、後噴射する気筒の組み合わせを1又
は数サイクル毎に変更する。
When executing the post-injection, the post-injection cylinder is changed as needed so that the post-injection cylinder is not biased to some of the cylinders. For example, when post-injection is performed with N cylinders smaller than the total number of cylinders of the engine, post-injection is performed so that post-injection is performed in all combinations in consideration of a combination of selecting N cylinders from all cylinders. The combination of cylinders is changed every one or several cycles.

【0028】例えば、4気筒エンジンで2つの気筒で後
噴射する場合の後噴射の順序を図8乃至図11に基づい
て説明すると、図8に示すように第1気筒と第2気筒か
らなる後噴射気筒群で1又は数サイクルの間、後噴射し
た後、図9に示すように別の気筒群である第2気筒と第
3気筒からなる後噴射気筒群で1又は数サイクルの間、
後噴射する。その後、図10に示すように第3気筒と第
4気筒からなる後噴射気筒群で1又は数サイクルの間、
後噴射した後、図11に示すように第1気筒と第4気筒
からなる後噴射気筒群で1又は数サイクルの間、後噴射
する。尚、後噴射気筒群の切り換えの順序は、上記の順
序に限定されず、適宜変更しても良いことは言うまでも
ない。
For example, the order of post-injection in the case of post-injection with two cylinders in a four-cylinder engine will be described with reference to FIGS. 8 to 11. As shown in FIG. After the post-injection for one or several cycles in the injection cylinder group, as shown in FIG. 9, for one or several cycles in the post-injection cylinder group consisting of the second cylinder and the third cylinder as another cylinder group,
After injection. Thereafter, as shown in FIG. 10, in the post-injection cylinder group including the third cylinder and the fourth cylinder, for one or several cycles,
After the post-injection, post-injection is performed for one or several cycles in a post-injection cylinder group including the first cylinder and the fourth cylinder as shown in FIG. Note that the order of switching the post-injection cylinder group is not limited to the above order, and may be changed as appropriate.

【0029】以上説明した実施形態(1)では、触媒活
性状態やエンジン運転条件から算出した単位時間当りの
軽油供給量Z(目標後噴射量)とエンジン回転数とに基
づいて後噴射する気筒数を算出すると共に、1気筒当り
の後噴射量Yを算出するようにしたので、軽油供給量Z
が多い場合には、後噴射する気筒数を多くして1気筒当
りの後噴射量Yを適正範囲内にすることができ、シリン
ダ壁への後噴射燃料の付着を防止できる。これにより、
軽油供給量Zが多い場合でも、潤滑油への後噴射燃料の
混入を防止できて、潤滑油の寿命を延ばすことができる
と共に、NOxの還元浄化に必要な後噴射量を目標値に
合わせて精度良く制御することができ、NOx浄化率を
向上できる。
In the embodiment (1) described above, the number of cylinders to be post-injected based on the light oil supply amount Z (target post-injection amount) per unit time and the engine speed calculated from the catalyst activation state and engine operating conditions. Is calculated, and the post-injection amount Y per cylinder is calculated.
When the number of cylinders is large, the number of cylinders to be post-injected is increased to make the post-injection amount Y per cylinder within an appropriate range, and the post-injection fuel can be prevented from adhering to the cylinder wall. This allows
Even when the light oil supply amount Z is large, it is possible to prevent the post-injection fuel from being mixed into the lubricating oil, prolong the life of the lubricating oil, and adjust the post-injection amount necessary for NOx reduction purification to the target value. The control can be performed with high accuracy, and the NOx purification rate can be improved.

【0030】しかも、上記実施形態(1)では、後噴射
時期によって筒内の温度や筒内の空気の流れの強さが変
化することを考慮し、エンジン負荷と排気温度とに基づ
いて後噴射時期を算出するようにしたので、エンジン運
転状態や触媒活性状態に応じて最適な後噴射時期を設定
することができ、後噴射燃料の高改質化とシリンダ壁へ
の後噴射燃料の付着防止の効果を高めることができる。
更に、筒内温度や筒内圧力によって筒内に後噴射した燃
料の挙動や改質度が異なってくることを考慮し、エンジ
ン運転条件と後噴射時期とに基づいて筒内温度と筒内圧
力を推定し、その推定結果に基づいて後噴射量の下限設
定値と上限設定値を算出するようにしたので、幅広い運
転条件下で後噴射量のばらつきやシリンダ壁への後噴射
燃料の付着を防止することができる。
Further, in the above embodiment (1), taking into account that the temperature in the cylinder and the strength of the air flow in the cylinder vary depending on the post-injection timing, the post-injection is performed based on the engine load and the exhaust gas temperature. Since the timing is calculated, the optimal post-injection timing can be set according to the engine operating state and the catalyst activation state, thereby improving the post-injection fuel and preventing the post-injection fuel from adhering to the cylinder wall. Effect can be enhanced.
Furthermore, taking into account that the behavior and the reforming degree of the fuel post-injected into the cylinder vary depending on the cylinder temperature and the cylinder pressure, the cylinder temperature and the cylinder pressure are determined based on the engine operating conditions and the post-injection timing. The lower limit value and upper limit value of the post-injection amount are calculated based on the estimation result, so that the post-injection amount varies and the post-injection fuel adheres to the cylinder wall under a wide range of operating conditions. Can be prevented.

【0031】また、後噴射する気筒が一部の気筒に偏ら
ないように後噴射する気筒を随時変更するようにしたの
で、全ての気筒の燃料噴射弁14をほぼ均等に使用して
後噴射を行うことができ、後噴射が特定の気筒に偏るこ
とによる燃料噴射弁14の早期劣化を防止することがで
き、耐久性を向上できる。尚、本実施形態(1)では、
後噴射する気筒数を、単位時間当りの軽油供給量Zとエ
ンジン回転数とをパラメータとする図7の二次元マップ
より算出したが、燃料圧力センサ12で検出した燃料圧
力と単位時間当りの軽油供給量Zとエンジン回転数とを
パラメータとする三次元マップより後噴射する気筒数を
算出するようにしても良い。例えば、後噴射時の燃料圧
力が高い場合には、後噴射する気筒数を多くして、1気
筒当りの後噴射量を少なくする。これにより、後噴射時
の燃料圧力が高い場合でも、シリンダ壁への後噴射燃料
の付着を防止することができる。 [実施形態(2)]前記実施形態(1)では、単位時間
当りの軽油供給量Zとエンジン回転数とに基づいて、後
噴射する気筒数を図7のマップデータより算出したが、
図12に示す実施形態(2)では、後噴射量積算値Xと
触媒活性状態を表すNOx触媒19出口の排気温度Tg
(触媒温度)に基づいて、後噴射する気筒数と1気筒当
りの後噴射量を算出し、触媒活性状態に適した改質度の
後噴射燃料をNOx触媒19に供給する。以下、本実施
形態(2)で実行する図12の後噴射制御プログラムの
処理内容を説明する。
Further, since the post-injection cylinders are changed at any time so that the post-injection cylinders are not biased to some of the cylinders, the post-injection is performed by using the fuel injection valves 14 of all the cylinders almost equally. The fuel injection valve 14 can be prevented from deteriorating at an early stage due to uneven post-injection in a specific cylinder, and durability can be improved. In this embodiment (1),
The number of cylinders to be post-injected was calculated from the two-dimensional map of FIG. 7 using the light oil supply amount Z per unit time and the engine speed as parameters, and the fuel pressure detected by the fuel pressure sensor 12 and the light oil per unit time were calculated. The number of cylinders to be post-injected may be calculated from a three-dimensional map using the supply amount Z and the engine speed as parameters. For example, when the fuel pressure at the time of post-injection is high, the number of cylinders to be post-injected is increased to reduce the post-injection amount per cylinder. Thus, even when the fuel pressure during the post-injection is high, it is possible to prevent the post-injection fuel from adhering to the cylinder wall. [Embodiment (2)] In the embodiment (1), the number of cylinders to be post-injected is calculated from the map data in FIG. 7 based on the light oil supply amount Z per unit time and the engine speed.
In the embodiment (2) shown in FIG. 12, the post-injection amount integrated value X and the exhaust gas temperature Tg at the outlet of the NOx catalyst 19 indicating the catalyst activation state.
Based on the (catalyst temperature), the number of post-injection cylinders and the post-injection amount per cylinder are calculated, and the post-injection fuel of a reforming degree suitable for the catalyst activation state is supplied to the NOx catalyst 19. Hereinafter, the processing content of the post-injection control program of FIG. 12 executed in the embodiment (2) will be described.

【0032】図12の後噴射制御プログラムにおいて
も、前述した図2のステップ101〜109と同じ処理
を行い、後噴射によりNOx触媒19に供給すべき単位
時間当りの軽油供給量Zを算出すると共に、1気筒当り
の後噴射量Y1 (1ストローク当り)を算出し、この後
噴射量Y1 の積算値Xが下限設定値以上になるまで後噴
射量Yを積算する(ステップ120)。そして、後噴射
量積算値Xが下限設定値以上になれば、ステップ121
に進み、排気温度センサ20で検出したNOx触媒19
出口の排気温度Tg (触媒温度)を設定温度T1 と比較
する。ここで、設定温度T1 は、最大NOx浄化率を示
す触媒温度(好ましくは240℃〜270℃)に設定さ
れている。
In the post-injection control program of FIG. 12, the same processing as in steps 101 to 109 of FIG. 2 is performed to calculate the light oil supply amount Z per unit time to be supplied to the NOx catalyst 19 by post-injection. First, the post-injection amount Y1 per cylinder (per stroke) is calculated, and the post-injection amount Y is integrated until the integrated value X of the post-injection amount Y1 exceeds the lower limit set value (step 120). Then, if the post-injection amount integrated value X is equal to or larger than the lower limit set value, step 121 is executed.
To the NOx catalyst 19 detected by the exhaust gas temperature sensor 20.
The outlet exhaust temperature Tg (catalyst temperature) is compared with the set temperature T1. Here, the set temperature T1 is set to a catalyst temperature (preferably 240 ° C. to 270 ° C.) showing the maximum NOx purification rate.

【0033】このステップ121で、排気温度Tg が設
定温度T1 よりも高ければ、ステップ122に進み、後
噴射気筒数を前回の気筒数より1気筒増加させてステッ
プ124に進む。これに対し、排気温度Tg が設定温度
T1 以下であれば、ステップ123に進み、後噴射気筒
数を前回の気筒数より1気筒減少させてステップ124
に進む。
In step 121, if the exhaust gas temperature Tg is higher than the set temperature T1, the routine proceeds to step 122, where the number of post-injection cylinders is increased by one from the previous cylinder, and the routine proceeds to step 124. On the other hand, if the exhaust gas temperature Tg is equal to or lower than the set temperature T1, the routine proceeds to step 123, where the number of post-injection cylinders is reduced by one from the previous cylinder, and the routine proceeds to step 124.
Proceed to.

【0034】このステップ124では、上記ステップ1
22又は123で設定した後噴射気筒数と単位時間当り
の軽油供給量Zとエンジン回転数とに基づいて1気筒当
りの後噴射量Y(1ストローク当り)を算出する。この
後、ステップ125で、1気筒当りの後噴射量Yを下限
設定値と比較し、1気筒当りの後噴射量Yが下限設定値
以上であれば、ステップ126に進むが、1気筒当りの
後噴射量Yが下限設定値よりも小さければ、ステップ1
23に戻り、後噴射気筒数を1気筒減少させて1気筒当
りの後噴射量Yを算出し直す(ステップ124)。
In step 124, step 1
The post-injection amount Y (per stroke) per cylinder is calculated based on the number of post-injection cylinders set in 22 or 123, the light oil supply amount Z per unit time, and the engine speed. Thereafter, in step 125, the post-injection amount Y per cylinder is compared with the lower limit set value. If the post-injection amount Y per cylinder is equal to or greater than the lower limit set value, the process proceeds to step 126, but the process proceeds to step 126. If the post-injection amount Y is smaller than the lower limit set value, step 1
Returning to 23, the number of post-injection cylinders is reduced by one cylinder, and the post-injection amount Y per cylinder is calculated again (step 124).

【0035】このようにして1気筒当りの後噴射量Yが
下限設定値以上になれば、ステップ126に進み、1気
筒当りの後噴射量Yを上限設定値と比較し、1気筒当り
の後噴射量Yが上限設定値よりも大きければ、ステップ
127に進み、1気筒当りの後噴射量Yを上限設定値に
補正して、ステップ128に進む。また、上記ステップ
126で、1気筒当りの後噴射量Yが上限設定値以下で
あれば、1気筒当りの後噴射量Yを補正せずにステップ
128に進む。このステップ128では、上述した処理
により算出した1気筒当りの後噴射量Y、後噴射時期、
後噴射気筒数に従って後噴射指令を燃料噴射弁14に出
力し、後噴射を実行して本プログラムを終了する。後噴
射を実行する場合には、前記実施形態(1)と同じく、
後噴射する気筒が一部の気筒に偏らないように後噴射す
る気筒を随時変更する。
When the post-injection amount Y per cylinder is equal to or greater than the lower limit set value, the routine proceeds to step 126, where the post-injection amount Y per cylinder is compared with the upper limit set value, and the post-injection amount per cylinder is determined. If the injection amount Y is larger than the upper limit set value, the routine proceeds to step 127, where the post-injection amount Y per cylinder is corrected to the upper limit set value, and the routine proceeds to step 128. If it is determined in step 126 that the post-injection amount Y per cylinder is equal to or less than the upper limit set value, the process proceeds to step 128 without correcting the post-injection amount Y per cylinder. In step 128, the post-injection amount Y per cylinder calculated by the above-described processing, the post-injection timing,
A post-injection command is output to the fuel injection valve 14 according to the number of post-injection cylinders, post-injection is executed, and this program ends. When performing the post-injection, the same as in the embodiment (1),
The post-injection cylinder is changed as needed so that the post-injection cylinder is not biased to some of the cylinders.

【0036】以上説明した実施形態(2)では、排気温
度センサ20で検出したNOx触媒19出口の排気温度
Tg を触媒温度の代用データとして検出し、排気温度T
g が設定温度T1 以下の時は、後噴射気筒数を増加し、
1気筒当りの後噴射量を少なくすることで、後噴射燃料
が筒内から受ける単位体積当りの熱量を多くして、後噴
射燃料の改質を促進する。これにより、低沸点炭化水素
の割合を高めた燃料をNOx触媒19に供給して、NO
x浄化率を高める。
In the embodiment (2) described above, the exhaust gas temperature Tg at the outlet of the NOx catalyst 19 detected by the exhaust gas temperature sensor 20 is detected as substitute data of the catalyst temperature, and the exhaust gas temperature Tg is detected.
When g is below the set temperature T1, the number of post-injection cylinders is increased,
By reducing the amount of post-injection per cylinder, the amount of heat per unit volume received by the post-injected fuel from within the cylinder is increased to promote reforming of the post-injected fuel. As a result, the fuel in which the proportion of low-boiling hydrocarbons is increased is supplied to the NOx catalyst 19,
x Increase purification rate.

【0037】また、排気温度Tg が設定温度T1 よりも
高い時は、後噴射気筒数を少なくして1気筒当りの後噴
射量を多くすることで、後噴射燃料が筒内から受ける単
位体積当りの熱量を相対的に少なくして、低沸点炭化水
素の割合を少なくした燃料をNOx触媒19に供給す
る。これにより、NOx触媒19で後噴射燃料が燃焼す
ることを防いで、NOx浄化率の低下を防ぐ。 [実施形態(3)]実施形態(3)では、図13の後噴
射制御プログラムを実行することで、燃料圧力センサ1
2で検出したコモンレール16内の燃料圧力を考慮し
て、後噴射する気筒数と1気筒当りの後噴射量Yを算出
する。以下、図13の後噴射制御プログラムの処理内容
を説明する。本プログラムが起動されると、まず、ステ
ップ131で、後噴射量積算値Xを初期化してX=0と
し、次のステップ132で、エンジン回転数センサ2
7、アクセルセンサ26、排気温度センサ20、燃料圧
力センサ12から出力されるエンジン回転数、アクセル
開度、排気温度、燃料圧力の信号を読み込む。この後、
ステップ133で、エンジン回転数とアクセル開度とに
基づいて、エンジン10から排出されるNOx排出量を
図3に示すマップデータより算出する。
When the exhaust gas temperature Tg is higher than the set temperature T1, the number of post-injection cylinders is reduced to increase the post-injection amount per cylinder, so that the post-injection fuel per unit volume received from within the cylinders. Is supplied to the NOx catalyst 19 with a relatively small amount of heat and a reduced proportion of low boiling point hydrocarbons. This prevents the post-injection fuel from burning in the NOx catalyst 19, thereby preventing a reduction in the NOx purification rate. [Embodiment (3)] In the embodiment (3), by executing the post-injection control program of FIG.
The number of cylinders to be post-injected and the post-injection amount Y per cylinder are calculated in consideration of the fuel pressure in the common rail 16 detected in Step 2. Hereinafter, the processing content of the post-injection control program in FIG. 13 will be described. When this program is started, first, in step 131, the post-injection amount integrated value X is initialized to X = 0, and in the next step 132, the engine speed sensor 2
7. Read signals of the engine speed, accelerator opening, exhaust temperature, and fuel pressure output from the accelerator sensor 26, the exhaust temperature sensor 20, and the fuel pressure sensor 12. After this,
In step 133, the amount of NOx emitted from the engine 10 is calculated from the map data shown in FIG. 3 based on the engine speed and the accelerator opening.

【0038】この後、ステップ134で、上記ステップ
132で読み込んだ排気温度とステップ133で算出し
たNOx排出量とに基づいて、後噴射によりNOx触媒
19に供給すべき単位時間当りの軽油供給量Z(目標後
噴射量に相当)を図4に示すマップデータより算出し、
この単位時間当りの軽油供給量Zを1気筒で後噴射する
場合の燃料噴射弁14の1ストローク(1噴射動作)当
りの後噴射量Y1 を上記ステップ132で読み込んだエ
ンジン回転数を基にして算出する。
Thereafter, in step 134, based on the exhaust gas temperature read in step 132 and the NOx emission amount calculated in step 133, the light oil supply amount Z per unit time to be supplied to the NOx catalyst 19 by post-injection. (Corresponding to the target post-injection amount) is calculated from the map data shown in FIG.
The post-injection amount Y1 per one stroke (one injection operation) of the fuel injection valve 14 when the light oil supply amount Z per unit time is post-injected by one cylinder is based on the engine speed read in step 132. calculate.

【0039】この後、ステップ135で、エンジン負荷
と排気温度とに基づいて、後噴射時期を図5に示すマッ
プデータより算出し、次のステップ136で、上記ステ
ップ134で算出した後噴射量Y1 を前回の後噴射量積
算値Xに積算して後噴射量積算値Xを更新する。この
後、ステップ137で、後噴射量積算値Xを予め設定さ
れた下限設定値と比較し、後噴射量積算値Xが下限設定
値よりも小さければ、ステップ132に戻り、ステップ
132からステップ137までの処理を繰り返す。ここ
で、下限設定値は、燃料噴射弁14が精度良く噴射動作
できる噴射量の下限値であるエンジンの1気筒の排気量
1リットル当り1〜8mm3 /ストローク(望ましくは
2〜6mm3 /ストローク)の範囲内で設定されてい
る。
Thereafter, in step 135, the post-injection timing is calculated from the map data shown in FIG. 5 based on the engine load and the exhaust gas temperature. In the next step 136, the post-injection amount Y1 calculated in step 134 is calculated. Is added to the previous post-injection amount integrated value X to update the post-injection amount integrated value X. Thereafter, in step 137, the post-injection amount integrated value X is compared with a preset lower limit set value. If the post-injection amount integrated value X is smaller than the lower limit set value, the process returns to step 132, and steps 132 to 137 are performed. The process up to is repeated. Here, the lower limit set value, the first cylinder exhaust amount per liter of the engine fuel injection valve 14 which is the lower limit of the accuracy injection operation can injection amount 1 to 8 mm 3 / stroke (preferably 2 to 6 mm 3 / stroke ) Is set within the range.

【0040】このような処理により、1気筒当りの後噴
射量Y1 が下限設定値より小さい場合は、後噴射を中止
して数サイクル分の後噴射量を積算し、その積算値Xが
下限設定値以上になった時に、ステップ137からステ
ップ138に進み、前記ステップ134で算出した単位
時間当りの軽油供給量Zと燃料圧力とに基づいて、後噴
射する気筒数を図14に示すマップデータより算出す
る。つまり、軽油供給量Zが多いほど、後噴射気筒数を
多くし、燃料圧力が高くなるほど、後噴射気筒数を多く
する。そして、このようにして算出した後噴射気筒数と
単位時間当りの軽油供給量Zとエンジン回転数とに基づ
いて1気筒当りの後噴射量Y(1ストローク当り)を算
出する。この際、算出した1気筒当りの後噴射量Yが下
限設定値より小さくなる場合には、1気筒当りの後噴射
量Yが下限設定値以上となるまで、後噴射気筒数を減少
して1気筒当りの後噴射量Yを算出し直す。
If the post-injection amount Y1 per cylinder is smaller than the lower limit set value, the post-injection is stopped and the post-injection amount for several cycles is integrated, and the integrated value X is set to the lower limit value. When the value becomes equal to or more than the value, the process proceeds from step 137 to step 138, and based on the light oil supply amount Z per unit time and the fuel pressure calculated in step 134, the number of cylinders to be post-injected is calculated from the map data shown in FIG. calculate. That is, the number of post-injection cylinders increases as the light oil supply amount Z increases, and the number of post-injection cylinders increases as the fuel pressure increases. Then, the post-injection amount Y per cylinder (per stroke) is calculated based on the number of post-injection cylinders thus calculated, the light oil supply amount Z per unit time, and the engine speed. At this time, if the calculated post-injection amount Y per cylinder becomes smaller than the lower limit set value, the number of post-injection cylinders is decreased by 1 until the post-injection amount Y per cylinder becomes equal to or more than the lower limit set value. The post-injection amount Y per cylinder is calculated again.

【0041】この後、ステップ139で、1気筒当りの
後噴射量Yを予め設定された上限設定値と比較し、1気
筒当りの後噴射量Yが上限設定値よりも大きければ、ス
テップ140に進み、1気筒当りの後噴射量Yを上限設
定値に補正して、ステップ141に進む。ここで、上限
設定値は、後噴射燃料がシリンダ壁に付着しない後噴射
量の上限値であるエンジンの1気筒の排気量1リットル
当り8〜20mm3 /ストローク(望ましくは8〜12
mm3 /ストローク)の範囲内で設定されている。
Thereafter, in step 139, the post-injection amount Y per cylinder is compared with a preset upper limit set value. If the post-injection amount Y per cylinder is larger than the upper limit set value, the routine proceeds to step 140. Then, the post-injection amount Y per cylinder is corrected to the upper limit set value, and the routine proceeds to step 141. Here, the upper limit set value is 8 to 20 mm 3 / stroke (preferably 8 to 12 mm) per liter of displacement of one cylinder of the engine, which is the upper limit of the post-injection amount at which the post-injection fuel does not adhere to the cylinder wall.
mm 3 / stroke).

【0042】また、上記ステップ139で、1気筒当り
の後噴射量Yが上限設定値以下であれば、1気筒当りの
後噴射量Yを補正せずにステップ141に進む。このス
テップ141では、上述した処理により算出した1気筒
当りの後噴射量Y、後噴射時期、後噴射気筒数に従って
後噴射指令を燃料噴射弁14に出力し、後噴射を実行し
て本プログラムを終了する。後噴射を実行する場合に
は、前記実施形態(1)と同じく、後噴射する気筒が一
部の気筒に偏らないように後噴射する気筒を随時変更す
る。
If it is determined in step 139 that the post-injection amount Y per cylinder is equal to or less than the upper limit set value, the process proceeds to step 141 without correcting the post-injection amount Y per cylinder. In step 141, a post-injection command is output to the fuel injection valve 14 in accordance with the post-injection amount Y per cylinder, the post-injection timing, and the number of post-injection cylinders calculated by the above-described processing, and the post-injection is executed. finish. When performing the post-injection, the post-injection cylinder is changed as needed so that the post-injection cylinder is not biased to some of the cylinders, as in the first embodiment.

【0043】以上説明した実施形態(3)では、後噴射
時の燃料圧力が高い場合には、後噴射する気筒数を多く
して、1気筒当りの後噴射量を少なくすることで、シリ
ンダ壁への後噴射燃料の付着を防止できる。これによ
り、後噴射時の燃料圧力が高い場合でも、潤滑油への後
噴射燃料の混入を防止できて、潤滑油の寿命を延ばすこ
とができると共に、NOx触媒19への炭化水素の供給
量を目標値に合わせて精度良く制御することができ、N
Ox浄化率を向上できる。
In the above-described embodiment (3), when the fuel pressure at the time of post-injection is high, the number of cylinders to be post-injected is increased and the post-injection amount per cylinder is reduced to thereby reduce the cylinder wall. Adhesion of post-injected fuel to the fuel cell can be prevented. Thereby, even when the fuel pressure at the time of post-injection is high, mixing of post-injection fuel into the lubricating oil can be prevented, the life of the lubricating oil can be extended, and the supply amount of hydrocarbons to the NOx catalyst 19 can be reduced. It is possible to control accurately with the target value, and N
Ox purification rate can be improved.

【0044】尚、本実施形態(3)では、下限設定値と
上限設定値を予め設定したが、前記実施形態(1)と同
じく、図6に示すマップデータより算出しても良い。こ
の際、燃料圧力を考慮して下限設定値と上限設定値を算
出するようにしても良い。また、本実施形態(3)で
は、後噴射する気筒数を、単位時間当りの軽油供給量Z
と燃料圧力とをパラメータとする図14の二次元マップ
より算出したが、単位時間当りの軽油供給量Zと燃料圧
力とエンジン運転状態(エンジン回転数等)とをパラメ
ータとする三次元マップより後噴射する気筒数を算出す
るようにしても良い。
In this embodiment (3), the lower limit set value and the upper limit set value are set in advance, but may be calculated from the map data shown in FIG. 6 as in the embodiment (1). At this time, the lower limit set value and the upper limit set value may be calculated in consideration of the fuel pressure. Further, in the present embodiment (3), the number of cylinders to be post-injected is determined by the light oil supply amount Z per unit time.
The fuel oil pressure is calculated from the two-dimensional map shown in FIG. 14 using parameters as parameters, but after the three-dimensional map using the light oil supply amount Z per unit time, the fuel pressure, and the engine operating state (engine speed, etc.) as parameters. The number of cylinders to be injected may be calculated.

【0045】また、図1のシステム構成例では、NOx
触媒19下流側に排気温度センサ20を設置して、NO
x触媒19下流の排気温度を触媒温度の代用として検出
するようにしたが、排気温度センサ20の設置場所は、
NOx触媒19の内部又は上流側であっても良く、この
場合でも、検出した排気温度を、触媒温度として代用で
きる。
In the example of the system configuration shown in FIG.
An exhaust temperature sensor 20 is installed downstream of the catalyst 19, and NO
The exhaust temperature downstream of the x catalyst 19 is detected as a substitute for the catalyst temperature.
It may be inside or upstream of the NOx catalyst 19. Even in this case, the detected exhaust gas temperature can be used as the catalyst temperature.

【0046】尚、上記各実施形態は、いずれも本発明を
4気筒ディーゼルエンジンに適用したものであるが、気
筒数は4気筒に限定されず、他の気筒数であっても良い
ことは言うまでもない。また、本発明を適用可能な内燃
機関は、ディーゼルエンジンに限定されず、筒内噴射
(直噴)式ガソリンエンジンにも適用可能である。
In each of the above embodiments, the present invention is applied to a four-cylinder diesel engine. However, it is needless to say that the number of cylinders is not limited to four and may be other. No. The internal combustion engine to which the present invention can be applied is not limited to a diesel engine, but can also be applied to a direct injection (direct injection) gasoline engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態(1)を示すエンジン制御シ
ステム全体の構成図
FIG. 1 is a configuration diagram of an entire engine control system showing an embodiment (1) of the present invention.

【図2】実施形態(1)における後噴射制御プログラム
の処理の流れを示すフローチャート
FIG. 2 is a flowchart showing a flow of processing of a post-injection control program in an embodiment (1).

【図3】エンジン回転数とアクセル開度からNOx排出
量を求めるマップデータの一例を概念的に示す図
FIG. 3 is a diagram conceptually illustrating an example of map data for obtaining a NOx emission amount from an engine speed and an accelerator opening.

【図4】排気温度とNOx排出量から単位時間当りの軽
油供給量を求めるマップデータの一例を概念的に示す図
FIG. 4 is a diagram conceptually showing an example of map data for obtaining a light oil supply amount per unit time from an exhaust gas temperature and a NOx emission amount.

【図5】エンジン負荷と排気温度から後噴射時期を求め
るマップデータの一例を概念的に示す図
FIG. 5 is a diagram conceptually illustrating an example of map data for obtaining a post-injection timing from an engine load and an exhaust gas temperature.

【図6】筒内圧力と筒内温度から下限設定値と上限設定
値を求めるマップデータの一例を概念的に示す図
FIG. 6 is a diagram conceptually showing an example of map data for obtaining a lower limit set value and an upper limit set value from in-cylinder pressure and in-cylinder temperature.

【図7】エンジン回転数と軽油供給量Zから後噴射する
気筒数を求めるマップデータの一例を概念的に示す図
FIG. 7 is a diagram conceptually showing an example of map data for obtaining the number of cylinders to be post-injected from an engine speed and a light oil supply amount Z;

【図8】後噴射する気筒の順序の一例を示すタイムチャ
ート(その1)
FIG. 8 is a time chart showing an example of the order of cylinders for post-injection (part 1).

【図9】後噴射する気筒の順序の一例を示すタイムチャ
ート(その2)
FIG. 9 is a time chart showing an example of the order of cylinders to be post-injected (part 2);

【図10】後噴射する気筒の順序の一例を示すタイムチ
ャート(その3)
FIG. 10 is a time chart showing an example of the order of cylinders to be post-injected (part 3);

【図11】後噴射する気筒の順序の一例を示すタイムチ
ャート(その4)
FIG. 11 is a time chart showing an example of the order of cylinders subjected to post-injection (part 4).

【図12】実施形態(2)における後噴射制御プログラ
ムの処理の流れを示すフローチャート
FIG. 12 is a flowchart showing the flow of processing of a post-injection control program according to the embodiment (2).

【図13】実施形態(3)における後噴射制御プログラ
ムの処理の流れを示すフローチャート
FIG. 13 is a flowchart showing the flow of processing of a post-injection control program in the embodiment (3).

【図14】燃料圧力と軽油供給量Zから後噴射する気筒
数を求めるマップデータの一例を概念的に示す図
FIG. 14 is a diagram conceptually showing an example of map data for obtaining the number of cylinders to be post-injected from a fuel pressure and a light oil supply amount Z;

【符号の説明】[Explanation of symbols]

10 ディーゼルエンジン(内燃機関) 11 吸気管 12 燃料圧力センサ(燃料圧力検出手段) 13 吸気マニホールド 14 燃料噴射弁(燃料噴射手段) 17 排気マニホールド(排気通路) 18 排気管(排気通路) 19 NOx触媒(触媒) 20 排気温度センサ(触媒活性状態検出手段) 25 ECU(噴射制御手段) 26 アクセルセンサ(運転状態検出手段) 27 エンジン回転数センサ(運転状態検出手段)。 Reference Signs List 10 diesel engine (internal combustion engine) 11 intake pipe 12 fuel pressure sensor (fuel pressure detecting means) 13 intake manifold 14 fuel injection valve (fuel injection means) 17 exhaust manifold (exhaust passage) 18 exhaust pipe (exhaust passage) 19 NOx catalyst ( Catalyst) 20 Exhaust temperature sensor (catalyst activation state detecting means) 25 ECU (injection control means) 26 Accelerator sensor (operating state detecting means) 27 Engine speed sensor (operating state detecting means).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 41/34 F02D 41/34 H ZAB ZAB (72)発明者 中村 兼仁 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 41/34 F02D 41/34 H ZAB ZAB (72) Inventor Kenji Nakamura 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. Inside DENSO

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の各気筒毎に燃料噴射手段を設
けると共に、前記内燃機関の排気通路に排気中の窒素酸
化物を還元浄化する触媒を設け、前記各気筒の燃料噴射
手段に機関出力発生のための主噴射指令を出力すると共
に少なくとも1つの気筒の燃料噴射手段に前記触媒への
炭化水素供給のための後噴射指令を出力する噴射制御手
段を備えた内燃機関の排気浄化装置において、 前記内燃機関の運転状態を検出する運転状態検出手段
と、 前記触媒の活性状態を検出する触媒活性状態検出手段と
を備え、 前記噴射制御手段は、前記運転状態検出手段の検出値と
前記触媒活性状態検出手段の検出値に基づいて前記触媒
へ供給する炭化水素量(以下「目標後噴射量」という)
を算出すると共に後噴射時期を設定し、更に前記目標後
噴射量と前記運転状態検出手段の検出値とに基づいて後
噴射する気筒数と1気筒当りの後噴射量を算出し、その
算出結果に応じて前記燃料噴射手段に後噴射指令を出力
することを特徴とする内燃機関の排気浄化装置。
A fuel injection means is provided for each cylinder of the internal combustion engine, a catalyst for reducing and purifying nitrogen oxides in exhaust gas is provided in an exhaust passage of the internal combustion engine, and engine output is provided to the fuel injection means of each cylinder. An exhaust gas purification apparatus for an internal combustion engine, comprising: an injection control unit that outputs a main injection command for generation and outputs a post-injection command for supplying hydrocarbons to the catalyst to a fuel injection unit of at least one cylinder. Operating state detecting means for detecting an operating state of the internal combustion engine; and catalyst active state detecting means for detecting an active state of the catalyst, wherein the injection control means includes a detection value of the operating state detecting means and the catalyst activity. The amount of hydrocarbon supplied to the catalyst based on the detection value of the state detection means (hereinafter, referred to as “target post-injection amount”)
And the post-injection timing is set. Further, the number of cylinders to be post-injected and the post-injection amount per cylinder are calculated based on the target post-injection amount and the detection value of the operating state detecting means. And outputting a post-injection command to the fuel injection means in response to the command.
【請求項2】 前記噴射制御手段は、1気筒当りの後噴
射量の下限設定値と上限設定値を設定し、算出した1気
筒当りの後噴射量が下限設定値と上限設定値の範囲内の
場合にのみ後噴射指令を出力することを特徴とする請求
項1に記載の内燃機関の排気浄化装置。
2. The post-injection control means sets a lower limit value and an upper limit value of the post-injection amount per cylinder, and the calculated post-injection amount per cylinder falls within a range between the lower limit value and the upper limit value. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein a post-injection command is output only in the case of (i).
【請求項3】 前記噴射制御手段は、1気筒当りの後噴
射量が前記下限設定値より小さい場合は、後噴射を中止
して数サイクル分の後噴射量を積算し、その積算値が下
限設定値以上になった時に後噴射指令を出力し、1気筒
当りの後噴射量が前記上限設定値を超えた場合は、1気
筒当りの後噴射量を上限設定値に補正して後噴射指令を
出力することを特徴とする請求項2に記載の内燃機関の
排気浄化装置。
3. When the post-injection amount per cylinder is smaller than the lower limit set value, the injection control means stops post-injection and integrates the post-injection amount for several cycles. When the post-injection amount is equal to or more than the set value, the post-injection command is output. When the post-injection amount per cylinder exceeds the upper limit set value, the post-injection amount per cylinder is corrected to the upper limit set value and the post-injection command is output. The exhaust gas purifying apparatus for an internal combustion engine according to claim 2, wherein the exhaust gas is output.
【請求項4】 前記下限設定値は、前記内燃機関の1気
筒の排気量1リットル当り1〜8mm3 /ストロークの
範囲内で設定され、前記上限設定値は、1気筒の排気量
1リットル当り8〜20mm3 /ストロークの範囲内で
設定されることを特徴とする請求項2又は3に記載の内
燃機関の排気浄化装置。
4. The lower limit set value is set within a range of 1 to 8 mm 3 / stroke per liter of displacement of one cylinder of the internal combustion engine, and the upper limit set value is set per liter of displacement of one cylinder of the internal combustion engine. 4. The exhaust gas purifying apparatus for an internal combustion engine according to claim 2, wherein the value is set within a range of 8 to 20 mm 3 / stroke.
【請求項5】 前記噴射制御手段は、前記運転状態検出
手段の検出値と前記後噴射時期とに基づいて各気筒の筒
内状態を推定し、推定した各気筒の筒内状態に基づいて
前記下限設定値と前記上限設定値を設定することを特徴
とする請求項2乃至4のいずれかに記載の内燃機関の排
気浄化装置。
5. The injection control unit estimates an in-cylinder state of each cylinder based on a detection value of the operating state detection unit and the post-injection timing, and based on the estimated in-cylinder state of each cylinder. The exhaust gas purifying apparatus for an internal combustion engine according to any one of claims 2 to 4, wherein a lower limit set value and the upper limit set value are set.
【請求項6】 前記噴射制御手段は、前記運転状態検出
手段の検出値と前記後噴射時期に基づいて推定した各気
筒の筒内圧力又は筒内温度が高くなるほど前記下限設定
値と前記上限設定値を大きく設定することを特徴とする
請求項5に記載の内燃機関の排気浄化装置。
6. The injection control means sets the lower limit setting value and the upper limit setting as the in-cylinder pressure or in-cylinder temperature of each cylinder estimated based on the detected value of the operating state detecting means and the post-injection timing increases. The exhaust gas purifying apparatus for an internal combustion engine according to claim 5, wherein the value is set to a large value.
JP04055698A 1998-02-23 1998-02-23 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4039500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04055698A JP4039500B2 (en) 1998-02-23 1998-02-23 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04055698A JP4039500B2 (en) 1998-02-23 1998-02-23 Exhaust gas purification device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9092314A Division JPH10288031A (en) 1997-04-10 1997-04-10 Exhaust emission control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10288067A true JPH10288067A (en) 1998-10-27
JP4039500B2 JP4039500B2 (en) 2008-01-30

Family

ID=12583734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04055698A Expired - Fee Related JP4039500B2 (en) 1998-02-23 1998-02-23 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4039500B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048531A1 (en) * 2000-12-12 2002-06-20 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
KR100432035B1 (en) * 2002-06-18 2004-05-17 현대자동차주식회사 Multi-injection control method in a common rail injection system
KR100476198B1 (en) * 2002-05-09 2005-03-16 현대자동차주식회사 Method for controlling post injection of common rail injection system in diesel vehicle
US6898508B2 (en) 2002-12-20 2005-05-24 Isuzu Motors Limited Fuel injection control device
US7021045B2 (en) 2002-11-28 2006-04-04 Isuzu Motors Limited Fuel injection control device
WO2007010700A1 (en) 2005-07-15 2007-01-25 Isuzu Motors Limited Control method of exhaust gas purification system and exhaust gas purification system
JP2007023961A (en) * 2005-07-20 2007-02-01 Mitsubishi Motors Corp Fuel injection control device of internal combustion engine
KR100787884B1 (en) 2005-03-30 2007-12-27 미츠비시 후소 트럭 앤드 버스 코포레이션 Control device of diesel engine
JP2008175194A (en) * 2007-01-22 2008-07-31 Toyota Motor Corp Control device for internal combustion engine
JP2009144630A (en) * 2007-12-14 2009-07-02 Mitsubishi Heavy Ind Ltd Dpf regenerative device in multi-cylinder engine
JP2013011255A (en) * 2011-06-30 2013-01-17 Honda Motor Co Ltd Exhaust emission control system
JP2014231805A (en) * 2013-05-30 2014-12-11 本田技研工業株式会社 Control device for internal combustion engine
CN110273774A (en) * 2018-03-16 2019-09-24 隆巴第尼有限责任公司 The method for controlling the injection apparatus of internal combustion engine

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298983C (en) * 2000-12-12 2007-02-07 丰田自动车株式会社 Controller of internal combustion engine
US7201139B2 (en) 2000-12-12 2007-04-10 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
US6948478B2 (en) 2000-12-12 2005-09-27 Toyota Jidosha Kabushiki Kaisha Device for controlling internal combustion engines
WO2002048531A1 (en) * 2000-12-12 2002-06-20 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
US7066146B2 (en) 2000-12-12 2006-06-27 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
US7107975B2 (en) 2000-12-12 2006-09-19 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
KR100476198B1 (en) * 2002-05-09 2005-03-16 현대자동차주식회사 Method for controlling post injection of common rail injection system in diesel vehicle
KR100432035B1 (en) * 2002-06-18 2004-05-17 현대자동차주식회사 Multi-injection control method in a common rail injection system
US7021045B2 (en) 2002-11-28 2006-04-04 Isuzu Motors Limited Fuel injection control device
US6898508B2 (en) 2002-12-20 2005-05-24 Isuzu Motors Limited Fuel injection control device
KR100787884B1 (en) 2005-03-30 2007-12-27 미츠비시 후소 트럭 앤드 버스 코포레이션 Control device of diesel engine
WO2007010700A1 (en) 2005-07-15 2007-01-25 Isuzu Motors Limited Control method of exhaust gas purification system and exhaust gas purification system
US8181449B2 (en) 2005-07-15 2012-05-22 Isuzu Motors Limited Control method of exhaust gas purification system and exhaust gas purification system
JP2007023961A (en) * 2005-07-20 2007-02-01 Mitsubishi Motors Corp Fuel injection control device of internal combustion engine
JP4502129B2 (en) * 2005-07-20 2010-07-14 三菱自動車工業株式会社 Fuel injection control device for internal combustion engine
JP2008175194A (en) * 2007-01-22 2008-07-31 Toyota Motor Corp Control device for internal combustion engine
JP2009144630A (en) * 2007-12-14 2009-07-02 Mitsubishi Heavy Ind Ltd Dpf regenerative device in multi-cylinder engine
JP2013011255A (en) * 2011-06-30 2013-01-17 Honda Motor Co Ltd Exhaust emission control system
JP2014231805A (en) * 2013-05-30 2014-12-11 本田技研工業株式会社 Control device for internal combustion engine
CN110273774A (en) * 2018-03-16 2019-09-24 隆巴第尼有限责任公司 The method for controlling the injection apparatus of internal combustion engine
US10954881B2 (en) * 2018-03-16 2021-03-23 Kohler Co. Method of controlling an injection apparatus of an internal combustion engine

Also Published As

Publication number Publication date
JP4039500B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
US8620561B2 (en) Control for internal combustion engine provided with cylinder halting mechanism
US8074446B2 (en) Exhaust gas purification system for internal combustion engine
JP2007247610A (en) Fuel injection control device
JPH10288067A (en) Exhaust emission control device of internal combustion engine
CN101922373B (en) Desulfation system and method for lean NOx trap (LNT)
US20080300770A1 (en) Control device for internal combustion engine
JPH08303290A (en) Exhaust gas purifying device for internal combustion engine
JP4247843B2 (en) Temperature detection device abnormality determination device
US7137386B1 (en) Closed loop A/F ratio control for diesel engines using an oxygen sensor
US7634906B2 (en) Exhaust gas after-treatment apparatus
EP2522841A1 (en) Fuel injection control device for internal-combustion engine
CN1877104B (en) Exhaust gas purification device for internal combustion engine
US6840035B2 (en) Exhaust emission control system for multiple cylinder internal combustion engine
JP2014062553A (en) Fuel injection device of internal combustion engine
JPH10288031A (en) Exhaust emission control device for internal combustion engine
JPH10252544A (en) Exhaust purifier device for internal combustion engine
JP5703802B2 (en) Fuel injection device for internal combustion engine
US10815850B2 (en) Method for catalyst purge control based on engine temperature and vehicle using the same
JP2002364398A (en) Exhaust emission control device for internal combustion engine
JP6268682B2 (en) Engine exhaust purification system
JPH10252543A (en) Exhaust purifying device for internal combustion engine
JP2000257476A (en) Control unit for in-cylinder injection engine
US7415818B2 (en) Control device of internal combustion engine
JP6230004B1 (en) Engine exhaust purification system
JP6268683B2 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees