JPH10277042A - Ultrasonic diagnostic device - Google Patents

Ultrasonic diagnostic device

Info

Publication number
JPH10277042A
JPH10277042A JP10537997A JP10537997A JPH10277042A JP H10277042 A JPH10277042 A JP H10277042A JP 10537997 A JP10537997 A JP 10537997A JP 10537997 A JP10537997 A JP 10537997A JP H10277042 A JPH10277042 A JP H10277042A
Authority
JP
Japan
Prior art keywords
ultrasonic
probe
signal
aperture
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10537997A
Other languages
Japanese (ja)
Other versions
JP3290092B2 (en
Inventor
Takao Suzuki
隆夫 鈴木
Hiroshi Fukukita
博 福喜多
Morio Nishigaki
森雄 西垣
Takashi Hagiwara
尚 萩原
Yoshihiko Ito
嘉彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10537997A priority Critical patent/JP3290092B2/en
Publication of JPH10277042A publication Critical patent/JPH10277042A/en
Application granted granted Critical
Publication of JP3290092B2 publication Critical patent/JP3290092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8997Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using synthetic aperture techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To enlarge an effective opening width in opening synthesis even at the time of using a probe provided with a wave front convergence means and to perform the opening synthesis in a state close to the phase characteristics of ultrasonic waves. SOLUTION: This device is provided with the probe 1 provided with the wave front convergence means, a scanning mechanism 2 for controlling the relative position to a reflector 13 of the probe 1, a memory 4 for storing reception signals after converting the ultrasonic waves reflected from the reflector 13 to electric signals in the probe 1 and a signal synthesis part 5 for performing opening synthesis computation by supplying prescribed delay time to the reception signals stored in the memory 4 and performing addition based on the wave front phase information of the ultrasonic waves. An opening synthesis method is changed correspondingly to the positions in a spherical wave area for converging the ultrasonic wave energy of the probe 1 at a focus 12 and the spherical wave area for diffusing the ultrasonic wave energy of the reception signals and synthesis signals opening-synthesized in the signal synthesis part 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、開口合成法を利用
した超音波診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic diagnostic apparatus using an aperture synthesis method.

【0002】[0002]

【従来の技術】超音波診断装置において、超音波の進行
方向に直交する方向の分解能(方位分解能)を高めるた
めの手段として開口合成法が知られている。
2. Description of the Related Art In an ultrasonic diagnostic apparatus, an aperture synthesizing method is known as a means for increasing a resolution (azimuth resolution) in a direction orthogonal to a traveling direction of an ultrasonic wave.

【0003】図7は、単一の振動子を用いた従来の超音
波診断装置の概略構成を示すブロック図である。同図に
おいて、71は振動子、72は振動子71を被検体であ
る反射体73に対して一次元方向に走査する走査機構、
74は振動子71から超音波を発生させるための高周波
信号を振動子71に供給するとともに、反射体73で反
射されて振動子71に戻ってくる超音波を電気信号に変
換した振動子71からの信号を受信する送受信回路であ
り、この送受信回路74で受信された信号は増幅検波さ
れた後、所定のディジタル信号処理がなされてメモリ7
5に記憶される構成になっている。
FIG. 7 is a block diagram showing a schematic configuration of a conventional ultrasonic diagnostic apparatus using a single transducer. In the same figure, 71 is a vibrator, 72 is a scanning mechanism for scanning the vibrator 71 in a one-dimensional direction with respect to a reflector 73 as an object,
74 supplies a high-frequency signal for generating ultrasonic waves from the vibrator 71 to the vibrator 71, and converts the ultrasonic waves reflected by the reflector 73 and returned to the vibrator 71 into electric signals from the vibrator 71. The signal received by the transmission / reception circuit 74 is amplified and detected, and then subjected to a predetermined digital signal processing.
5 is stored.

【0004】信号合成部76は、波面位相情報メモリ7
7に記憶されている超音波ビームの位相情報をもとに、
各送受信により得られたメモリ75からの高周波受信信
号に所定の遅延時間を与え加算することにより開口合成
演算を行う。78は信号合成部76から出力される合成
信号をテレビ用の映像信号に変換して表示する画面表示
部である。
The signal synthesizing section 76 includes a wavefront phase information memory 7
7 based on the phase information of the ultrasonic beam stored in
An aperture synthesis operation is performed by giving a predetermined delay time to the high-frequency reception signal from the memory 75 obtained by each transmission and reception and adding them. Reference numeral 78 denotes a screen display unit that converts the combined signal output from the signal combining unit 76 into a video signal for television and displays the video signal.

【0005】このように開口合成法では、振動子71を
走査機構72で走査しながら繰り返し送受信を行って複
数の受信信号を得る。この場合、振動子71から送信さ
れる超音波ビームは振動子71からの球面波とみなすこ
とができ、受信信号を受信合成部76で適切な遅延を与
えて合成することにより、振動子からの距離に依存しな
い良好な方位分解能を持った合成信号を得ることができ
る。
As described above, in the aperture synthesizing method, a plurality of reception signals are obtained by repeatedly transmitting and receiving while scanning the vibrator 71 by the scanning mechanism 72. In this case, the ultrasonic beam transmitted from the vibrator 71 can be regarded as a spherical wave from the vibrator 71, and the reception signal is synthesized by giving an appropriate delay in the reception synthesis unit 76. A synthesized signal having a good azimuth resolution independent of distance can be obtained.

【0006】しかし、この開口合成法では、図7の点
線、破線及び実線で示すように、超音波ビームを広げて
送受信を行うため、得られた受信信号が微弱になり、十
分なSN比が得られないという問題がある。この問題を
解決するために、特開昭62−47348号に示すよう
な波面収束手段を有する振動子を用い、超音波ビームの
収束点を音源とみなして開口合成を行う方法がある。
However, in this aperture synthesis method, as shown by the dotted line, the broken line and the solid line in FIG. 7, the transmission and reception are performed while the ultrasonic beam is expanded, so that the obtained reception signal becomes weak and a sufficient SN ratio is obtained. There is a problem that it cannot be obtained. In order to solve this problem, there is a method of performing aperture synthesis by using a vibrator having a wavefront converging means as described in Japanese Patent Application Laid-Open No. Sho 62-47348 and considering a convergence point of an ultrasonic beam as a sound source.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開昭
62−47348号に示す方法では、収束点を音源とみ
なすという近似は超音波ビームが収束していく部分でし
か成立しないため、振動子の実効開口幅を大きくできな
いという問題がある。
However, in the method disclosed in Japanese Patent Application Laid-Open No. Sho 62-47348, the approximation that a convergence point is regarded as a sound source is established only at a portion where the ultrasonic beam converges. There is a problem that the effective opening width cannot be increased.

