JPH10275682A - Organic el element - Google Patents

Organic el element

Info

Publication number
JPH10275682A
JPH10275682A JP10022067A JP2206798A JPH10275682A JP H10275682 A JPH10275682 A JP H10275682A JP 10022067 A JP10022067 A JP 10022067A JP 2206798 A JP2206798 A JP 2206798A JP H10275682 A JPH10275682 A JP H10275682A
Authority
JP
Japan
Prior art keywords
organic
cathode
dehydrating agent
layer
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10022067A
Other languages
Japanese (ja)
Inventor
Yoshikazu Sakaguchi
嘉一 坂口
Masako Kimura
方子 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9-20601A external-priority patent/JP2800813B1/en
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10022067A priority Critical patent/JPH10275682A/en
Publication of JPH10275682A publication Critical patent/JPH10275682A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of dark spots by forming a protection layer with a fluorine family polymer such as polytetrafluoroethylene, filling a cap structure with an inert medium comprising an inert gas, or depositing an oxide insulator such as SiO2 on a cathode as an element protecting layer. SOLUTION: A transparent electrode 2 of indium oxide serving as an anode is formed on glass substrate, and a hole pouring transport layer 3 is formed thereon. A light emitting layer 4 is deposited thereon, and an electron transport layer 6 is formed, then aluminum is co-deposited to form a cathode 7, and an organic EL element is formed. As a protecting layer 8, a 10-100 nm thick insulator made of a metal oxide such as SiO2 , MgO, Al2 O3 is formed on the cathode 7 so as to cover the whole surface from the top to the side of the stacked films from the hole pouring transport layer to the cathode. Or as the protecting layer 8, at least one kind of fluorine family polymers such as PTFE, PCTFE, and PVDF is deposited on the cathode 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機エレクトロル
ミネッセンス(EL)素子に関し、特にその封止構造の
改善された有機EL素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescence (EL) device, and more particularly to an organic EL device having an improved sealing structure.

【0002】[0002]

【従来の技術】有機EL素子は電流駆動型の発光素子で
あり陽極、陰極間に大きな電流を流さなければならな
い。その結果、発光時に素子が発熱し、素子の周囲に酸
素や水分があった場合、酸化が促進されて素子が劣化す
る。酸素、水分による劣化の主なものは、有機材料の変
質や陰極の剥がれによるダークスポットと呼ばれる非発
光点である。ダークスポットは、劣化が進むにしたがい
成長し、発光しなくなる。上記の劣化を防止するため、
種々の改善案が提案されている。
2. Description of the Related Art An organic EL device is a current-driven type light emitting device and requires a large current to flow between an anode and a cathode. As a result, when the element generates heat during light emission and there is oxygen or moisture around the element, oxidation is promoted and the element is deteriorated. The main cause of deterioration due to oxygen and moisture is a non-light emitting point called a dark spot due to deterioration of an organic material or peeling of a cathode. The dark spot grows as the deterioration proceeds, and stops emitting light. To prevent the above deterioration,
Various improvement plans have been proposed.

【0003】例えば、特開平5−41281には水分を
取り除く方法として、フルオロカーボン油に合成ゼオラ
イト等の脱水剤を含有させた不活性液体中にEL素子を
保持させる方法が開示されている。
For example, Japanese Patent Application Laid-Open No. 5-41281 discloses a method for removing water by keeping an EL element in an inert liquid containing a fluorocarbon oil containing a dehydrating agent such as synthetic zeolite.

【0004】また、特開平5−114486には図5に
示すように陽極2および陰極7の少なくとも一方の上に
フルオロカーボン油12aをシールガラス9で封入した
放熱層を設け、駆動時のジュール熱を放熱し、素子の寿
命を長くする方法が開示されている。
In Japanese Patent Application Laid-Open No. 5-114486, a heat radiation layer in which a fluorocarbon oil 12a is sealed with a sealing glass 9 is provided on at least one of the anode 2 and the cathode 7 as shown in FIG. A method of dissipating heat and extending the life of the device is disclosed.

【0005】また、図6に示すようにカーボネート化合
物からなる封止保護層8を素子上に設け、酸素や水分の
浸入を防ぐ方法も知られている。
Further, as shown in FIG. 6, a method is known in which a sealing protective layer 8 made of a carbonate compound is provided on an element to prevent intrusion of oxygen or moisture.

【0006】[0006]

【発明が解決しようとする課題】上記方法においても、
フルオロカーボン油自身に含まれる溶存酸素や溶存水分
によりダークスポットが発生、成長することが多い。ま
た、封止部材中に脱水剤を入れる場合、大量に入れなけ
ればならず、これにより素子を傷つける、直接接触する
ことにより脱水剤が取り込んだ水が素子の酸化を促進す
るという不具合があり、ダークスポットの生成、成長を
抑えるのは困難であった。また、樹脂や金属層のみの封
止の場合、外界からの酸素、水分の浸入を防ぐには限界
があり、製品レベルと言われる数千〜数万時間の素子の
長寿命化が困難であった。
In the above method,
Dark spots often occur and grow due to dissolved oxygen and dissolved moisture contained in the fluorocarbon oil itself. In addition, when the dehydrating agent is put in the sealing member, it must be put in a large amount, thereby damaging the element, and there is a problem that water taken in by the dehydrating agent by direct contact promotes oxidation of the element, It was difficult to suppress the generation and growth of dark spots. In addition, in the case of sealing only a resin or metal layer, there is a limit in preventing intrusion of oxygen and moisture from the outside, and it is difficult to extend the life of the element, which is called a product level, to several thousands to tens of thousands of hours. Was.

【0007】本発明は上記問題を鑑みてなされたもので
あって、有機EL素子におけるダークスポットの発生、
成長を防止、抑制することができる有機EL素子の封止
方法およびダークスポットの成長が起こりにくい有機E
L素子を提供することを目的とする。
The present invention has been made in view of the above problems, and has been made in consideration of the occurrence of dark spots in an organic EL device.
A method for sealing an organic EL element capable of preventing and suppressing growth, and organic E which hardly causes dark spot growth.
An object is to provide an L element.

【0008】[0008]

【課題を解決するための手段】上記問題を解決するため
に、素子の外側にキャップ構造を有する封止部を配設し
た有機EL素子において、陰極の上にポリテトラフルオ
ロエチレン(以下PTFEと略記)やポリクロロトリフ
ルオロエチレン(以下PCTFEと略記)、ポリフッ化
ビニリデン(以下PVDFと略記)等のフッ素系高分子
で保護層を形成し、キャップ構造の中に不活性気体やフ
ッ化炭素からなる不活性液体などの不活性媒体で満た
す、または、素子保護層として、陰極の上にSiO等の
酸化物絶縁体を蒸着することを特徴とする。
In order to solve the above problem, in an organic EL device having a sealing portion having a cap structure provided outside the device, a polytetrafluoroethylene (hereinafter abbreviated as PTFE) is provided on a cathode. ), Polychlorotrifluoroethylene (hereinafter abbreviated as PCTFE), polyvinylidene fluoride (hereinafter abbreviated as PVDF) or the like to form a protective layer with a fluorine-based polymer, and the cap structure is made of an inert gas or fluorocarbon. It is characterized by being filled with an inert medium such as an inert liquid or vapor-depositing an oxide insulator such as SiO on a cathode as an element protection layer.

【0009】放熱に対する対策として、封止部材をステ
ンレス(SUS)等熱伝導性の良い金属で形成する、ま
たは封止部材内に放熱板または放熱網を素子を覆うよう
に配置し、これを封止部材外部に取り出す、さらに、放
熱板、放熱網を封止部材外部に設置したヒートシンクと
接続し放熱を促すことを特徴とする。
As a countermeasure against heat radiation, the sealing member is formed of a metal having good heat conductivity such as stainless steel (SUS), or a heat radiating plate or a heat radiating network is arranged in the sealing member so as to cover the element. The heat radiation plate and the heat radiation network are connected to a heat sink provided outside the sealing member to facilitate heat radiation.

【0010】さらに、酸素吸収剤や吸湿剤が素子に接触
しないよう配置するためにこれらをシート状、固体状に
し、封止部材の素子と反対側に固定する。
Further, in order to arrange the oxygen absorbent and the moisture absorbent so as not to come into contact with the element, they are formed into a sheet or a solid, and fixed on the side of the sealing member opposite to the element.

【0011】上記有機EL素子において、陰極の上にフ
ッ素系高分子、SiO等で保護層を形成することによ
り、高い防湿性、絶縁性を得ることができ、また酸素吸
収剤、脱水剤を素子に直接触れないよう分離することに
より、素子を傷つけたり、直接接触したりすることによ
り脱水剤が取り込んだ水や酸素吸収剤が吸収した酸素が
素子の酸化を促進するということが無くなる。
In the above-mentioned organic EL device, by forming a protective layer with a fluorine-based polymer, SiO or the like on the cathode, high moisture-proof and insulating properties can be obtained. By separating so that the element is not directly touched, the element is not damaged, and water absorbed by the oxygen absorbent and water taken in by the dehydrating agent due to direct contact with the element does not promote oxidation of the element.

【0012】封止部材をSUS等熱伝導性の良い金属で
形成する等で放熱を促すことにより素子の駆動時に発生
する熱による材料の劣化を防ぐことができる。
By promoting heat radiation by forming the sealing member with a metal having good thermal conductivity such as SUS, deterioration of the material due to heat generated when the element is driven can be prevented.

【0013】[0013]

【発明の実施の形態】次に、この発明の実施の形態につ
いて図面を参照して説明する。図1および図2は、本発
明の一実施例に関わる有機EL素子の断面図である。
Next, an embodiment of the present invention will be described with reference to the drawings. 1 and 2 are cross-sectional views of an organic EL device according to one embodiment of the present invention.

【0014】ガラス基板1上に陽極としてスパッタ法に
より酸化インジウム(ITO)を透明電極2として形成
し、その上に正孔注入、輸送層3を真空蒸着法により形
成し、その上に発光層4を蒸着し、続いて電子輸送層6
を真空蒸着により形成する。次に、Al:LiやMg:
Agを共蒸着により成膜して陰極7を形成、有機EL素
子を作成する。
On a glass substrate 1, indium oxide (ITO) is formed as a transparent electrode 2 by sputtering as an anode, and a hole injection / transport layer 3 is formed thereon by a vacuum deposition method, and a light emitting layer 4 is formed thereon. And then the electron transport layer 6
Is formed by vacuum evaporation. Next, Al: Li and Mg:
Ag is formed by co-evaporation to form the cathode 7 to form an organic EL device.

【0015】この有機EL素子の保護層8として、陰極
7の上にSiO、MgOまたは、Al23 等の金属酸
化物からなる酸化物絶縁体を真空蒸着法により正孔注
入、輸送層から陰極までの、積層膜上部から側面まで全
てを覆うように厚さ10nm〜100nm程度形成す
る。蒸着には抵抗加熱法または、電子ビーム加熱法を用
い、成膜する。蒸着時真空度は1×10-3Pa以下、好
ましくは、5×10-4Pa以下とし、蒸着速度を50〜
200nm/sec、基板温度を100℃以下となるよ
うに制御する。
As a protective layer 8 of the organic EL device, an oxide insulator made of a metal oxide such as SiO, MgO or Al 2 O 3 is formed on the cathode 7 by a vacuum evaporation method from a hole injection and transport layer. A film having a thickness of about 10 nm to 100 nm is formed so as to cover the whole of the laminated film up to the side surfaces up to the cathode. A film is formed by evaporation using a resistance heating method or an electron beam heating method. The degree of vacuum during deposition is 1 × 10 −3 Pa or less, preferably 5 × 10 −4 Pa or less, and the deposition rate is 50 to
Control is performed so that the substrate temperature is 200 nm / sec and the substrate temperature is 100 ° C. or less.

【0016】または、保護層として陰極の上にPTFE
やPCTFE、PVDF等のフッ素系高分子を1種また
は数種を蒸着源とする真空蒸着法により保護層を形成す
る。このとき、蒸着源化合物の形態は、粉末状、ペレッ
ト状、または、粒状であっても良い。有機EL素子上の
蒸着時保護膜の平均分子量は2000〜400000程
度が望ましい。真空蒸着は、抵抗加熱法または、電子ビ
ーム加熱法を用い、蒸着時真空度を1×10-3Pa以
下、好ましくは、4×10-4Pa以下とし、蒸着速度を
30nm/sec、基板温度を100℃以下となるよう
な条件で、膜厚が10〜500nmになるように成膜す
る。一般に有機EL材料は耐熱性が良くないが、保護膜
蒸着時の基板温度と蒸着速度を管理することで、有機E
L材料の特性が劣化したり、有機層や陰極薄膜が応力に
より剥離することを防ぐことができる。このように蒸着
した保護膜は、防湿性、電気絶縁性が高く、ピンホール
のない薄膜となる。
Alternatively, PTFE is formed on the cathode as a protective layer.
The protective layer is formed by a vacuum evaporation method using one or more fluorine-based polymers such as PCTFE and PVDF as an evaporation source. At this time, the form of the evaporation source compound may be a powder, a pellet, or a particle. The average molecular weight of the protective film at the time of vapor deposition on the organic EL element is preferably about 2,000 to 400,000. Vacuum evaporation is performed by a resistance heating method or an electron beam heating method, the degree of vacuum at the time of evaporation is 1 × 10 −3 Pa or less, preferably 4 × 10 −4 Pa or less, the evaporation rate is 30 nm / sec, and the substrate temperature is Is formed so that the film thickness becomes 10 to 500 nm under the condition of 100 ° C. or lower. Generally, organic EL materials do not have good heat resistance. However, by controlling the substrate temperature and the deposition rate during the deposition of the protective film, the organic EL material can be used.
It is possible to prevent the properties of the L material from deteriorating, and prevent the organic layer and the cathode thin film from peeling off due to stress. The protective film thus deposited has a high moisture-proof property and a high electrical insulation property, and is a thin film without pinholes.

【0017】このようにして作製したEL素子の封止方
法として、素子の外周部にガラスや金属により形成され
るキャップ構造を有する封止部材9を設け、その中に脱
水剤10、酸素吸収剤11を混入させたパーフルオロア
ルカンまたはパーフルオロアミン等フッ化炭素からなる
不活性液体12を充填(図1)、もしくは、アルゴン、
ヘリウムや窒素からなる不活性ガス13を封入する(図
2)。
As a method for sealing the EL element manufactured as described above, a sealing member 9 having a cap structure made of glass or metal is provided on the outer periphery of the element, and a dehydrating agent 10 and an oxygen absorbing agent are provided therein. Filled with an inert liquid 12 made of fluorocarbon such as perfluoroalkane or perfluoroamine mixed with 11 (FIG. 1), or argon,
An inert gas 13 made of helium or nitrogen is sealed (FIG. 2).

【0018】不活性液体のパーフルオロアルカンまたは
パーフルオロアミンを充填剤として用いる場合は、これ
らの液体を真空オーブン中にて加熱し、脱気、脱水操作
を1〜数回行い、これをシリカゲル、モレキュラーシー
ブやFe、アスコルビン酸を充填したカラムを通し濾過
し、脱酸素、脱水操作を行ったものを使用する。この不
活性液体に、図1に記載したように、酸素吸収剤として
体積中心粒径10〜100μmの粒状のアスコルビン酸
やFe、Tiまたはそのイオンを含む塩や酸化物を、脱
水剤として、体積中心粒径10〜100μm粒状のシリ
カゲル、モレキュラーシーブ、ケイソウ土、活性アルミ
ナ、ゼオライト等を液体中に1種ずつまたは数種組み合
わせて、液体に対して30〜60W%になるように分散
させ充填剤を作成する。
When an inert liquid perfluoroalkane or perfluoroamine is used as a filler, these liquids are heated in a vacuum oven, deaerated and dehydrated one to several times, and the mixture is treated with silica gel, Filtered through a column filled with molecular sieves, Fe, and ascorbic acid, and subjected to deoxygenation and dehydration operations. As shown in FIG. 1, this inert liquid is made of a granular ascorbic acid having a volume center particle size of 10 to 100 μm as an oxygen absorber, or a salt or oxide containing Fe, Ti or ions thereof, as a dehydrating agent. Filler is prepared by dispersing silica gel, molecular sieve, diatomaceous earth, activated alumina, zeolite, etc., one or more in a liquid, each having a central particle diameter of 10 to 100 μm, in a liquid so as to have a concentration of 30 to 60 W% with respect to the liquid. Create

【0019】この充填剤の充填時は、封止部材9の屋根
側に直径1〜2mm程度の注入口14を設け、ガラス基
板と封止部材を接着後、シリンジやピペッターを用いて
注入し、この注入口を封止部材と同じ材質の注入口より
一回り大きい蓋15とエポキシ樹脂系接着剤を用いて塞
ぐ。
At the time of filling the filler, an inlet 14 having a diameter of about 1 to 2 mm is provided on the roof side of the sealing member 9, and after adhering the glass substrate and the sealing member, injection is performed using a syringe or a pipettor. This injection port is closed with a lid 15 which is slightly larger than the injection port of the same material as the sealing member and an epoxy resin adhesive.

【0020】さらに、図2に示したように上記酸素吸収
剤、脱水剤を不織布やポリエステル、ポリエチレン、P
VA等高分子膜に担持、分散させたシートを一層〜数層
または上記材料を焼成、固体状にし、脱水酸素吸収部材
16を作成し、これを封止部材の屋根側にエポキシ樹脂
等の接着剤を用いて接着、保持させて不活性媒体を充填
してもよい。これにより、封止時に残留した酸素や水分
を除去できるとともに、封止後、接着界面等外部から浸
入してくる微量酸素や水を除去することができる。
Further, as shown in FIG. 2, the oxygen absorbent and the dehydrating agent are combined with non-woven fabric, polyester, polyethylene, P
One to several layers of a sheet carried and dispersed in a polymer film such as VA or the above material is baked to make a solid, and a dehydrated oxygen absorbing member 16 is formed. The inert medium may be filled by bonding and holding using an agent. This makes it possible to remove oxygen and water remaining at the time of sealing, and also to remove trace amounts of oxygen and water entering from outside such as an adhesive interface after sealing.

【0021】不活性ガスを充填する場合は、酸素吸収剤
として体積中心粒径10〜500μmの粒状のアスコル
ビン酸やFe、Tiまたは、これら低原子価金属イオン
を含む塩または酸化物を、脱水剤として、体積中心粒径
10〜500μm粒状のシリカゲル、モレキュラーシー
ブ、ケイソウ土、活性アルミナ、ゼオライト等を不織布
やポリエステル、ポリエチレン、PVA等高分子膜に担
持、分散させたシートを一層〜数層、または上記材料を
焼成、固体状にし、封止キャップの屋根側にエポキシ樹
脂等の接着剤を用いて張り付け、保持させてEL素子の
封止を行う。
When the inert gas is charged, granular ascorbic acid, Fe, Ti, or a salt or oxide containing these low-valent metal ions as the oxygen absorbent is used as a dehydrating agent. As a volume center particle diameter of 10 to 500 μm granular silica gel, molecular sieve, diatomaceous earth, activated alumina, zeolite and the like are carried on a nonwoven fabric, polyester, polyethylene, PVA or other polymer film, and one to several layers of a dispersed sheet, or The above-mentioned material is baked, solidified, adhered to the roof side of the sealing cap using an adhesive such as epoxy resin, and held to seal the EL element.

【0022】図2に示すように封止部材屋根側に上記酸
素吸収剤、脱水剤を保持することにより、これらが直接
素子に接触することを防ぐことができる。また、これに
より、封止時に残留した酸素や水分を除去できるととも
に、封止後、接着界面等外部から浸入してくる微量酸素
や水を除去することができる。
By holding the oxygen absorbent and the dehydrating agent on the roof side of the sealing member as shown in FIG. 2, it is possible to prevent them from directly contacting the element. In addition, this makes it possible to remove oxygen and water remaining at the time of sealing, and to remove trace amounts of oxygen and water entering from outside such as an adhesive interface after sealing.

【0023】不活性ガスの封入には、不活性液体の充填
時と同様に封止部材に穴を設け、不活性ガスを注入して
も良いが、アルゴンや窒素を流入させたグローブボック
ス内で封止を行うことにより大気に触れることなく封止
ができ、ダークスポットの抑止に効果的である。
To fill the inert gas, a hole may be formed in the sealing member and the inert gas may be injected as in the case of filling the inert liquid, but the inert gas may be injected in a glove box into which argon or nitrogen is introduced. By performing sealing, sealing can be performed without exposure to the atmosphere, which is effective in suppressing dark spots.

【0024】上記封止部材と素子基板の接着には、有機
EL素子の耐熱性が100〜150℃程度であり、熱硬
化性接着剤を用いることが困難であることから、ガス、
水分透過性の小さいエポキシ系光硬化性接着剤17を用
いる(図3)。
In the bonding between the sealing member and the element substrate, the heat resistance of the organic EL element is about 100 to 150 ° C., and it is difficult to use a thermosetting adhesive.
An epoxy-based photocurable adhesive 17 having low moisture permeability is used (FIG. 3).

【0025】図3に示すように封止キャップ9aにSU
S、Fe基材のNi合金を用いた場合、放熱の効率は良
くなるが、ガラス基板との接着強度や熱膨張が問題にな
る。これら金属に低融点ガラス18を溶着し、このガラ
ス部とEL素子のガラス基板をエポキシ上記17で接着
する。これにより、金属とガラスの熱膨張係数の違いを
緩和できる。
As shown in FIG. 3, the SU is attached to the sealing cap 9a.
When the Ni alloy of the S and Fe bases is used, the heat radiation efficiency is improved, but the adhesion strength to the glass substrate and the thermal expansion become problems. A low-melting glass 18 is welded to these metals, and this glass part is bonded to the glass substrate of the EL element with the epoxy 17. Thereby, the difference in the thermal expansion coefficient between metal and glass can be reduced.

【0026】上記金属やガラスのキャップを用いると
き、図4に示すようにSUS等非腐食性金属の放熱板ま
たは放熱網19をキャップ中保護膜8を有する有機薄膜
20の直上に覆うように配置し、これをキャップ外部に
取り出し素子駆動時に発生した熱が内部に蓄積しない様
にする。上記放熱板または、放熱網をキャップ上部等に
設置したヒートシンク21と接続することにより放熱効
果が増し、より素子の長寿命化が図れる。
When the above metal or glass cap is used, a heat radiating plate or heat radiating network 19 made of a non-corrosive metal such as SUS is disposed so as to cover directly above the organic thin film 20 having the protective film 8 in the cap as shown in FIG. Then, the heat is taken out of the cap to prevent heat generated at the time of driving the element from being accumulated inside. By connecting the heat radiating plate or the heat radiating net to the heat sink 21 provided on the upper portion of the cap or the like, the heat radiating effect is increased and the life of the element can be further extended.

【0027】実施例1:厚さ1.1mmのガラス基板1
に陽極としてITOを透明電極2として形成し、その上
に正孔注入、輸送層3として、α−NPD(ジアミン化
合物)を500オングストローム厚さに真空蒸着により
形成し、その上に発光層4としてアルミキノリン錯体と
ドーパントとしてキナクリドンを250オングストロー
ム共蒸着し、続いて電子輸送層6としてアルミキノリン
錯体を300オングストローム蒸着により形成した。次
に、Al:Liを共蒸着により300オングストロー
ム、その後アルミニウムのみを1700オングストロー
ム蒸着して陰極を形成、有機EL素子を作成した。
Example 1 A glass substrate 1 having a thickness of 1.1 mm
Then, ITO is formed as a transparent electrode 2 as an anode, and a hole injection and transport layer 3 is formed thereon by vacuum deposition of α-NPD (diamine compound) to a thickness of 500 Å, and a light emitting layer 4 is formed thereon. An aluminum quinoline complex and quinacridone as a dopant were co-evaporated at 250 Å, and then an aluminum quinoline complex was formed as an electron transport layer 6 by 300 Å. Next, a cathode was formed by depositing Al: Li by co-evaporation at 300 angstroms, and then depositing only aluminum at 1700 angstroms, thereby forming an organic EL device.

【0028】この有機EL素子の保護層として、SiO
を真空蒸着により、有機薄膜および陰極全体を覆うよう
に厚さ30nm形成した。蒸着は抵抗加熱法を用い、蒸
着前真空度を4×10-4Paとし、蒸着速度を200n
m/sec、基板温度を60℃以下となるように成膜し
た。
As a protective layer of the organic EL device, SiO 2 was used.
Was formed by vacuum evaporation to a thickness of 30 nm so as to cover the entire organic thin film and the cathode. The evaporation was performed by using a resistance heating method, the degree of vacuum before the evaporation was 4 × 10 −4 Pa, and the evaporation rate was 200 n.
The film was formed so that the substrate temperature was 60 ° C. or less at m / sec.

【0029】このようにして作成した素子を図2のよう
なガラスキャップ9で覆い、その中に窒素を封入した。
The device thus produced was covered with a glass cap 9 as shown in FIG. 2, and nitrogen was sealed therein.

【0030】窒素ガスの充填時、酸素吸収剤として体積
中心粒径100μmの粒状のアスコルビン酸、脱水剤と
して、体積中心粒径500μm粒状のシリカゲルをポリ
エステル樹脂に分散させたシートを一層封止部材の屋根
側に保持させてEL素子の封止を行った。接着剤にはエ
ポキシ系光硬化性接着剤を用いた。
At the time of filling with nitrogen gas, a sheet in which granular ascorbic acid having a volume center particle diameter of 100 μm as an oxygen absorbent and silica gel having a volume center particle diameter of 500 μm as a dehydrating agent dispersed in a polyester resin is further layered as a sealing member. The EL element was sealed while being held on the roof side. An epoxy photocurable adhesive was used as the adhesive.

【0031】温度25℃相対湿度50〜70%下で放置
試験を行ったところ、3500時間を経過しても目視で
認められる非発光点(ダークスポット)は発生しなかっ
た。この素子に定電流電源を接続し、初期輝度300c
d/cm2 となるよう電流値を設定し駆動させたとこ
ろ、輝度が半減するまでの時間はおよそ3000時間で
あった。
When a standing test was performed at a temperature of 25 ° C. and a relative humidity of 50 to 70%, no non-light-emitting points (dark spots) were visually observed even after 3,500 hours had passed. A constant current power supply is connected to this element, and an initial luminance of 300 c
When the device was driven with the current value set to d / cm 2 , the time required for the luminance to be reduced by half was about 3000 hours.

【0032】実施例2 実施例1と同様に有機EL素子を作成し、保護層として
粒状のPCTFEを蒸着源とする真空蒸着法により陰極
の上に蒸着膜を作成した。蒸着前真空度を4×10-4
aとし、蒸着速度を30nm/sec、基板温度を70
℃以下となるような条件で、膜厚が100nm、平均分
子量は4000〜20000程度になるように成膜し
た。
Example 2 An organic EL device was prepared in the same manner as in Example 1, and a vapor deposition film was formed on the cathode as a protective layer by a vacuum vapor deposition method using granular PCTFE as a vapor deposition source. The degree of vacuum before vapor deposition is 4 × 10 -4 P
a, the deposition rate is 30 nm / sec, and the substrate temperature is 70
The film was formed so that the film thickness was 100 nm and the average molecular weight was about 4,000 to 20,000 under the condition of lower than or equal to ° C.

【0033】この素子を、SUS製の封止部材に低融点
ガラスを溶着し、このガラス部とEL素子のガラス基板
をエポキシ樹脂で接着した。その中にパーフルオロアミ
ンを充填した。パーフルオロアミンには、住友3M社製
商品名フロリナートFC−70(沸点215℃)を真空
オーブン中にて加熱、脱気、脱水操作を3回行い、これ
をモレキュラーシーブで濾過したものを使用した。
This element was welded with a low-melting glass to a sealing member made of SUS, and the glass portion and the glass substrate of the EL element were bonded with an epoxy resin. The perfluoroamine was filled therein. As the perfluoroamine, a product obtained by performing heating, degassing, and dehydrating operations of Fluorinert FC-70 (boiling point: 215 ° C.) (trade name, manufactured by Sumitomo 3M) in a vacuum oven three times, and filtering this with a molecular sieve was used. .

【0034】この不活性液体の封入時、酸素吸収剤とし
て体積中心粒径60μmの粒状の酸化第一鉄を、脱水剤
として、体積中心粒径100μm粒状のモレキュラーシ
ーブを液体中に液体に対して40W%になるように入れ
封止した。
When the inert liquid is filled, granular ferrous oxide having a volume center particle size of 60 μm is used as an oxygen absorbent, and a molecular sieve having a volume center particle size of 100 μm is used as a dehydrating agent. It sealed so that it might be set to 40 W%.

【0035】温度25℃相対湿度50〜70%下で放置
試験を行ったところ、3500時間を経過しても目視で
認められる非発光点(ダークスポット)は発生しなかっ
た。この素子に定電流電源を接続し、初期輝度300c
d/cm2 となるよう電流値を設定し駆動させたとこ
ろ、輝度が半減するまでの時間はおよそ3500時間で
あった。
When a standing test was conducted at a temperature of 25 ° C. and a relative humidity of 50 to 70%, no non-emission point (dark spot) visually observed was generated even after 3,500 hours. A constant current power supply is connected to this element, and an initial luminance of 300 c
When the device was driven with the current value set to d / cm 2, the time required for the luminance to be reduced by half was about 3500 hours.

【0036】実施例3 実施例1と同様に有機EL素子を作成し、保護層とし
て、SiOを真空蒸着により有機薄膜および陰極全体を
覆うように30nm形成した。蒸着は抵抗加熱法を用
い、蒸着前真空度を4×10-4Paとし、蒸着速度を2
00nm/sec、基板温度を60℃以下となるように
成膜した。
Example 3 An organic EL device was prepared in the same manner as in Example 1, and SiO was formed as a protective layer to a thickness of 30 nm by vacuum evaporation so as to cover the organic thin film and the entire cathode. The deposition was performed by a resistance heating method, the degree of vacuum before deposition was 4 × 10 −4 Pa, and the deposition rate was 2
The film was formed so as to be 00 nm / sec and the substrate temperature was 60 ° C. or lower.

【0037】上記素子をガラスのキャップ構造を有する
封止部材で封止を行うときに、図4に示すようにSUS
製の放熱網を封止部材中素子の直上を覆うように配置
し、これを封止部材外部に取り出し、封止部材上部に設
置したヒートシンクと接続した。素子基板とガラスキャ
ップを接着する際に、素子基板と放熱網の間に粒径20
0〜300μmのスペーサ22を設置することにより有
機EL素子と放熱網が一定の間隔を保つようにした。封
止キャップ9の中には、アルゴンガスを充填した。アル
ゴンガスを充填時、酸素吸収剤として体積中心粒径10
0μmの粒状の酸化第一鉄、脱水剤として、体積中心粒
径500μm粒状のシリカゲルをポリエステル樹脂に分
散させたシートを一層封止キャップの屋根側に保持させ
てEL素子の封止を行った。
When the above element is sealed with a sealing member having a glass cap structure, as shown in FIG.
A heat radiation net made of was formed so as to cover immediately above the element in the sealing member, taken out of the sealing member, and connected to a heat sink provided above the sealing member. When bonding the element substrate and the glass cap, a particle size of 20
By disposing the spacer 22 of 0 to 300 μm, the organic EL element and the heat radiation net were kept at a constant distance. The sealing cap 9 was filled with argon gas. When filled with argon gas, the volume center particle size is 10
The EL element was sealed by holding a sheet in which a 0 μm granular ferrous oxide and a silica gel having a volume center particle diameter of 500 μm as a dehydrating agent were dispersed in a polyester resin, was further layered on the roof side of the sealing cap.

【0038】25℃50〜70%湿度下で放置試験を行
ったところ、3500時間を経過しても目視で認められ
る非発光点(ダークスポット)は発生しなかった。この
素子に定電流電源を接続し、初期輝度300cd/cm
2 となるよう電流値を設定し駆動させたところ、350
0時間を経過しても輝度は半減に至らなかった。
When a standing test was carried out at 25 ° C. and 50-70% humidity, no non-light-emitting points (dark spots) were visually observed even after 3500 hours. A constant current power supply was connected to this element, and the initial luminance was 300 cd / cm.
When the current value was set and driven so as to be 2 , 350
Even after the elapse of 0 hours, the luminance did not decrease to half.

【0039】上記実施例に対して、比較として素子の保
護膜無しでガラスキャップを用い、窒素ガスを封入した
ものは、温度25℃相対湿度50〜70%下で放置試験
を行ったところ、2000時間で目視で認められる非発
光点(ダークスポット)が認められた。この素子に定電
流電源を接続し、初期輝度300cd/cm2 となるよ
う電流値を設定し駆動させたところ、輝度が半減するま
での時間はおよそ1600時間であった。
As a comparative example, a storage test was performed at 25 ° C. and a relative humidity of 50 to 70% for a device in which a glass cap was used without a protective film and a nitrogen gas was sealed. A non-emission point (dark spot) visually observed at time was observed. When a constant current power supply was connected to the device and the device was driven by setting a current value so as to have an initial luminance of 300 cd / cm 2 , the time required for the luminance to decrease by half was about 1600 hours.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
素子と封止用液体、気体との間に保護層を設けることに
より酸素吸収剤、脱水剤と素子が直接接触せず、素子へ
の傷や傷による素子への液体の湿潤を防ぐことができ
る。充填剤中に溶存している、または、素子中に存在す
る酸素や水分は酸素吸収剤、脱水剤で吸収し素子のダメ
ージを抑えることができる。さらに、放熱構造を持たせ
ることにより、素子の駆動時に発生する熱による材料の
劣化を防ぐことができる。これにより、有機EL素子の
ダークスポットの発生と成長を抑制できるため素子の長
寿命化を図ることができる。
As described above, according to the present invention,
By providing a protective layer between the element and the sealing liquid or gas, the element does not come into direct contact with the oxygen absorbent and the dehydrating agent, and it is possible to prevent the element from being damaged and the liquid from being wetted by the damage. . Oxygen or moisture dissolved in the filler or present in the element can be absorbed by an oxygen absorbent or a dehydrating agent, and damage to the element can be suppressed. Further, by providing a heat radiation structure, deterioration of the material due to heat generated when the element is driven can be prevented. Thus, the generation and growth of dark spots in the organic EL element can be suppressed, and the life of the element can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例における有機EL素子の断
面図である。
FIG. 1 is a sectional view of an organic EL device according to a first embodiment of the present invention.

【図2】本発明の第2実施例における有機EL素子の断
面図である。
FIG. 2 is a sectional view of an organic EL device according to a second embodiment of the present invention.

【図3】本発明の第3実施例における有機EL素子の断
面図である。
FIG. 3 is a sectional view of an organic EL device according to a third embodiment of the present invention.

【図4】本発明の第4実施例における有機EL素子の断
面図である。
FIG. 4 is a sectional view of an organic EL device according to a fourth embodiment of the present invention.

【図5】第1の従来例における有機EL素子の断面図で
ある。
FIG. 5 is a sectional view of an organic EL element according to a first conventional example.

【図6】第2の従来例における有機EL素子の断面図で
ある。
FIG. 6 is a sectional view of an organic EL element according to a second conventional example.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ITO 3 正孔注入、輸送層 4 発光層 6 電子輸送層 7 陰極 8 保護層 9 封止部材 9a 金属製封止キャップ 10 脱水剤 11 酸素吸収剤 12 不活性液体 12a フルオロカーボン油 13 不活性ガス 14 注入口 15 蓋 16 脱水、酸素吸収部材 17 エポキシ樹脂(接着剤) 18 低融点ガラス 19 放熱網 20 有機薄膜 21 ヒートシンク 22 スペーサ REFERENCE SIGNS LIST 1 glass substrate 2 ITO 3 hole injection / transport layer 4 light emitting layer 6 electron transport layer 7 cathode 8 protective layer 9 sealing member 9 a metal sealing cap 10 dehydrating agent 11 oxygen absorbent 12 inert liquid 12 a fluorocarbon oil 13 non Active gas 14 Inlet 15 Lid 16 Dehydration / oxygen absorbing member 17 Epoxy resin (adhesive) 18 Low melting point glass 19 Heat dissipation network 20 Organic thin film 21 Heat sink 22 Spacer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方が透明または半透明の対
向する一対の電極間に有機発光材料を成膜した積層体を
有する有機EL素子の外側にキャップ構造を有する封止
部を配設し、前記封止部内を不活性媒体で満たした有機
EL素子において、素子表層である陰極の上にフッ素系
高分子または酸化物絶縁体で形成された保護層を有する
ことを特徴とする有機EL素子。
1. A sealing section having a cap structure is provided outside an organic EL element having a laminate in which an organic light emitting material is formed between a pair of opposed electrodes, at least one of which is transparent or translucent, An organic EL device having a sealing portion filled with an inert medium, comprising a protective layer formed of a fluorine-based polymer or an oxide insulator on a cathode serving as a device surface layer.
【請求項2】 前記封止部が良熱伝導性金属で構成さ
れ、かつ前記封止部の素子基板との接触部に低融点ガラ
スの接着部を設けたことを特徴とする請求項1または2
記載の有機EL素子。
2. The method according to claim 1, wherein the sealing portion is made of a good heat conductive metal, and a low melting point glass bonding portion is provided at a contact portion of the sealing portion with the element substrate. 2
The organic EL device according to the above.
【請求項3】 前記素子の少なくとも直上を覆うように
非腐食性金属の放熱板または放熱網を配置したことを特
徴とする請求項1または2記載の有機EL素子。
3. The organic EL device according to claim 1, wherein a heat radiating plate or a heat radiating net made of a non-corrosive metal is arranged so as to cover at least immediately above said device.
【請求項4】 前記不活性媒体中に酸素吸収剤と脱水剤
とを有することを特徴とする請求項1乃至4記載の有機
EL素子。
4. The organic EL device according to claim 1, wherein said inert medium contains an oxygen absorbent and a dehydrating agent.
【請求項5】 前記酸素吸収剤と脱水剤とがシート状ま
たは固体状にされて前記素子に接触しないよう配置され
ていることを特徴とする請求項5記載の有機EL素子。
5. The organic EL device according to claim 5, wherein the oxygen absorbent and the dehydrating agent are formed in a sheet or solid state and are arranged so as not to contact the device.
【請求項6】 前記酸素吸収剤にアスコルビン酸、鉄、
またはチタンの微粉またはその酸化物や金属塩を、前記
脱水剤にシリカゲル、モレキュラーシーブ等をそれぞれ
一種または数種用いたことを特徴とする請求項4または
5記載の有機EL素子。
6. The oxygen absorbent ascorbic acid, iron,
6. The organic EL device according to claim 4, wherein one or more of titanium fine powder or an oxide or metal salt thereof is used as the dehydrating agent, and one or more of silica gel and molecular sieve are used.
JP10022067A 1997-02-03 1998-02-03 Organic el element Pending JPH10275682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10022067A JPH10275682A (en) 1997-02-03 1998-02-03 Organic el element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-20601A JP2800813B1 (en) 1997-02-03 Organic EL device
JP9-20601 1997-02-03
JP10022067A JPH10275682A (en) 1997-02-03 1998-02-03 Organic el element

Publications (1)

Publication Number Publication Date
JPH10275682A true JPH10275682A (en) 1998-10-13

Family

ID=26357572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10022067A Pending JPH10275682A (en) 1997-02-03 1998-02-03 Organic el element

Country Status (1)

Country Link
JP (1) JPH10275682A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329719A (en) * 1998-04-08 1999-11-30 Lg Electronics Inc Organic electroluminescence element
JP2001035659A (en) * 1999-07-15 2001-02-09 Nec Corp Organic electroluminescent element and its manufacture
JP2001093661A (en) * 1999-09-22 2001-04-06 Semiconductor Energy Lab Co Ltd El display device and electronic device
KR20010039830A (en) * 1999-08-19 2001-05-15 가네꼬 히사시 Organic thin-film device
JP2001185354A (en) * 1999-10-12 2001-07-06 Semiconductor Energy Lab Co Ltd Electro-optic device and its manufacturing method
JP2001185347A (en) * 1999-12-27 2001-07-06 Nippon Seiki Co Ltd Organic el element
JP2001319776A (en) * 2000-05-12 2001-11-16 Semiconductor Energy Lab Co Ltd Preparing method of el panel
JP2002043055A (en) * 2000-05-17 2002-02-08 Tohoku Pioneer Corp Organic electroluminescent element and method of manufacturing the same
JP2002093586A (en) * 2000-09-19 2002-03-29 Semiconductor Energy Lab Co Ltd Luminescence equipment and its producing method
JP2002158088A (en) * 2000-09-08 2002-05-31 Semiconductor Energy Lab Co Ltd El display device
JP2002175881A (en) * 2000-12-07 2002-06-21 Fuji Photo Film Co Ltd Luminous element
WO2003001851A1 (en) * 2001-06-21 2003-01-03 Neoview Co., Ltd. Metal cap for encapsulating organic light-emitting device and method for producing the same
JP2003045646A (en) * 2001-07-26 2003-02-14 Victor Co Of Japan Ltd Organic electroluminescent element
US6525339B2 (en) 1999-12-16 2003-02-25 Nec Corporation Organic electroluminescent element
JP2003151777A (en) * 2001-11-08 2003-05-23 Xerox Corp Organic element
JP2003157980A (en) * 2001-11-08 2003-05-30 Xerox Corp Organic green light emitting element
JP2003157979A (en) * 2001-11-08 2003-05-30 Xerox Corp Organic red light emitting element
JP2003179197A (en) * 2001-09-21 2003-06-27 Eastman Kodak Co High humidity sensitive electronic device element
WO2003084290A1 (en) * 2002-03-29 2003-10-09 Pioneer Corporation Organic electroluminescence display panel
JP2004006243A (en) * 1999-06-04 2004-01-08 Semiconductor Energy Lab Co Ltd Manufacturing method of electro-optical device
WO2004006628A1 (en) * 2002-07-08 2004-01-15 Dynic Corporation Hygroscopic molding
US6686063B2 (en) 2000-09-27 2004-02-03 Seiko Epson Corporation Organic electroluminescent device, method for manufacturing organic electroluminescent device, and electronic apparatus
JP2004063382A (en) * 2002-07-31 2004-02-26 Nippon Seiki Co Ltd Method of manufacturing organic el panel
JP2004235058A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Sealing can for organic el element, and organic el element
JP2005108575A (en) * 2003-09-30 2005-04-21 Seiko Epson Corp Organic el element, its manufacturing method and organic el display device
JP2006107755A (en) * 2004-09-30 2006-04-20 Seiko Epson Corp Electrooptical device, image forming device and image reading device
JP2006179491A (en) * 2004-12-20 2006-07-06 Samsung Sdi Co Ltd Organic electroluminescent element, and its manufacturing method
US7222981B2 (en) 2001-02-15 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
JP2007184268A (en) * 2005-12-30 2007-07-19 Au Optronics Corp Display panel construction equipped with shield structure
JP2008108682A (en) * 2006-10-24 2008-05-08 Lg Electron Inc Display element
KR100834305B1 (en) * 1999-10-12 2008-06-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
JP2008244182A (en) * 2007-03-28 2008-10-09 Kaneka Corp High-intensity light emitting organic el light-emitting device
JP2010015998A (en) * 2009-09-07 2010-01-21 Semiconductor Energy Lab Co Ltd Display device
WO2010110280A1 (en) 2009-03-27 2010-09-30 富士フイルム株式会社 Coating solution for organic electroluminescent element
WO2010110347A1 (en) 2009-03-27 2010-09-30 富士フイルム株式会社 Organic electroluminescent element and process for manufacturing organic electroluminescent element
WO2010110279A1 (en) 2009-03-26 2010-09-30 富士フイルム株式会社 Inorganic material, device, and organic electroluminescent element
WO2010116867A1 (en) 2009-03-30 2010-10-14 富士フイルム株式会社 Conductive polymer composition, conductive cured film, and organic electroluminescent element
US7854640B2 (en) 2000-08-04 2010-12-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
JP2011009790A (en) * 2000-02-03 2011-01-13 Semiconductor Energy Lab Co Ltd Light-emitting device
JP2011009076A (en) * 2009-06-25 2011-01-13 Panasonic Electric Works Co Ltd Organic electroluminescent element
JP2011100743A (en) * 2011-01-10 2011-05-19 Semiconductor Energy Lab Co Ltd Electronic device
JP2011141979A (en) * 2010-01-06 2011-07-21 Seiko Epson Corp Method of manufacturing electro-optical device, and electro-optical device
JP2012163976A (en) * 2012-04-12 2012-08-30 Semiconductor Energy Lab Co Ltd El display device
WO2012140924A1 (en) * 2011-04-12 2012-10-18 パイオニア株式会社 Organic electroluminescence device and method for manufacturing organic electroluminescence device
JP2013038069A (en) * 2011-07-08 2013-02-21 Semiconductor Energy Lab Co Ltd Light-emitting module, light-emitting device and light-emitting module manufacturing method
EP2700112A1 (en) * 2011-04-21 2014-02-26 Heraeus Precious Metals GmbH & Co. KG Fluorinated amines as sam in oleds
JP2014053157A (en) * 2012-09-06 2014-03-20 Pioneer Electronic Corp Light-emitting device
CN103985826A (en) * 2014-05-30 2014-08-13 深圳市华星光电技术有限公司 OLED substrate packaging method and OLED structure
US8853696B1 (en) 1999-06-04 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US8890172B2 (en) 1999-06-04 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
WO2015079641A1 (en) * 2013-11-26 2015-06-04 株式会社Joled Organic el panel, method for producing same, and color filter substrate
JP2020502746A (en) * 2016-12-15 2020-01-23 武漢華星光電技術有限公司Wuhan China Star Optoelectronics Technology Co.,Ltd OLED display packaging method and OLED display
CN112512793A (en) * 2018-08-16 2021-03-16 株式会社Lg化学 Packaging film
CN113611810A (en) * 2021-07-20 2021-11-05 Tcl华星光电技术有限公司 OLED packaging method and OLED packaging structure

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329719A (en) * 1998-04-08 1999-11-30 Lg Electronics Inc Organic electroluminescence element
US8890172B2 (en) 1999-06-04 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
JP2004006243A (en) * 1999-06-04 2004-01-08 Semiconductor Energy Lab Co Ltd Manufacturing method of electro-optical device
US8853696B1 (en) 1999-06-04 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US9123854B2 (en) 1999-06-04 2015-09-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US9293726B2 (en) 1999-06-04 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
US9368680B2 (en) 1999-06-04 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US6737176B1 (en) 1999-07-15 2004-05-18 Nec Corporation Organic electroluminescent device and method for fabricating same
JP2001035659A (en) * 1999-07-15 2001-02-09 Nec Corp Organic electroluminescent element and its manufacture
US7083866B2 (en) 1999-07-15 2006-08-01 Samsung Sdi Co., Ltd. Organic electroluminescent device and method for fabricating same
KR20010039830A (en) * 1999-08-19 2001-05-15 가네꼬 히사시 Organic thin-film device
JP2001093661A (en) * 1999-09-22 2001-04-06 Semiconductor Energy Lab Co Ltd El display device and electronic device
JP2001185354A (en) * 1999-10-12 2001-07-06 Semiconductor Energy Lab Co Ltd Electro-optic device and its manufacturing method
KR100834305B1 (en) * 1999-10-12 2008-06-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US8884301B2 (en) 1999-10-12 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. EL display device and a method of manufacturing the same
US6525339B2 (en) 1999-12-16 2003-02-25 Nec Corporation Organic electroluminescent element
JP2001185347A (en) * 1999-12-27 2001-07-06 Nippon Seiki Co Ltd Organic el element
JP2011009790A (en) * 2000-02-03 2011-01-13 Semiconductor Energy Lab Co Ltd Light-emitting device
US9419066B2 (en) 2000-02-03 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method of manufacturing the same
JP2001319776A (en) * 2000-05-12 2001-11-16 Semiconductor Energy Lab Co Ltd Preparing method of el panel
JP2002043055A (en) * 2000-05-17 2002-02-08 Tohoku Pioneer Corp Organic electroluminescent element and method of manufacturing the same
US7854640B2 (en) 2000-08-04 2010-12-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
JP2002158088A (en) * 2000-09-08 2002-05-31 Semiconductor Energy Lab Co Ltd El display device
JP2002093586A (en) * 2000-09-19 2002-03-29 Semiconductor Energy Lab Co Ltd Luminescence equipment and its producing method
US6686063B2 (en) 2000-09-27 2004-02-03 Seiko Epson Corporation Organic electroluminescent device, method for manufacturing organic electroluminescent device, and electronic apparatus
JP2002175881A (en) * 2000-12-07 2002-06-21 Fuji Photo Film Co Ltd Luminous element
US7222981B2 (en) 2001-02-15 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
WO2003001851A1 (en) * 2001-06-21 2003-01-03 Neoview Co., Ltd. Metal cap for encapsulating organic light-emitting device and method for producing the same
JP2003045646A (en) * 2001-07-26 2003-02-14 Victor Co Of Japan Ltd Organic electroluminescent element
JP2003179197A (en) * 2001-09-21 2003-06-27 Eastman Kodak Co High humidity sensitive electronic device element
JP2003157979A (en) * 2001-11-08 2003-05-30 Xerox Corp Organic red light emitting element
JP2003157980A (en) * 2001-11-08 2003-05-30 Xerox Corp Organic green light emitting element
JP2003151777A (en) * 2001-11-08 2003-05-23 Xerox Corp Organic element
JP2008028408A (en) * 2001-11-08 2008-02-07 Lg Philips Lcd Co Ltd Red organic light-emitting device
WO2003084290A1 (en) * 2002-03-29 2003-10-09 Pioneer Corporation Organic electroluminescence display panel
CN100442573C (en) * 2002-07-08 2008-12-10 大尼克株式会社 Hygroscopic molding
WO2004006628A1 (en) * 2002-07-08 2004-01-15 Dynic Corporation Hygroscopic molding
US7625638B2 (en) 2002-07-08 2009-12-01 Dynic Corporation Hygroscopic molding
JP2004063382A (en) * 2002-07-31 2004-02-26 Nippon Seiki Co Ltd Method of manufacturing organic el panel
JP2004235058A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Sealing can for organic el element, and organic el element
JP2005108575A (en) * 2003-09-30 2005-04-21 Seiko Epson Corp Organic el element, its manufacturing method and organic el display device
JP2006107755A (en) * 2004-09-30 2006-04-20 Seiko Epson Corp Electrooptical device, image forming device and image reading device
JP2006179491A (en) * 2004-12-20 2006-07-06 Samsung Sdi Co Ltd Organic electroluminescent element, and its manufacturing method
JP2007184268A (en) * 2005-12-30 2007-07-19 Au Optronics Corp Display panel construction equipped with shield structure
US8319423B2 (en) 2006-10-24 2012-11-27 Lg Display Co., Ltd. Display device with protecting layer for getter layer
JP2008108682A (en) * 2006-10-24 2008-05-08 Lg Electron Inc Display element
JP2008244182A (en) * 2007-03-28 2008-10-09 Kaneka Corp High-intensity light emitting organic el light-emitting device
WO2010110279A1 (en) 2009-03-26 2010-09-30 富士フイルム株式会社 Inorganic material, device, and organic electroluminescent element
WO2010110347A1 (en) 2009-03-27 2010-09-30 富士フイルム株式会社 Organic electroluminescent element and process for manufacturing organic electroluminescent element
WO2010110280A1 (en) 2009-03-27 2010-09-30 富士フイルム株式会社 Coating solution for organic electroluminescent element
WO2010116867A1 (en) 2009-03-30 2010-10-14 富士フイルム株式会社 Conductive polymer composition, conductive cured film, and organic electroluminescent element
JP2011009076A (en) * 2009-06-25 2011-01-13 Panasonic Electric Works Co Ltd Organic electroluminescent element
JP2010015998A (en) * 2009-09-07 2010-01-21 Semiconductor Energy Lab Co Ltd Display device
JP2011141979A (en) * 2010-01-06 2011-07-21 Seiko Epson Corp Method of manufacturing electro-optical device, and electro-optical device
JP2011100743A (en) * 2011-01-10 2011-05-19 Semiconductor Energy Lab Co Ltd Electronic device
WO2012140924A1 (en) * 2011-04-12 2012-10-18 パイオニア株式会社 Organic electroluminescence device and method for manufacturing organic electroluminescence device
EP2700112A1 (en) * 2011-04-21 2014-02-26 Heraeus Precious Metals GmbH & Co. KG Fluorinated amines as sam in oleds
US9966560B2 (en) 2011-07-08 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting module, light-emitting device, and method for manufacturing the light-emitting module
JP2013038069A (en) * 2011-07-08 2013-02-21 Semiconductor Energy Lab Co Ltd Light-emitting module, light-emitting device and light-emitting module manufacturing method
JP2017103258A (en) * 2011-07-08 2017-06-08 株式会社半導体エネルギー研究所 Display device
JP2012163976A (en) * 2012-04-12 2012-08-30 Semiconductor Energy Lab Co Ltd El display device
JP2014053157A (en) * 2012-09-06 2014-03-20 Pioneer Electronic Corp Light-emitting device
WO2015079641A1 (en) * 2013-11-26 2015-06-04 株式会社Joled Organic el panel, method for producing same, and color filter substrate
JPWO2015079641A1 (en) * 2013-11-26 2017-03-16 株式会社Joled Organic EL panel, manufacturing method thereof, and color filter substrate
US9728741B2 (en) 2013-11-26 2017-08-08 Joled Inc. Organic EL panel, method for producing same, and color filter substrate
CN103985826A (en) * 2014-05-30 2014-08-13 深圳市华星光电技术有限公司 OLED substrate packaging method and OLED structure
JP2020502746A (en) * 2016-12-15 2020-01-23 武漢華星光電技術有限公司Wuhan China Star Optoelectronics Technology Co.,Ltd OLED display packaging method and OLED display
CN112512793A (en) * 2018-08-16 2021-03-16 株式会社Lg化学 Packaging film
JP2021533547A (en) * 2018-08-16 2021-12-02 エルジー・ケム・リミテッド Encapsulating film
CN112512793B (en) * 2018-08-16 2023-04-07 株式会社Lg化学 Packaging film
CN113611810A (en) * 2021-07-20 2021-11-05 Tcl华星光电技术有限公司 OLED packaging method and OLED packaging structure

Similar Documents

Publication Publication Date Title
JPH10275682A (en) Organic el element
KR100266532B1 (en) Organic electroluminescent device
US5962962A (en) Method of encapsulating organic electroluminescence device and organic electroluminescence device
KR100472502B1 (en) Organic electro luminescence display device
JP3743876B2 (en) Electroluminescent device and manufacturing method thereof
JP4625911B2 (en) Organic light emitting diode (OLED)
JP3254335B2 (en) Method for sealing organic EL element and organic EL element
EP1021070A1 (en) Organic electroluminescent device
US6259204B1 (en) Organic electroluminescent device
JP2000003783A (en) Organic electroluminescent display device
EP1079666A2 (en) Organic EL device
JP2001176655A (en) Organic electroluminescent element
KR20070030194A (en) Organic semiconductor element
JP4246830B2 (en) Organic EL device
JPH08124677A (en) Organic el device
US20150318516A1 (en) Organic el light-emitting device and illumination device
JP2002260847A (en) Electroluminescence element sealing film and sealed organic electroluminescence element
JP2000306664A (en) Organic el display device
JP3411864B2 (en) Organic EL display
JP3795556B2 (en) Organic EL element sealing method and organic EL element
JP2000195661A (en) Organic el element
JP2000268954A (en) Electroluminescent element
JP2000195660A (en) Organic el element
JP3254323B2 (en) Organic EL device
KR101011718B1 (en) Organic Light-Emitting Device And Manufacturing Method Thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990105