【0008】例えば、図8に示すように、振動子81を
反射体82に対し右方に走査して反射体82の位置の信
号を求める場合、振動子81の開口i、jの位置では問
題がないが、振動子81開口kの位置から送受信した超
音波ビームkは開口合成に用いることができない。
For example, as shown in FIG. 8, when the transducer 81 is scanned rightward with respect to the reflector 82 to obtain a signal of the position of the reflector 82, a problem occurs at the positions of the openings i and j of the transducer 81. However, the ultrasonic beam k transmitted and received from the position of the aperture k of the transducer 81 cannot be used for aperture synthesis.

【0009】本発明は、上記のような問題を解決するも
のであり、波面収束手段を有する探触子を用いても、開
口合成における実効開口幅を大きくとることができ、か
つ実際に使用する超音波の位相特性に近い状態で開口合
成ができる超音波診断装置を提供することを目的とす
る。
The present invention has been made to solve the above-mentioned problem. Even if a probe having a wavefront converging means is used, the effective aperture width in aperture synthesis can be made large and can be used in practice. It is an object of the present invention to provide an ultrasonic diagnostic apparatus capable of performing aperture synthesis in a state close to the phase characteristics of ultrasonic waves.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に本発明の超音波診断装置は、波面収束手段を有する超
音波探触子と、前記超音波探触子の被検体に対する相対
位置をを制御する走査手段と、前記被検体等から反射す
る超音波を前記超音波探触子で電気信号に変換した後の
受信信号を記憶する記憶手段と、超音波の波面位相情報
をもとに前記記憶手段に記憶された受信信号に所定の遅
延時間を与え加算することにより開口合成演算を行う信
号合成手段とを備え、前記信号合成手段で開口合成され
る合成信号と前記受信信号の前記超音波探触子の超音波
エネルギが焦点に収束する球面波領域と前記超音波エネ
ルギが拡散する球面波領域おける位置に応じて開口合成
法を変更する構成にしたものである。
In order to solve the above-mentioned problems, an ultrasonic diagnostic apparatus according to the present invention comprises an ultrasonic probe having a wavefront converging means and a relative position of the ultrasonic probe with respect to a subject. Scanning means for controlling the ultrasonic wave reflected from the subject and the like, a storage means for storing a received signal after converting the ultrasonic wave into an electric signal by the ultrasonic probe, based on the wavefront phase information of the ultrasonic wave Signal synthesizing means for performing an aperture synthesizing operation by giving a predetermined delay time to the received signal stored in the storage means and adding the resultant signal. The aperture synthesis method is changed in accordance with the position in the spherical wave region where the ultrasonic energy of the ultrasonic probe converges at the focal point and the position in the spherical wave region where the ultrasonic energy is diffused.

【0011】本発明によれば、波面収束手段を有する探
触子を用いても、開口合成における実効開口幅を大きく
取ることができ、かつ実際に使用する超音波の位相特性
に近い状態で開口合成ができる。
According to the present invention, even when a probe having a wavefront focusing means is used, the effective aperture width in aperture synthesis can be made large, and the aperture is close to the phase characteristic of the ultrasonic wave actually used. Can be synthesized.

【0012】[0012]

【発明の実施の形態】本発明の請求項1に記載の発明
は、波面収束手段を有する超音波探触子と、前記超音波
探触子の被検体に対する相対位置をを制御する走査手段
と、前記被検体等から反射する超音波を前記超音波探触
子で電気信号に変換した後の受信信号を記憶する記憶手
段と、超音波の波面位相情報をもとに前記記憶手段に記
憶された受信信号に所定の遅延時間を与え加算すること
により開口合成演算を行う信号合成手段とを備え、前記
信号合成手段で開口合成される合成信号と前記受信信号
の前記超音波探触子の超音波エネルギが焦点に収束する
球面波領域と前記超音波エネルギが拡散する球面波領域
おける位置に応じて開口合成法を変更する構成にしたも
のであり、合成信号と受信信号の位置関係により合成方
法を変えることで開口合成における実効開口幅を大きく
取り得る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to an ultrasonic probe having a wavefront focusing means, and a scanning means for controlling a relative position of the ultrasonic probe with respect to a subject. A storage unit for storing a received signal after converting an ultrasonic wave reflected from the subject or the like into an electric signal by the ultrasonic probe, and stored in the storage unit based on wavefront phase information of the ultrasonic wave. Signal synthesizing means for performing aperture synthesizing operation by giving a predetermined delay time to the received signal and adding the signals, and a synthesized signal aperture-synthesized by the signal synthesizing means and an ultrasonic probe The aperture synthesizing method is changed in accordance with a position in a spherical wave region in which acoustic energy converges to a focal point and a position in a spherical wave region in which the ultrasonic energy is diffused. By changing It may take a large effective aperture width in the synthesis.

【0013】請求項1に記載の発明は、開口合成法が、
探触子から放射された球面波が収束する焦点を仮想音源
とみなして開口合成を行い、超音波エネルギが拡散する
球面波を探触子表面端から放射された球面波とみなして
開口合成を行うものであり、簡単な計算で良好な開口合
成が可能になる。
According to the first aspect of the present invention, the aperture synthesis method comprises:
Aperture synthesis is performed by assuming the focal point where the spherical wave emitted from the probe converges as a virtual sound source, and spherical synthesis where ultrasonic energy is diffused as spherical waves emitted from the end of the probe. It is possible to perform good aperture synthesis with a simple calculation.

【0014】請求項3の発明は、開口合成を行う範囲を
指定するための超音波ビームの振幅情報を記憶する波面
振幅情報メモリと、前記波面振幅情報メモリ記憶されて
いる超音波ビームのメインローブ情報に応じて開口合成
の開口幅を決定する開口制御部を更に備えるものであ
り、超音波ビームのメインローブの太さやサイドローブ
の有無によって合成する受信信号の数を調整でき、効率
的な開口合成が可能になる。
According to a third aspect of the present invention, there is provided a wavefront amplitude information memory for storing amplitude information of an ultrasonic beam for designating a range for performing aperture synthesis, and a main lobe of the ultrasonic beam stored in the wavefront amplitude information memory. It further includes an aperture control unit that determines the aperture width of aperture synthesis according to information, and can adjust the number of received signals to be synthesized according to the thickness of the main lobe of the ultrasonic beam and the presence or absence of side lobes, thereby achieving an efficient aperture. Compositing becomes possible.

【0015】(実施の形態1)図1〜図4により本発明
の実施の形態1について説明する。図1は本発明の実施
の形態1における超音波診断装置の構成を示すブロック
図、図2は超音波診断装置の動作を説明するための超音
波ビームの位相特性の概念図、図3は超音波診断装置の
動作を説明するための概念図、図4は超音波診断装置の
動作説明図である。
(First Embodiment) A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram illustrating a configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention, FIG. 2 is a conceptual diagram of a phase characteristic of an ultrasonic beam for explaining an operation of the ultrasonic diagnostic apparatus, and FIG. FIG. 4 is a conceptual diagram for explaining the operation of the ultrasonic diagnostic apparatus, and FIG. 4 is an operation explanatory diagram of the ultrasonic diagnostic apparatus.

【0016】図1において、1は酸化亜鉛結晶膜等の圧
電振動子から構成される探触子であり、この探触子1の
下面には波面収束手段を構成する音響レンズ11が設け
られており、この音響レンズ11により探触子1から発
生する超音波ビームを焦点12に収束させる。2は音響
レンズ11を含む探触子1を被検体である反射体13に
対して一次元方向(Y方向)に走査する走査機構であ
り、また、3は探触子1から超音波を発生させるための
高周波パルスを探触子1に供給するとともに、反射体1
3で反射されて探触子1に戻ってくる超音波を電気信号
に変換した探触子1からの信号を受信する送受信回路で
あり、この送受信回路3で受信された信号は増幅検波さ
れた後、所定のディジタル信号処理がなされてメモリ4
に記憶される構成になっている。
In FIG. 1, reference numeral 1 denotes a probe constituted by a piezoelectric vibrator such as a zinc oxide crystal film. An acoustic lens 11 constituting wavefront focusing means is provided on the lower surface of the probe 1. The acoustic lens 11 converges an ultrasonic beam generated from the probe 1 to a focal point 12. Reference numeral 2 denotes a scanning mechanism that scans the probe 1 including the acoustic lens 11 in a one-dimensional direction (Y direction) with respect to the reflector 13 as an object, and 3 generates an ultrasonic wave from the probe 1. A high-frequency pulse is supplied to the probe 1 for causing the
A transmission / reception circuit that receives a signal from the probe 1 that converts the ultrasonic wave reflected back to the probe 1 and returned to the probe 1 into an electric signal. The signal received by the transmission / reception circuit 3 is amplified and detected. Thereafter, predetermined digital signal processing is performed and the memory 4
Is stored.

【0017】信号合成部5は、波面位相情報メモリ6に
記憶されている超音波ビームの位相情報をもとに、各送
受信により得られたメモリ4からの高周波受信信号に所
定の遅延時間を与え加算することにより開口合成演算を
行うもので、受信信号に所定の遅延時間を与えるディジ
タル遅延回路、及び遅延処理した受信信号を加算するデ
ィジタル加算回路等から構成される。また、波面位相情
報メモリ6は開口合成を行うための超音波の位相情報を
記憶するもので、この波面位相情報メモリ6には、図2
に示す領域A、B、Cに対応する超音波の位相情報メモ
リ6A、6B、6Cが記憶されており、超音波の位相情
報メモリ6A、6B、6Cは合成信号と受信信号の位置
関係により選択されて信号合成部6に取り込まれる。7
は信号合成部6から出力される合成信号をテレビ用の映
像信号に変換して表示する画面表示部である。
The signal synthesizing section 5 gives a predetermined delay time to the high frequency reception signal from the memory 4 obtained by each transmission and reception based on the phase information of the ultrasonic beam stored in the wavefront phase information memory 6. Aperture synthesis operation is performed by adding the signals, and is composed of a digital delay circuit for giving a predetermined delay time to the received signal, a digital adding circuit for adding the delayed processed received signal, and the like. The wavefront phase information memory 6 stores the phase information of the ultrasonic wave for performing aperture synthesis.
The ultrasonic phase information memories 6A, 6B, and 6C corresponding to the areas A, B, and C shown in FIG. 3 are stored, and the ultrasonic phase information memories 6A, 6B, and 6C are selected based on the positional relationship between the synthesized signal and the received signal. Then, it is taken into the signal synthesizing unit 6. 7
Is a screen display unit for converting a synthesized signal output from the signal synthesizing unit 6 into a video signal for television and displaying it.

【0018】上記の用に構成された超音波診断装置の動
作について、図2〜図4を参照して説明する。
The operation of the ultrasonic diagnostic apparatus configured as described above will be described with reference to FIGS.

【0019】まず図2に示すように、探触子1はZ方向
に収束超音波ビームを発生するが、音響レンズ11によ
り大部分の音響エネルギは領域Aを通り焦点12へ収束
する。この領域Aにおける超音波の収束状態は、焦点1
2を仮想音源として音波が放射されるとみなすことがで
きる。しかし、一部の超音波エネルギは領域B、Cへ拡
散する。この領域Bを超音波ビームが拡散する状態は、
探触子表面端1aから音波が球面状に放射されるとみな
すことができる。また、領域Cを超音波ビームが拡散す
る状態は、探触子表面端1bから音波が球面状に放射さ
れるとみなすことができる。
First, as shown in FIG. 2, the probe 1 generates a convergent ultrasonic beam in the Z direction, and most of the acoustic energy converges on the focal point 12 through the region A by the acoustic lens 11. The convergence state of the ultrasonic wave in this area A is the focus 1
It can be considered that a sound wave is emitted using 2 as a virtual sound source. However, some ultrasonic energy diffuses into regions B and C. The state in which the ultrasonic beam diffuses in this area B is as follows.
It can be considered that a sound wave is emitted spherically from the probe surface end 1a. In addition, the state in which the ultrasonic beam is diffused in the region C can be regarded as that the sound wave is emitted spherically from the probe surface end 1b.

【0020】図3は、探触子1をY方向に移動しながら
繰り返し送受信した場合の複数の超音波ビームの様子を
示したのもであり、探触子1の開口iに対応するビーム
iは実線で表し、探触子1の開口jに対応するビームj
は点線で表し、探触子1の開口kに対応するビームkは
破線で表されている。ここで、反射体21の位置の受信
信号をビームi〜kを用いて開口合成する場合について
説明する。
FIG. 3 shows the state of a plurality of ultrasonic beams when the probe 1 is repeatedly transmitted and received while moving in the Y direction. The beam i corresponding to the aperture i of the probe 1 is a solid line. And a beam j corresponding to the aperture j of the probe 1
Is represented by a dotted line, and a beam k corresponding to the aperture k of the probe 1 is represented by a broken line. Here, a case will be described in which aperture synthesis of a reception signal at the position of the reflector 21 is performed using the beams i to k.

【0021】反射体21は、ビームi、ビームjでは領
域Aにあるため、ビームi、ビームjは焦点を仮想音源
とする球面波とみなして開口合成を行う。また、ビーム
kでは領域Cにあるため、ビームkは探触子表面端1b
から放射される球面波とみなして開口合成を行う。
Since the reflector 21 is in the region A for the beams i and j, the aperture synthesis is performed by regarding the beams i and j as spherical waves whose focal points are virtual sound sources. Further, since the beam k is in the region C, the beam k is applied to the probe surface end 1b.
Aperture synthesis assuming spherical waves radiated from.

【0022】図4は、図3の仮想走査線24上の各点の
合成信号をビームi、ビームj、ビームkを用いて開口
合成を行う場合の説明図である。
FIG. 4 is an explanatory diagram in the case where aperture synthesis is performed on the synthesized signal at each point on the virtual scanning line 24 in FIG. 3 using the beam i, the beam j, and the beam k.

【0023】まず、仮想走査線14とビームiを比較す
ると、仮想走査線14上の全ての点はビームiの領域C
にある。したがって、ビームiは探触子表面端1bから
放射された球面波とみなして、開口合成を行う。その結
果、ビームiによる反射体21、22からの受信信号は
図4(A)の左側に示す波形となり、そして、遅延処理
後の受信信号は同図(A)の右側の波形となる。
First, when the virtual scanning line 14 is compared with the beam i, all points on the virtual scanning line 14 are in the region C of the beam i.
It is in. Therefore, the beam i is regarded as a spherical wave radiated from the probe surface end 1b, and aperture synthesis is performed. As a result, the received signal from the reflectors 21 and 22 by the beam i has the waveform shown on the left side of FIG. 4A, and the received signal after the delay processing has the waveform on the right side of FIG. 4A.

【0024】また、ビームjについては、前半は領域A
に、後半は領域Cになる。したがって、仮想走査線14
上の前半の点の合成信号を求める場合には、ビームjは
焦点12を仮想音源とする球面波とみなして開口合成を
行い、後半の点の合成信号を求める場合には、探触子表
面端1bから放射された球面波とみなして開口合成を行
う。その結果、ビームjによる反射体21、22からの
受信信号は図4(B)の左側に示す波形となり、そし
て、遅延処理後の受信信号は同図(B)の右側の波形と
なる。
For beam j, the first half is area A
The second half is the area C. Therefore, the virtual scanning line 14
In the case of obtaining the combined signal of the upper first half, aperture synthesis is performed by regarding the beam j as a spherical wave having the focal point 12 as a virtual sound source, and in the case of obtaining the combined signal of the latter half, the probe surface Aperture synthesis is performed assuming the spherical wave radiated from the end 1b. As a result, the received signal from the reflectors 21 and 22 by the beam j has the waveform shown on the left side of FIG. 4B, and the received signal after the delay processing has the waveform on the right side of FIG. 4B.

【0025】同様にしてビームkについても、前半は領
域Aに、後半は領域Bになる。したがって、仮想走査線
14上の前半の点の合成信号を求める場合には、ビーム
kは焦点12を仮想音源とする球面波とみなして開口合
成を行い、後半の点の合成信号を求める場合には、探触
子表面端1aから放射された球面波とみなして開口合成
を行う。その結果、ビームkによる反射体21、22か
らの受信信号は図4(C)の左側に示す波形となり、そ
して、遅延処理後の受信信号は同図(C)の右側の波形
となる。
Similarly, for the beam k, the first half is the area A and the second half is the area B. Therefore, when obtaining the composite signal of the first half point on the virtual scanning line 14, the beam k is regarded as a spherical wave having the focal point 12 as a virtual sound source and aperture synthesis is performed. Performs aperture synthesis on the assumption that the wave is a spherical wave radiated from the probe surface end 1a. As a result, the reception signal from the reflectors 21 and 22 by the beam k has a waveform shown on the left side of FIG. 4C, and the reception signal after the delay processing has a waveform on the right side of FIG. 4C.

【0026】このようにして仮想走査線14上の各点の
合成信号を求めると、ビームi、ビームj、ビームkに
よる遅延処理後の各受信信号を加算した図4(D)に示
す波形の合成信号が求められる。
When the composite signal at each point on the virtual scanning line 14 is obtained in this manner, the received signals after the delay processing by the beam i, the beam j, and the beam k are added, and the waveform shown in FIG. A composite signal is required.

【0027】図4では、仮想走査線13上の反射体22
からの受信信号は増幅され、仮想走査線14から外れた
ところにある反射体21からの受信信号は減衰すること
が示されている。
In FIG. 4, the reflector 22 on the virtual scanning line 13 is
It is shown that the signal received from the reflector 21 located outside the virtual scanning line 14 is attenuated.

【0028】上記のように本発明の実施の形態1によれ
ば、波面収束手段である音響レンズ11を有する探触子
1を用いた場合でも開口合成における実効開口幅を広く
取ることができ、かつ実際に使用する超音波の位相特性
に近い状態で開口合成ができるため、良好な方位分解能
を得ることができる。
As described above, according to the first embodiment of the present invention, even when the probe 1 having the acoustic lens 11 as the wavefront focusing means is used, the effective aperture width in aperture synthesis can be widened. In addition, since aperture synthesis can be performed in a state close to the phase characteristics of the ultrasonic waves actually used, a good azimuth resolution can be obtained.

【0029】なお、上記実施の形態1では、超音波の位
相特性を、焦点を仮想音源とする球面波及び探触子表面
端を音源とする球面波としたが、より実際の波面に即し
たものとすれば、さらに性能を向上させることができ
る。
In the first embodiment, the phase characteristics of the ultrasonic wave are a spherical wave whose focal point is a virtual sound source and a spherical wave whose sound source is a probe surface end, but more suitable for an actual wavefront. If so, the performance can be further improved.

【0030】(実施の形態2)図5及び図6により本発
明の実施の形態2について説明する。図5は本発明の実
施の形態2における超音波診断装置の構成を示すブロッ
ク図、図6は超音波診断装置の動作を説明するための超
音波ビームのメインローブの振幅特性の概念図である。
(Embodiment 2) Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 5 is a block diagram showing a configuration of an ultrasonic diagnostic apparatus according to Embodiment 2 of the present invention, and FIG. 6 is a conceptual diagram of an amplitude characteristic of a main lobe of an ultrasonic beam for explaining an operation of the ultrasonic diagnostic apparatus. .

【0031】図5において、図1と同一または類似の構
成要素には同一符号を付して説明すると、1は凹型の圧
電振動子から構成される探触子であり、探触子1自体が
波面収束手段を構成し、この探触子1から発生する超音
波ビームを焦点12に収束させる。2は探触子1を被検
体である反射体13に対して一次元方向(Y方向)に走
査する走査機構であり、また、3は探触子1から超音波
を発生させるための高周波パルスを探触子1に供給する
とともに、反射体13で反射されて探触子1に戻ってく
る超音波を電気信号に変換した探触子1からの信号を受
信する送受信回路であり、この送受信回路3で受信され
た信号は増幅検波された後、所定のディジタル信号処理
がなされてメモリ4に記憶される構成になっている。
In FIG. 5, the same or similar components as those in FIG. 1 are denoted by the same reference numerals and described. Reference numeral 1 denotes a probe constituted by a concave piezoelectric vibrator. The wavefront converging means is constituted, and the ultrasonic beam generated from the probe 1 is converged on the focal point 12. Reference numeral 2 denotes a scanning mechanism that scans the probe 1 in a one-dimensional direction (Y direction) with respect to the reflector 13 as an object. Reference numeral 3 denotes a high-frequency pulse for generating ultrasonic waves from the probe 1. Is supplied to the probe 1 and receives a signal from the probe 1 obtained by converting the ultrasonic wave reflected by the reflector 13 and returning to the probe 1 to an electric signal. The signal received by the circuit 3 is amplified and detected, subjected to predetermined digital signal processing, and stored in the memory 4.

【0032】波面振幅情報メモリ8は開口合成を行う範
囲を指定するための超音波の振幅情報を記憶する。ま
た、開口制御部9は波面振幅情報メモリ8に記憶されて
いる超音波ビームのメインローブ情報に応じて開口合成
の開口幅を決定するものである。
The wavefront amplitude information memory 8 stores ultrasonic amplitude information for designating a range in which aperture synthesis is performed. The aperture control unit 9 determines the aperture width of aperture synthesis according to the main lobe information of the ultrasonic beam stored in the wavefront amplitude information memory 8.

【0033】信号合成部5は、波面位相情報メモリ6に
記憶されている超音波ビームの位相情報をもとに、各送
受信により得られたメモリ4からの高周波受信信号に所
定の遅延時間を与え加算することにより開口合成演算を
行うもので、受信信号に所定の遅延時間を与えるディジ
タル遅延回路、及び遅延処理した受信信号を加算するデ
ィジタル加算回路等から構成される。また、波面位相情
報メモリ6は開口合成を行うための超音波の位相情報を
記憶するもので、この波面位相情報メモリ6には、図6
に示す領域A、B、Cに対応する超音波の位相情報メモ
リ6A、6B、6Cが記憶されており、超音波の位相情
報メモリ6A、6B、6Cは合成信号と受信信号の位置
関係により選択されて信号合成部6に取り込まれる。7
は信号合成部6から出力される合成信号をテレビ用の映
像信号に変換して表示する画面表示部である。
The signal synthesizing section 5 gives a predetermined delay time to the high frequency reception signal from the memory 4 obtained by each transmission and reception based on the phase information of the ultrasonic beam stored in the wavefront phase information memory 6. Aperture synthesis operation is performed by adding the signals, and is composed of a digital delay circuit for giving a predetermined delay time to the received signal, a digital adding circuit for adding the delayed processed received signal, and the like. The wavefront phase information memory 6 stores the phase information of ultrasonic waves for performing aperture synthesis.
The ultrasonic phase information memories 6A, 6B, and 6C corresponding to the areas A, B, and C shown in FIG. 3 are stored, and the ultrasonic phase information memories 6A, 6B, and 6C are selected based on the positional relationship between the synthesized signal and the received signal. Then, it is taken into the signal synthesizing unit 6. 7
Is a screen display unit for converting a synthesized signal output from the signal synthesizing unit 6 into a video signal for television and displaying it.

【0034】上記のように構成された超音波診断装置に
ついて、図6を参照して説明する。
The ultrasonic diagnostic apparatus configured as described above will be described with reference to FIG.

【0035】上記図2で説明した場合と同様に、探触子
1から発生した超音波ビームの大部分は焦点12へ収束
していくが、焦点付近では完全に1点に収束せず、図6
に示すように広がりを持つ。この広がりのかなりの部分
をメインローブが占める。また、開口合成法は複数のビ
ームから、より方位分解能の高い1本のビームを計算に
より作り出す手法であるが、メインローブは超音波エネ
ルギの大部分が集まっているため、振幅も大きく、合成
した信号に与える影響も大きい。
As in the case described above with reference to FIG. 2, most of the ultrasonic beam generated from the probe 1 converges on the focal point 12, but does not converge completely on one point near the focal point. 6
It has a spread as shown. A significant part of this spread is occupied by the main lobe. In addition, the aperture synthesis method is a method of creating one beam having a higher azimuth resolution from a plurality of beams by calculation. However, since most of the ultrasonic energy is collected in the main lobe, the amplitude is large, and the synthesis is performed. The effect on the signal is also large.

【0036】そこで、本実施の形態では、波面振幅情報
メモリ8に波面の振幅情報を記憶しておき、開口制御部
9により、メインローブ以外のサイドローブ領域Dまた
はEにおける合成処理がなくなるように開口幅を調整す
る。これにより、超音波ビームのメインローブの太さや
サイドローブの有無によって合成する受信信号の数を調
整でき、効率的な開口合成を行うことができる。その他
の動作は図1の場合と同様である。 なお、上記実施の
形態では、波面収束手段を音響レンズまたは凹面振動子
で構成した場合について説明したが、本発明はこれに限
定されず、電子的な収束手段などを用いた場合でも同様
に実施可能である。また、走査機構としては、平行移動
を行う例で説明したが、回転移動、手動操作など任意の
移動方向を有する場合についても同様に実施可能であ
る。さらに、焦点より探触子表面端側で開口合成をした
例について説明したが、焦点より遠方における開口合成
でも実施可能である。
Therefore, in the present embodiment, the wavefront amplitude information is stored in the wavefront amplitude information memory 8 so that the aperture control section 9 eliminates the combining process in the side lobe regions D or E other than the main lobe. Adjust the opening width. This makes it possible to adjust the number of received signals to be combined depending on the thickness of the main lobe of the ultrasonic beam and the presence / absence of side lobes, thereby enabling efficient aperture synthesis. Other operations are the same as those in FIG. In the above embodiment, the case where the wavefront converging means is constituted by an acoustic lens or a concave vibrator has been described. However, the present invention is not limited to this. It is possible. Although the scanning mechanism has been described by way of example of performing parallel movement, the present invention can be similarly applied to a case where the scanning mechanism has an arbitrary moving direction such as rotational movement or manual operation. Further, although an example has been described in which aperture synthesis is performed on the probe surface end side from the focal point, aperture synthesis at a location far from the focal point can also be performed.

【0037】[0037]

【発明の効果】以上のように本発明の超音波診断装置に
よれば、合成信号と受信信号の位置関係により合成方法
を変えることで開口合成における実効開口幅を大きく取
ることができ、かつ実際に使用する超音波の位相特性に
近い状態で開口合成ができるとともに、良好な方位分解
能を得ることができる。
As described above, according to the ultrasonic diagnostic apparatus of the present invention, the effective aperture width in aperture synthesis can be increased by changing the synthesizing method depending on the positional relationship between the synthesized signal and the received signal. Aperture synthesis can be performed in a state close to the phase characteristics of the ultrasonic wave used for the above, and good azimuth resolution can be obtained.

【0038】また、本発明によれば、探触子から放射さ
れた球面波が収束する焦点を仮想音源とみなして開口合
成を行い、超音波エネルギが拡散する球面波を探触子表
面端から放射された球面波とみなして開口合成を行うこ
とにより、簡単な計算で良好な開口合成が可能になる。
Further, according to the present invention, aperture synthesis is performed by regarding the focal point at which the spherical wave radiated from the probe converges as a virtual sound source, and the spherical wave at which the ultrasonic energy is diffused is converted from the probe surface end. By performing aperture synthesis on the assumption that the sphere is a radiated spherical wave, it is possible to perform good aperture synthesis with a simple calculation.

【0039】また、本発明によれば、波面の振幅特性に
応じて開口幅を変化させることにより、超音波ビームの
メインローブの太さやサイドローブの有無によって合成
する受信信号の数を調整でき、効率的な開口合成を行う
ことができる。
Further, according to the present invention, by changing the aperture width according to the amplitude characteristics of the wavefront, it is possible to adjust the number of received signals to be synthesized depending on the thickness of the main lobe of the ultrasonic beam and the presence or absence of the side lobe, Efficient aperture synthesis can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における超音波診断装置
の構成を示すブロック図
FIG. 1 is a block diagram illustrating a configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.

【図2】本発明の実施の形態1における超音波診断装置
の動作を説明するための超音波ビームの位相特性の概念
FIG. 2 is a conceptual diagram of a phase characteristic of an ultrasonic beam for describing an operation of the ultrasonic diagnostic apparatus according to the first embodiment of the present invention.

【図3】本発明の実施の形態1における超音波診断装置
の動作を説明するための概念図
FIG. 3 is a conceptual diagram for explaining the operation of the ultrasonic diagnostic apparatus according to the first embodiment of the present invention.

【図4】本発明の実施の形態1における超音波診断装置
の動作説明図
FIG. 4 is an operation explanatory diagram of the ultrasonic diagnostic apparatus according to the first embodiment of the present invention.

【図5】本発明の実施の形態2における超音波診断装置
の構成を示すブロック図
FIG. 5 is a block diagram showing a configuration of an ultrasonic diagnostic apparatus according to Embodiment 2 of the present invention.

【図6】本発明の実施の形態2における超音波診断装置
の動作を説明するための超音波ビームのメインローブの
振幅特性の概念図
FIG. 6 is a conceptual diagram of an amplitude characteristic of a main lobe of an ultrasonic beam for describing an operation of the ultrasonic diagnostic apparatus according to the second embodiment of the present invention.

【図7】従来の超音波診断装置の概略構成を示すブロッ
ク図
FIG. 7 is a block diagram showing a schematic configuration of a conventional ultrasonic diagnostic apparatus.

【図8】従来における超音波診断装置の開口合成の動作
を説明するための図
FIG. 8 is a diagram for explaining the operation of aperture synthesis of a conventional ultrasonic diagnostic apparatus.

【符号の説明】[Explanation of symbols]

1 探触子 11 音響レンズ(波面収束手段) 2 走査機構 3 送受信回路 4 メモリ(記憶手段) 5 信号合成部 6 波面位相情報メモリ 7 画面表示部 8 波面振幅情報メモリ 9 開口制御部 12 焦点 13、21、22 反射体 DESCRIPTION OF SYMBOLS 1 Probe 11 Acoustic lens (wavefront convergence means) 2 Scanning mechanism 3 Transmission / reception circuit 4 Memory (storage means) 5 Signal synthesis part 6 Wavefront phase information memory 7 Screen display part 8 Wavefront amplitude information memory 9 Aperture control part 12 Focus 13, 21, 22 reflector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩原 尚 神奈川県横浜市港北区綱島東四丁目3番1 号 松下通信工業株式会社内 (72)発明者 伊藤 嘉彦 神奈川県横浜市港北区綱島東四丁目3番1 号 松下通信工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Hagiwara 4-3-1 Tsunashima Higashi, Kohoku-ku, Yokohama-shi, Kanagawa Prefecture Inside Matsushita Communication Industrial Co., Ltd. Matsushita Communication Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 波面収束手段を有する超音波探触子と、
前記超音波探触子の被検体に対する相対位置をを制御す
る走査手段と、前記被検体等から反射する超音波を前記
超音波探触子で電気信号に変換した後の受信信号を記憶
する記憶手段と、超音波の波面位相情報をもとに前記記
憶手段に記憶された受信信号に所定の遅延時間を与え加
算することにより開口合成演算を行う信号合成手段とを
備え、前記信号合成手段で開口合成される合成信号と前
記受信信号の前記超音波探触子の超音波エネルギが焦点
に収束する球面波領域と前記超音波エネルギが拡散する
球面波領域おける位置に応じて開口合成法を変更する構
成にしたことを特徴とする超音波診断装置。
An ultrasonic probe having wavefront focusing means;
Scanning means for controlling the relative position of the ultrasonic probe with respect to the subject, and storage for storing a reception signal after converting the ultrasonic wave reflected from the subject or the like into an electric signal by the ultrasonic probe; Means, signal synthesizing means for performing aperture synthesis operation by adding a predetermined delay time to the received signal stored in the storage means based on the wavefront phase information of the ultrasonic wave and adding the signal, the signal synthesizing means The aperture synthesis method is changed according to the positions of the synthesized signal to be subjected to aperture synthesis and the spherical wave region where the ultrasonic energy of the ultrasonic probe of the received signal converges to the focal point and the spherical wave region where the ultrasonic energy is diffused. An ultrasonic diagnostic apparatus comprising:
【請求項2】 開口合成法は、探触子から放射された球
面波が収束する焦点を仮想音源とみなして開口合成を行
い、超音波エネルギが拡散する球面波を探触子表面端か
ら放射された球面波とみなして開口合成を行うことを特
徴とする請求項1記載の超音波診断装置。
2. The aperture synthesis method performs aperture synthesis by regarding a focal point at which a spherical wave emitted from a probe converges as a virtual sound source, and radiates a spherical wave in which ultrasonic energy is diffused from a probe surface end. 2. The ultrasonic diagnostic apparatus according to claim 1, wherein aperture synthesis is performed assuming the obtained spherical wave.
【請求項3】 開口合成を行う範囲を指定するための超
音波ビームの振幅情報を記憶する波面振幅情報メモリ
と、前記波面振幅情報メモリ記憶されている超音波ビー
ムのメインローブ情報に応じて開口合成の開口幅を決定
する開口制御部を更に備えることを特徴とする請求項請
求項1また2記載の超音波診断装置。
3. A wavefront amplitude information memory for storing amplitude information of an ultrasonic beam for designating a range for performing aperture synthesis, and an aperture corresponding to main lobe information of the ultrasonic beam stored in the wavefront amplitude information memory. 3. The ultrasonic diagnostic apparatus according to claim 1, further comprising an aperture control unit that determines a synthetic aperture width.
JP10537997A 1997-04-09 1997-04-09 Ultrasound diagnostic equipment Expired - Fee Related JP3290092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10537997A JP3290092B2 (en) 1997-04-09 1997-04-09 Ultrasound diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10537997A JP3290092B2 (en) 1997-04-09 1997-04-09 Ultrasound diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH10277042A true JPH10277042A (en) 1998-10-20
JP3290092B2 JP3290092B2 (en) 2002-06-10

Family

ID=14406058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10537997A Expired - Fee Related JP3290092B2 (en) 1997-04-09 1997-04-09 Ultrasound diagnostic equipment

Country Status (1)

Country Link
JP (1) JP3290092B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010509A3 (en) * 2001-07-24 2004-06-24 Sonoscan Inc Acoustic microimaging with 4d reflection virtual samples
US6981417B1 (en) 2002-04-26 2006-01-03 Sonoscan, Inc. Scanning acoustic micro imaging method and apparatus for non-rectangular bounded files
JP2008261889A (en) * 2008-08-06 2008-10-30 Jfe Steel Kk Imaging method of internal defect by ultrasonic wave, and its device
JP2009240700A (en) * 2008-03-31 2009-10-22 Toshiba Corp Ultrasonic diagnostic device
JP2010029374A (en) * 2008-07-28 2010-02-12 Fujifilm Corp Ultrasonic diagnostic apparatus
WO2015025655A1 (en) * 2013-08-21 2015-02-26 日立アロカメディカル株式会社 Ultrasound image pickup apparatus
WO2015166867A1 (en) * 2014-04-28 2015-11-05 日立アロカメディカル株式会社 Ultrasonic imaging device
WO2015166869A1 (en) * 2014-04-28 2015-11-05 日立アロカメディカル株式会社 Ultrasonic imaging device
JP2016077442A (en) * 2014-10-15 2016-05-16 日立アロカメディカル株式会社 Ultrasonic diagnostic device
WO2016125509A1 (en) * 2015-02-04 2016-08-11 日立アロカメディカル株式会社 Ultrasound imaging device and ultrasound signal processing method
WO2016129376A1 (en) * 2015-02-12 2016-08-18 日立アロカメディカル株式会社 Ultrasonic imaging device, method for adjusting inter-transmission weight, and ultrasonic imaging method
CN110101411A (en) * 2019-05-28 2019-08-09 飞依诺科技(苏州)有限公司 Ultrasonic imaging space complex method and system
CN110251155A (en) * 2015-03-27 2019-09-20 柯尼卡美能达株式会社 Diagnostic ultrasound equipment and method of generating ultrasonic image
CN113939735A (en) * 2019-06-13 2022-01-14 杰富意钢铁株式会社 Ultrasonic flaw detection method, ultrasonic flaw detection device, steel product manufacturing equipment line, steel product manufacturing method, and steel product quality assurance method
DE102023101406A1 (en) 2022-01-20 2023-07-20 Fujifilm Healthcare Corporation ULTRASONIC IMAGING DEVICE AND SIGNAL PROCESSING METHOD

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895820B2 (en) * 2001-07-24 2005-05-24 Sonoscan, Inc. Acoustic micro imaging method and apparatus for capturing 4D acoustic reflection virtual samples
US7000475B2 (en) 2001-07-24 2006-02-21 Sonoscan, Inc. Acoustic micro imaging method and apparatus for capturing 4D acoustic reflection virtual samples
WO2003010509A3 (en) * 2001-07-24 2004-06-24 Sonoscan Inc Acoustic microimaging with 4d reflection virtual samples
US6981417B1 (en) 2002-04-26 2006-01-03 Sonoscan, Inc. Scanning acoustic micro imaging method and apparatus for non-rectangular bounded files
US8485977B2 (en) 2008-03-31 2013-07-16 Kabushiki Kaisha Toshiba Ultrasound diagnosis apparatus
JP2009240700A (en) * 2008-03-31 2009-10-22 Toshiba Corp Ultrasonic diagnostic device
JP2010029374A (en) * 2008-07-28 2010-02-12 Fujifilm Corp Ultrasonic diagnostic apparatus
JP2008261889A (en) * 2008-08-06 2008-10-30 Jfe Steel Kk Imaging method of internal defect by ultrasonic wave, and its device
JP6035424B2 (en) * 2013-08-21 2016-11-30 株式会社日立製作所 Ultrasonic imaging device
WO2015025655A1 (en) * 2013-08-21 2015-02-26 日立アロカメディカル株式会社 Ultrasound image pickup apparatus
US11160533B2 (en) 2013-08-21 2021-11-02 Hitachi, Ltd. Ultrasound image pickup apparatus
CN105491954B (en) * 2013-08-21 2018-01-19 株式会社日立制作所 Ultrasonic imaging apparatus
CN105491954A (en) * 2013-08-21 2016-04-13 日立阿洛卡医疗株式会社 Ultrasound image pickup apparatus
JPWO2015166867A1 (en) * 2014-04-28 2017-04-20 株式会社日立製作所 Ultrasonic imaging device
US10667788B2 (en) 2014-04-28 2020-06-02 Hitachi, Ltd. Ultrasound imaging pickup apparatus
JPWO2015166869A1 (en) * 2014-04-28 2017-04-20 株式会社日立製作所 Ultrasonic imaging device
WO2015166867A1 (en) * 2014-04-28 2015-11-05 日立アロカメディカル株式会社 Ultrasonic imaging device
US10765405B2 (en) 2014-04-28 2020-09-08 Hitachi, Ltd. Ultrasound imaging pickup apparatus
WO2015166869A1 (en) * 2014-04-28 2015-11-05 日立アロカメディカル株式会社 Ultrasonic imaging device
JP2016077442A (en) * 2014-10-15 2016-05-16 日立アロカメディカル株式会社 Ultrasonic diagnostic device
WO2016125509A1 (en) * 2015-02-04 2016-08-11 日立アロカメディカル株式会社 Ultrasound imaging device and ultrasound signal processing method
JPWO2016125509A1 (en) * 2015-02-04 2017-10-26 株式会社日立製作所 Ultrasonic imaging apparatus and ultrasonic signal processing method
CN107205730B (en) * 2015-02-12 2020-02-07 株式会社日立制作所 Ultrasonic imaging apparatus, inter-transmission weight adjustment method, and ultrasonic imaging method
WO2016129376A1 (en) * 2015-02-12 2016-08-18 日立アロカメディカル株式会社 Ultrasonic imaging device, method for adjusting inter-transmission weight, and ultrasonic imaging method
JPWO2016129376A1 (en) * 2015-02-12 2017-11-09 株式会社日立製作所 Ultrasonic imaging apparatus, inter-transmission weight adjustment method, and ultrasonic imaging method
CN107205730A (en) * 2015-02-12 2017-09-26 株式会社日立制作所 Weight regulating method and method for ultrasonic imaging between ultrasonic imaging apparatus, transmission
US11253226B2 (en) 2015-02-12 2022-02-22 Fujifilm Healthcare Corporation Ultrasonic imaging device, method for adjusting inter-transmission weight, and ultrasonic imaging method
CN110251155A (en) * 2015-03-27 2019-09-20 柯尼卡美能达株式会社 Diagnostic ultrasound equipment and method of generating ultrasonic image
CN110251155B (en) * 2015-03-27 2022-05-17 柯尼卡美能达株式会社 Ultrasonic diagnostic apparatus and ultrasonic image generation method
CN110101411A (en) * 2019-05-28 2019-08-09 飞依诺科技(苏州)有限公司 Ultrasonic imaging space complex method and system
WO2020238143A1 (en) * 2019-05-28 2020-12-03 飞依诺科技(苏州)有限公司 Ultrasound imaging spatial compositing method and system
CN113939735A (en) * 2019-06-13 2022-01-14 杰富意钢铁株式会社 Ultrasonic flaw detection method, ultrasonic flaw detection device, steel product manufacturing equipment line, steel product manufacturing method, and steel product quality assurance method
EP3985387A4 (en) * 2019-06-13 2022-05-18 JFE Steel Corporation Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
DE102023101406A1 (en) 2022-01-20 2023-07-20 Fujifilm Healthcare Corporation ULTRASONIC IMAGING DEVICE AND SIGNAL PROCESSING METHOD

Also Published As

Publication number Publication date
JP3290092B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
JP3290092B2 (en) Ultrasound diagnostic equipment
US4241610A (en) Ultrasonic imaging system utilizing dynamic and pseudo-dynamic focusing
JP6035424B2 (en) Ultrasonic imaging device
US4276779A (en) Dynamically focussed array
US5901708A (en) Method and apparatus for forming ultrasonic three-dimensional images using cross array
JPWO2009028366A1 (en) Ultrasonic imaging device
JP2006505319A (en) Method and apparatus for automatically setting the transmit aperture and transmit apodization of an ultrasonic transducer array
EP0155280A1 (en) Body imaging using vectorial addition of acoustic reflections to achieve effect of scanning beam continuously focused in range.
JPH0155429B2 (en)
US6873569B2 (en) Method, system and probe for obtaining images
JPH0484954A (en) Ultrasonic diagnostic device
US5024093A (en) Fan-shape scanning ultrasonic flaw detecting apparatus
JP2723464B2 (en) Ultrasound diagnostic equipment
JPH06114056A (en) Ultrasonic diagnostic apparatus
JP4130004B2 (en) Ultrasonic imaging device
JPH10179579A (en) Utrasonograph
JP2004286680A (en) Ultrasonic transceiver
US4793184A (en) Ultrasonic imaging apparatus and method of forming an ultrasonic image of an object
JPH11216143A (en) Ultrasonic diagnostic equipment
JPH0419504B2 (en)
JP4860059B2 (en) Ultrasonic transmission / reception method and apparatus and ultrasonic imaging apparatus
JP4154043B2 (en) Ultrasonic imaging device
JPS6227823B2 (en)
JPH02228952A (en) Ultrasonic diagnostic apparatus
JPH0565821B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees