JPH10271071A - Optical communication system - Google Patents

Optical communication system

Info

Publication number
JPH10271071A
JPH10271071A JP9068606A JP6860697A JPH10271071A JP H10271071 A JPH10271071 A JP H10271071A JP 9068606 A JP9068606 A JP 9068606A JP 6860697 A JP6860697 A JP 6860697A JP H10271071 A JPH10271071 A JP H10271071A
Authority
JP
Japan
Prior art keywords
optical
optical communication
node
communication system
nodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9068606A
Other languages
Japanese (ja)
Inventor
Hideaki Okayama
秀彰 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP9068606A priority Critical patent/JPH10271071A/en
Priority to US09/044,187 priority patent/US6154587A/en
Publication of JPH10271071A publication Critical patent/JPH10271071A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To allow a system to attain communication among many nodes with a small wavelength multiplexity and to flexibly revise a topology of an optical communication network. SOLUTION: A system is provided with a plurality of optical communication networks 11, 13. Each optical communication network includes a plurality of nodes 11a-13d, each having a path changeover function and optical fiber networks 15a, 15b interconnecting the nodes. The optical fiber network for each optical communication network is made up of an active optical fiber 15a forming a predetermined topology and a standby optical fiber 15b contributing to revision of a topology with the path changeover function of the node. An exchange 17 is connected to node sets 19a-19d each consisting of a node selected from a plurality of optical communication networks one by one without duplication. The other ends of the exchange 17 are connected to subscribers 21a-21d.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光通信システム
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication system.

【0002】[0002]

【従来の技術】例えば文献I(オープラスイー(O plus
E),No.194,pp.75-79,pp.100-105の特にp.77の図3)
には、波長により経路を切り換える光クロスコネクトに
より光通信網の各ノードを構成し、かつ、各ノード間は
波長多重光を伝送できる光ファイバで接続した構成の、
光通信網が開示されている。
2. Description of the Related Art For example, Document I (O plus
E), No. 194, pp. 75-79, pp. 100-105, especially p. 77, Fig. 3)
In the configuration, each node of the optical communication network is configured by an optical cross-connect that switches a path according to a wavelength, and each node is connected by an optical fiber capable of transmitting wavelength-multiplexed light.
An optical communication network is disclosed.

【0003】この従来の光通信網によれば、波長ごとに
該光通信網中を通る経路を異ならせることが出来る。そ
のため、波長λn の光を用いると、光通信網中のノード
nに信号を送ることができる。
[0003] According to this conventional optical communication network, a route passing through the optical communication network can be made different for each wavelength. Therefore, by using the light having the wavelength λn, a signal can be transmitted to the node n in the optical communication network.

【0004】[0004]

【発明が解決しようとする課題】ところで、この従来の
光通信網の考え方をそのまま踏襲してより大規模な光通
信システムを構築しようとした場合、ノード数を増加
し、かつ、波長多重度を高くし、然も、波長多重度を高
くしたことに対応して装置構成を変更する必要が生じ
る。
By the way, when trying to construct a larger-scale optical communication system by directly following the concept of the conventional optical communication network, it is necessary to increase the number of nodes and to increase the wavelength multiplexing degree. It is necessary to change the device configuration in response to the increase in wavelength multiplexing.

【0005】しかしながら、波長多重度は現状では32
程度が限界である。また、波長多重度を高くしたことに
伴い、信号光用の光源や波長フィルタの種類をそれぞれ
増やす必要がある。また、ノードの構成が複雑になると
考えられる。したがって、従来の光通信網の考え方をそ
のまま踏襲したのでは、大規模な光通信システムを簡易
に構築しようとしてもおのずと限界が生じると考えられ
る。
However, at present, the wavelength multiplicity is 32
Degree is the limit. Further, as the wavelength multiplexing degree is increased, it is necessary to increase the types of signal light sources and wavelength filters. In addition, it is considered that the configuration of the node becomes complicated. Therefore, if the concept of the conventional optical communication network is directly followed, it is considered that there is naturally a limit to simply constructing a large-scale optical communication system.

【0006】多重の限界という問題および装置構成の複
雑化という問題は、波長多重という多重方式を用いる場
合に限られず、他の多重方式、例えばパケット多重また
はサブキャリ多重を用いる場合、さらには、ノード間を
光ファイバ束で接続する空間多重を用いる場合にも生じ
ると考えられる。
[0006] The problem of the limit of multiplexing and the problem of complicated device configuration is not limited to the case of using the multiplexing system of wavelength multiplexing. It is considered that this also occurs when spatial multiplexing is used in which optical fibers are connected by an optical fiber bundle.

【0007】また、ノード数を増加し、かつ、波長多重
度を高くした場合、そこそこの規模の光通信システムは
得られるが、単にノード数を増加し、かつ、波長多重度
を高くした場合、光通信網のトポロジを変更したい場合
の柔軟性は、乏しい。
When the number of nodes is increased and the wavelength multiplicity is increased, an optical communication system of a reasonable scale can be obtained. However, when the number of nodes is simply increased and the wavelength multiplicity is increased, The flexibility when changing the topology of the optical communication network is poor.

【0008】したがって、波長多重度を現状の多重方式
の多重度の範囲とできかつ大規模な光通信システムの実
現が可能で、しかも、トポロジの変更に柔軟に対応でき
る光通信システムが望まれる。
Therefore, there is a demand for an optical communication system capable of setting the wavelength multiplicity within the range of the multiplicity of the current multiplexing system, realizing a large-scale optical communication system, and flexibly adapting to topology changes.

【0009】[0009]

【課題を解決するための手段】そこで、この発明によれ
ば、所定の方式で多重された光信号を用い通信を行なう
光通信システムにおいて、 :複数の光通信網であって、各光通信網が、経路切換
機能を有する複数のノードおよびこれらノードを結ぶ光
ファイバ網を含み、しかも、各光通信網ごとの光ファイ
バ網が、各光通信網ごとで予め予定したトポロジ(網形
態)を形成する現用光ファイバと前記ノードが有する経
路切り換え機能によって有効とされるとトポロジの変更
に寄与する予備光ファイバとで構成されている、複数の
光通信網を具え、 :該複数の光通信網のうちの少なくとも2つの光通信
網に、これら光通信網それぞれの1つのノードを介して
一端が接続され、他端が加入者等に接続され、該加入者
等を前記少なくとも2つの光通信網のいずれかに選択的
に接続する交換機を少なくとも1つ具えたことを特徴と
する。
According to the present invention, there is provided an optical communication system for performing communication using an optical signal multiplexed in a predetermined system, comprising: a plurality of optical communication networks, Includes a plurality of nodes having a path switching function and an optical fiber network connecting these nodes, and furthermore, an optical fiber network for each optical communication network forms a predetermined topology (network form) for each optical communication network. A plurality of optical communication networks, each of which comprises a working optical fiber and a spare optical fiber which is enabled by a path switching function of the node to contribute to a change in topology. One end is connected to at least two of these optical communication networks via one node of each of these optical communication networks, and the other end is connected to a subscriber or the like, and the subscriber or the like is connected to the at least two optical communication networks. Characterized in that at least one comprises a switch for selectively connecting to one of the networks.

【0010】この発明の光通信システムの作用について
簡単化した光通信システムの例により説明する。この説
明を図1を参照して行なう。
The operation of the optical communication system of the present invention will be described with reference to an example of a simplified optical communication system. This will be described with reference to FIG.

【0011】ここでは2つの光通信網11,13を具え
た光通信システムを考える。然も、2つの光通信網1
1,13それぞれは、4つのノード11a〜11d(1
3a〜13d)をリング状に具えた例で、かつ、これら
ノード間は所定の多重方式(ここでは波長多重)による
光信号を伝送可能な光ファイバ15aでそれぞれ接続さ
れている。これらの光ファイバ15aが、現在、有効と
されている現用光ファイバ(図1中に太い実線で示す)
であるとする。さらに、ノード間は、予備光ファイバ1
5b(図1中に太い破線で示す)により接続されてい
る。
Here, an optical communication system including two optical communication networks 11 and 13 is considered. Naturally, two optical communication networks 1
1 and 13 respectively have four nodes 11a to 11d (1
3a to 13d) are provided in a ring shape, and these nodes are connected by optical fibers 15a capable of transmitting optical signals by a predetermined multiplexing method (wavelength multiplexing in this case). These optical fibers 15a are currently used active optical fibers (shown by thick solid lines in FIG. 1).
And Further, a spare optical fiber 1 is connected between nodes.
5b (shown by a thick broken line in FIG. 1).

【0012】しかも、光通信網11では、該光通信網1
1に波長λ1 の光信号が入力されると該光信号はノード
11aに出力され、以下、波長λ2 の光信号はノード1
1b、波長λ3 の光信号はノード11c、波長λ4 の光
信号はノード11dにそれぞれ出力されるように各ノー
ドを構成してある例を考える。同様に、光通信網13で
は、波長λ1 の光信号はノード13aに、波長λ2 の光
信号はノード13b、波長λ3 の光信号はノード13
c、波長λ4 の光信号はノード13dにそれぞれ出力さ
れるように各ノードを構成してある例を考える。
Further, in the optical communication network 11, the optical communication network 1
When an optical signal of wavelength λ1 is input to node 1, the optical signal is output to node 11 a.
1b, consider an example in which each node is configured such that an optical signal of wavelength λ3 is output to node 11c and an optical signal of wavelength λ4 is output to node 11d. Similarly, in the optical communication network 13, the optical signal having the wavelength λ1 is transmitted to the node 13a, the optical signal having the wavelength λ2 is transmitted to the node 13b, and the optical signal having the wavelength λ3 is transmitted to the node 13a.
Consider an example in which each node is configured so that the optical signal of c and the wavelength λ4 is output to the node 13d.

【0013】このような2つの光通信網11、13に対
し、交換機17は、この発明の思想に従ってかつ光通信
システムに要求される接続ができるような配置に、接続
することができる。この図1の場合では、2つの光通信
網11、13から重複なく1つずつ選んだノードで構成
されるノードの組19a〜19dごとに交換機17を接
続する例を示してある。然も、各交換機17それぞれに
は加入者21x及びまたは下位の通信網21y等の通信
を希望する媒体(これを以下、加入者等21(図1中で
は21a〜21dとして示す)という)が接続されてい
る例を示してある。
The switch 17 can be connected to the two optical communication networks 11 and 13 in such an arrangement that the connection required by the optical communication system can be made according to the concept of the present invention. In the case of FIG. 1, an example is shown in which the exchange 17 is connected to each of a pair of nodes 19 a to 19 d including nodes selected one by one from the two optical communication networks 11 and 13 without duplication. Of course, each exchange 17 is connected to a medium (hereinafter, referred to as a subscriber 21a to 21d in FIG. 1) which the subscriber 21x and / or a lower communication network 21y or the like which desires communication, such as a subscriber 21x. An example is shown.

【0014】ここで加入者等21は、光通信網11の
み、または光通信網13のみに対しては、4つのノード
としか通信ができない。しかし、交換機17による光通
信網の切り換えにより、加入者等21は、光通信網11
とも、光通信網13とも光通信ができる。したがって、
加入者等21は、8つのノードと選択的に光通信が可能
になる。しかも、8つのノードと選択的に光通信が可能
になったにもかかわらず、各光通信網11、13の波長
多重度は4のままで済む。然も、光通信網11、13と
同様な光通信網の数をさらに増加させてゆき、それら増
加した光通信網のノードに交換機17からの導波路をそ
れぞれ接続することで、加入者等21が光通信できるノ
ード数をさらに増加させることができる。またそうした
としても、各光通信網11、13の波長多重度は4のま
まで済む。したがって、多重度を高めなくても、大規模
な光通信システムが実現されると考えられる。
Here, the subscriber 21 can communicate only with the four nodes only with the optical communication network 11 or only with the optical communication network 13. However, the switching of the optical communication network by the exchange 17 causes the subscribers 21 to switch to the optical communication network 11.
In addition, optical communication can be performed with the optical communication network 13. Therefore,
The subscribers 21 can selectively perform optical communication with eight nodes. In addition, although the optical communication can be selectively performed with the eight nodes, the wavelength multiplicity of each of the optical communication networks 11 and 13 can be kept at 4. Of course, the number of optical communication networks similar to the optical communication networks 11 and 13 is further increased, and by connecting the waveguides from the exchange 17 to the nodes of the increased optical communication networks respectively, the subscribers 21 Can further increase the number of nodes that can perform optical communication. Even so, the wavelength multiplicity of each of the optical communication networks 11 and 13 may remain at 4. Therefore, it is considered that a large-scale optical communication system can be realized without increasing the multiplicity.

【0015】1つの光通信網のみを用いて加入者等21
が8つのノードと光通信をするには、1つの光通信網に
8個のノードを用意しかつ波長多重度は8とする必要が
ある点と比べると、この発明の特徴が理解出来る。
Using only one optical communication network, subscribers 21
The characteristics of the present invention can be understood in comparison with the point that, in order to perform optical communication with eight nodes, it is necessary to prepare eight nodes in one optical communication network and set the wavelength multiplicity to eight.

【0016】さらに、この発明の光通信システムでは、
各光通信網11、13のトポロジを変更したい場合は、
予備光ファイバのうちの任意の予備光ファイバを有効に
することで、該変更を行なうことができる。トポロジの
変更のさせ方次第では、現用光ファイバをそのまま使用
する場合もあるし、現用光ファイバの任意の光ファイバ
を予備光ファイバに変更する場合もある。たとえば、図
1の光通信網11において、ノード11aとノード11
cとの間の予備光ファイバを有効にして現用光ファイバ
として用い、一方、ノード11aとノード11bとの間
の現用光ファイバおよびノード11bとノード11cと
の間の現用光ファイバそれぞれを予備光ファイバに変更
することにより、光通信網11のトポロジは、ノード1
1aとノード11cとノード11dとのリング網に変更
される。したがって、光通信網のトポロジ変更の柔軟性
に富むというこの発明の特徴が理解出来る。
Further, in the optical communication system according to the present invention,
If you want to change the topology of each optical communication network 11, 13,
The change can be made by activating any of the spare optical fibers. Depending on how the topology is changed, the working optical fiber may be used as it is, or an arbitrary optical fiber of the working optical fiber may be changed to a spare optical fiber. For example, in the optical communication network 11 of FIG.
c and the standby optical fiber between the nodes 11a and 11b and the active optical fiber between the nodes 11b and 11c are respectively used as the standby optical fibers. By changing the topology of the optical communication network 11 to the node 1
It is changed to a ring network of 1a, node 11c, and node 11d. Therefore, the feature of the present invention that the topology of the optical communication network can be flexibly changed can be understood.

【0017】上記の作用は、波長多重を用いた例に限ら
れず、他の多重方式の場合も得られる。例えばパケット
多重であればヘッダの種類を少なくしたまま大規模光通
信システムを構築することができる。また、光ファイバ
束を用いることによる空間多重の場合も、光ファイバ数
を少なくしたまま、大規模光通信システムを構築するこ
とができる。
The above operation is not limited to the example using wavelength multiplexing, but can also be obtained in other multiplexing systems. For example, in the case of packet multiplexing, a large-scale optical communication system can be constructed while reducing the types of headers. Also, in the case of spatial multiplexing using an optical fiber bundle, a large-scale optical communication system can be constructed while keeping the number of optical fibers small.

【0018】したがって、この発明の光通信システムに
よれば、現状の多重方式の多重度の範囲で、かつ簡易
に、然もトポロジ変更の柔軟性に優れた、大規模な光通
信システムを実現できると考えられる。
Therefore, according to the optical communication system of the present invention, it is possible to realize a large-scale optical communication system within the range of the multiplexing degree of the current multiplexing method and easily and with excellent flexibility in changing the topology. it is conceivable that.

【0019】なお、この発明の実施に当たり、前記複数
のノードそれぞれを、光クロスコネクト部とAdd・D
rop部とを含む構成とするのが好適である。
In practicing the present invention, each of the plurality of nodes is connected to an optical cross-connect unit and an Add.D
It is preferable to adopt a configuration including a rop portion.

【0020】ここで、光クロスコネクト部は、詳細は後
述するが、当該ノードでの前記多重された光信号の経路
切り換えを担当する。この光クロスコネクト部によれば
現用光ファイバと予備光ファイバとの切換を容易に行な
える。
Here, the optical cross-connect unit is responsible for switching the path of the multiplexed optical signal at the node, which will be described later in detail. According to this optical cross-connect unit, switching between the working optical fiber and the standby optical fiber can be easily performed.

【0021】一方、Add・Drop部は、該光クロス
コネクト部および前記光交換機間に設けられ、前記加入
者等から該光クロスコネクト部へ前記多重方式に適合し
た任意の光信号を入力し、また、前記多重された光信号
の中から当該ノードについて予め定めた特定の光信号を
前記加入者等へ出力する。このAdd・Drop部によ
れば、光通信網と交換機との間の光信号授受が容易にな
る。
On the other hand, the Add / Drop unit is provided between the optical cross-connect unit and the optical switch, and inputs an arbitrary optical signal conforming to the multiplex system from the subscriber or the like to the optical cross-connect unit. Also, a specific optical signal predetermined for the node is output from the multiplexed optical signal to the subscriber or the like. According to the Add / Drop unit, transmission and reception of an optical signal between the optical communication network and the exchange are facilitated.

【0022】さらにこの発明の実施に当たり、前記光ク
ロスコネクト部を、前記多重方式により定められている
光信号分離要素に基づいて経路を切り換える光クロスコ
ネクト部とするのが好適である。こうすると、多重化さ
れた光信号中の個々の光信号のルーティングが容易に行
なえる。ここで、前記多重方式とは、典型的には、波長
多重またはパケット多重またはサブキャリア多重とする
ことができる。あるいは、これらを組み合わせた方式と
できる。また、光信号分離要素とは、波長多重にあって
は波長、パケット多重にあってはヘッダ、サブキャリア
多重にあってはサブキャリアとすることができる。
In practicing the present invention, it is preferable that the optical cross-connect unit is an optical cross-connect unit that switches paths based on an optical signal separation element defined by the multiplexing method. In this case, individual optical signals in the multiplexed optical signal can be easily routed. Here, the multiplexing method can typically be wavelength multiplexing, packet multiplexing, or subcarrier multiplexing. Alternatively, a method in which these are combined can be used. The optical signal separation element can be a wavelength in wavelength multiplexing, a header in packet multiplexing, and a subcarrier in subcarrier multiplexing.

【0023】さらに、この発明の実施に当たり、前記光
クロスコネクト部を、複数の波長分波素子と、複数の合
波素子と、前記複数の波長分波素子の出力端子群、前記
複数の合波素子の入力端子群および前記Add・Dro
p部の間の接続関係を制御する光マトリクススイッチと
で構成するのが好適である。
Further, in practicing the present invention, the optical cross-connect section includes a plurality of wavelength demultiplexing elements, a plurality of multiplexing elements, an output terminal group of the plurality of wavelength demultiplexing elements, and the plurality of multiplexing elements. The input terminal group of the element and the Add-Dro
It is preferable to use an optical matrix switch for controlling the connection relationship between the p units.

【0024】この複数の波長分波素子等を具える構成の
場合は、各ノードでの入力側の現用光ファイバや予備光
ファイバを、複数の波長分波素子に重複なく接続出来、
また、出力側の現用光ファイバや予備光ファイバを、複
数の合波素子に重複なく接続出来る(図3参照)。そし
て、光マトリクススイッチは、波長多重された光信号中
の個々の光信号を、要求された通信経路に合ったように
ルーティングする。したがって、本発明に係る光通信シ
ステムであって、波長多重された光信号を扱う場合に好
適な光通信システムが実現される。
In the case of the configuration including the plurality of wavelength demultiplexing elements, the working optical fiber and the spare optical fiber on the input side at each node can be connected to the plurality of wavelength demultiplexing elements without overlapping.
Further, the working optical fiber and the spare optical fiber on the output side can be connected to a plurality of multiplexing elements without overlapping (see FIG. 3). Then, the optical matrix switch routes each optical signal in the wavelength-multiplexed optical signal so as to match the required communication path. Therefore, an optical communication system according to the present invention, which is suitable for handling wavelength-multiplexed optical signals, is realized.

【0025】また、この発明の実施に当たり、前記光ク
ロスコネクト部を、M×Nの光マトリクススイッチであ
ってその入力端子の一部とその出力端子の一部との間に
前記Add・Drop部が接続されているM×N光マト
リクススイッチで構成しても良い。この構成の場合は、
光クロスコネクト部の構成を簡単化することができる。
In practicing the present invention, the optical cross-connect section is an M × N optical matrix switch, and the Add-Drop section is provided between a part of its input terminal and a part of its output terminal. May be configured by an M × N optical matrix switch to which is connected. In this configuration,
The configuration of the optical cross connect unit can be simplified.

【0026】また、この発明の実施に当たり、前記各光
通信網をリング網またはバス網とするのが好適である。
こうすると、メッシュ網を用いる場合に比べて、光通信
網の制御を容易に行なうことができる。
In practicing the present invention, it is preferable that each optical communication network is a ring network or a bus network.
In this case, the control of the optical communication network can be easily performed as compared with the case where the mesh network is used.

【0027】[0027]

【発明の実施の形態】以下、図面を参照してこの発明の
光通信システムの実施の形態について併せて説明する。
しかしながら、説明に用いる各図はこの発明を理解する
ことができる程度に概略的に示してあるにすぎない。ま
た、説明に用いる各図において、同様な構成成分につい
ては同一の番号を付して示し、その重複する説明を省略
することもある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an optical communication system according to the present invention will be described below with reference to the accompanying drawings.
However, the drawings used in the description are only schematically shown to the extent that the present invention can be understood. Further, in each of the drawings used for the description, the same components are denoted by the same reference numerals, and the duplicate description thereof may be omitted.

【0028】1.第1の実施の形態 図2はこの発明の光通信システムの1つの実施の形態を
説明する図である。
1. First Embodiment FIG. 2 is a diagram for explaining one embodiment of the optical communication system according to the present invention.

【0029】この第1の実施の形態の光通信システム
は、第1〜第4の4つの光通信網31,33,35,3
7を具えた例としてある。
The optical communication system according to the first embodiment includes first to fourth four optical communication networks 31, 33, 35, 3
7 is provided as an example.

【0030】これら第1〜第4の光通信網31〜37そ
れぞれは、この場合、7つのノードを具える例としてあ
る。すなわち、第1の光通信網31は、ノード31a〜
31gを具え、第2の光通信網33は、ノード33a〜
33gを具え、第3の光通信網35は、ノード35a〜
35gを具え、第4の光通信網37は、ノード37a〜
37gを具える。なお、ノードとは、光信号の振り分け
(経路切換)や、光通信網へ加入者等から光信号を入力
(Add)したり、光通信網から加入者等に光信号を出
力(Drop)する部分をいう。この構成は後に説明す
る。
In this case, each of the first to fourth optical communication networks 31 to 37 is an example having seven nodes. That is, the first optical communication network 31 includes the nodes 31a to 31a.
31g, and the second optical communication network 33 includes the nodes 33a to 33g.
33g, and the third optical communication network 35 includes the nodes 35a to 35a.
35g, and the fourth optical communication network 37 includes nodes 37a to
37 g. The node is a node that distributes optical signals (route switching), inputs (Add) an optical signal from a subscriber or the like to an optical communication network, and outputs (Drop) an optical signal from an optical communication network to a subscriber or the like. Part. This configuration will be described later.

【0031】ただし、これら第1〜第4の光通信網31
〜37それぞれでは、光通信用のノードとして現在使用
可能なノードを、違えてある。具体的には、第1の光通
信網31では、31a,31b,31c,31d,31
e,31gで示す6つのノードが、現在は光通信に使用
可能なノードとなっている。第2の光通信網33では、
33a,33b,31e,33f,33gで示す5つの
ノードが、現在は光通信に使用可能なノードとなってい
る。第3の光通信網35では、35b,35c,35
d,35eで示す4つのノードが、現在は光通信に使用
可能なノードとなっている。第4の光通信網37では、
37c,37d,37e,37fで示す4つのノード
が、現在は光通信に使用可能なノードとなっている。そ
して、いずれの光通信網31〜37も、光通信に使用可
能なノードはリング網を構成している例としてある。
However, these first to fourth optical communication networks 31
In each of Nos. To 37, a node currently available as an optical communication node is different. Specifically, in the first optical communication network 31, 31a, 31b, 31c, 31d, 31
The six nodes indicated by e and 31g are currently available for optical communication. In the second optical communication network 33,
Five nodes 33a, 33b, 31e, 33f, and 33g are currently available for optical communication. In the third optical communication network 35, 35b, 35c, 35
The four nodes indicated by d and 35e are currently available for optical communication. In the fourth optical communication network 37,
Four nodes denoted by 37c, 37d, 37e, and 37f are currently available for optical communication. Each of the optical communication networks 31 to 37 is an example in which nodes usable for optical communication constitute a ring network.

【0032】各光通信網31〜37それぞれで、何れの
ノードを光通信に使用可能なノードとするかは、上記の
例に限られず、光通信システムの設計に応じて決めるこ
とができる。もちろん、各光通信網31〜37それぞれ
で、全てのノードを光通信に使用可能なノードとするこ
ともできる。ノードを光通信に使用可能なノードとする
ためには、そうしたいノードを順次光ファイバによって
接続してゆけば良い。光ファイバとノードとの接続は、
ノードが有する経路切換機能により光ファイバとノード
との接続を有効な状態にすれば良い(詳細は後に図3を
参照して説明する。)。ここでは、ノードに有効に接続
された光ファイバを、現用光ファイバ15a(図2中太
い実線で示す。)と称する。一方、現在はノードとは接
続されていないが、ノードが有する経路切り換え機能
(後述する)によって現用光ファイバ15aとされる光
ファイバを予備光ファイバ15b(図2中太い破線で示
す。)と称する。予備光ファイバであったものを現用光
ファイバとすることで、光通信網のトポロジを変更する
ことができる。
In each of the optical communication networks 31 to 37, which node can be used for optical communication is not limited to the above example, but can be determined according to the design of the optical communication system. Of course, in each of the optical communication networks 31 to 37, all of the nodes may be nodes usable for optical communication. In order to make the nodes usable for optical communication, the nodes to be used may be sequentially connected by optical fibers. The connection between the optical fiber and the node
The connection between the optical fiber and the node may be made effective by the path switching function of the node (the details will be described later with reference to FIG. 3). Here, the optical fiber effectively connected to the node is referred to as a working optical fiber 15a (shown by a thick solid line in FIG. 2). On the other hand, an optical fiber which is not connected to the node at present but is set as the working optical fiber 15a by a path switching function (described later) of the node is referred to as a spare optical fiber 15b (shown by a thick broken line in FIG. 2). . The topology of the optical communication network can be changed by replacing the spare optical fiber with the working optical fiber.

【0033】なお、発明の実施に当たっては、ノード3
1a,33a,35aおよび37aを組としこれらは1
つの局に設け、ノード31b,33b,35bおよび3
7bを組としてこれらは1つの局に設け、・・・、ノー
ド31g,33g,35gおよび37gを組としてこれ
らは他の1つの局に設ける。
In implementing the invention, node 3
1a, 33a, 35a and 37a are grouped as one set.
Nodes 31b, 33b, 35b and 3
7b are provided in one station as a set,..., And the nodes 31g, 33g, 35g and 37g are provided as a set and provided in another station.

【0034】なお、各光通信網において、ノード間に光
ファイバを配置する際のそのさせ方は、光通信システム
の設計に応じ任意である。また、1つのノードに用意す
る予備光ファイバの数も任意とできる。図2の例では、
ノード間での各光ファイバの接続を、各光通信網31〜
37それぞれにおいて同じとしてある。
In each optical communication network, the way of arranging optical fibers between nodes is arbitrary according to the design of the optical communication system. Further, the number of spare optical fibers prepared for one node can be arbitrarily determined. In the example of FIG.
The connection of each optical fiber between nodes is performed by each optical communication network 31 to
37 are the same.

【0035】また、ノード間に設けたそれぞれの現用光
ファイバやそれぞれの予備光ファイバは、典型的には異
なる波長光が多重された1本の光ファイバでそれぞれ構
成する。ただし、これは一例であり、現用光ファイバや
予備光ファイバが、空間多重を実現する光ファイバ束の
場合であっても良い。
Each working optical fiber and each spare optical fiber provided between the nodes are typically constituted by one optical fiber in which light of different wavelengths is multiplexed. However, this is only an example, and the working optical fiber and the spare optical fiber may be an optical fiber bundle that realizes spatial multiplexing.

【0036】また、この第1の実施の形態の光通信シス
テムは、一端が加入者等21(図2中では21a〜21
gと示す。)に接続され他端が複数の光通信網31〜3
7のうちの少なくとも2つの光通信網それぞれの1つの
ノードにそれぞれ接続されていて、該他端に接続された
ノードのいずれかに前記加入者等を選択的に接続する交
換機をこの場合7つ(図2中39a〜39gで示す)有
した例となっている。
In the optical communication system according to the first embodiment, one end is a subscriber 21 (21a to 21a in FIG. 2).
g. ) And the other end is connected to a plurality of optical communication networks 31 to 3.
7 exchanges respectively connected to one node of at least two of the optical communication networks 7 and selectively connecting the subscribers or the like to one of the nodes connected to the other end. (Indicated by 39a to 39g in FIG. 2).

【0037】詳細には、この実施の形態では、各交換機
39a〜39gは、各光通信網のノードのうち同じ局に
設けられる各ノード(たとえば31a,33a,35
a,37a)に、それぞれ接続してある。したがつて、
たとえば交換機39aは、加入者等21aを、ノード3
1a,33a,35a,37aのいずれかに選択的に接
続する。ただし、図2の例の場合は、ノード35aから
他のノード35bや35gに向かう光ファイバが予備光
ファイバとなっているから、加入者等21aは光通信網
35内の他のノード35b〜35gとは接続されない。
もちろん、ノード35aからノード35bや35gに向
かう光ファイバを現用光ファイバとなるように接続すれ
ば、加入者等21aを、光通信網35内の残りのノード
35b〜35gに接続することができる。
More specifically, in the present embodiment, each of the exchanges 39a to 39g is a node (for example, 31a, 33a, 35) provided at the same station among the nodes of each optical communication network.
a, 37a). Therefore,
For example, the exchange 39a connects the subscriber 21a to the node 3
1a, 33a, 35a, and 37a. However, in the case of the example of FIG. 2, the optical fiber going from the node 35a to the other node 35b or 35g is a spare optical fiber, so that the subscriber 21a can use the other nodes 35b to 35g in the optical communication network 35. Is not connected.
Of course, if the optical fibers from the node 35a to the nodes 35b and 35g are connected to be working optical fibers, the subscribers 21a can be connected to the remaining nodes 35b to 35g in the optical communication network 35.

【0038】次に、各光通信網31〜37の各ノードの
構成について、ここではノード31eを例に挙げて説明
する。なお、この説明を図3(A)および(B)を参照
して行なう。ここで、図3(A)はノード31eの第1
の例の説明図、図3(B)はノード31eの第2の例の
説明図である。ただし、交換機39e等との接続関係を
理解し易くするために、交換機39eと加入者等21e
とを併せて図示してある。
Next, the configuration of each node of each of the optical communication networks 31 to 37 will be described by taking the node 31e as an example. This description will be made with reference to FIGS. Here, FIG. 3A shows the first node 31e.
FIG. 3B is an explanatory diagram of a second example of the node 31e. However, in order to make it easier to understand the connection relationship with the exchange 39e and the like, the exchange 39e and the subscribers 21e etc.
Are also illustrated.

【0039】図3に示した各例のノード31eは、光ク
ロスコネクト部41と、Add・Drop部43とを含
む。
Each of the nodes 31e shown in FIG. 3 includes an optical cross-connect unit 41 and an Add / Drop unit 43.

【0040】この光クロスコネクト部41は、多重され
た光信号の経路切り換えを担当する。また、Add・D
rop部43は、加入者等21からクロスコネクト部へ
前記多重方式に適合した任意の光信号を入力し、また、
前記多重された光信号の中から当該ノードについて予め
定めた特定の光信号を出力する。
The optical cross-connect unit 41 is responsible for switching the path of the multiplexed optical signal. Add ・ D
The rop unit 43 inputs an arbitrary optical signal conforming to the multiplexing method from the subscriber 21 to the cross-connect unit,
A specific optical signal predetermined for the node is output from the multiplexed optical signals.

【0041】この場合の光クロスコネクト部41は、第
1および第2の2つの波長分波素子41a,41bと、
第1および第2の2つの合波素子41c,41dと、こ
れら波長分波素子41a,41bの出力端子群、合波素
子41c,41dの入力端子群およびAdd・Drop
部43の間の接続関係を制御する光マトリクススイッチ
41eとで構成してある。
In this case, the optical cross-connect unit 41 includes first and second two wavelength demultiplexing elements 41a and 41b,
First and second two multiplexing elements 41c and 41d, output terminal groups of these wavelength demultiplexing elements 41a and 41b, input terminal groups of multiplexing elements 41c and 41d, and Add / Drop
An optical matrix switch 41e for controlling the connection relationship between the units 43 is provided.

【0042】そして、ここでは、:第1の波長分波素
子41aの入力端子に接続される光ファイバが、予備光
ファイバ15b(ただしノード31bとの間のもの)と
なり、:第2の波長分波素子41bの入力端子に接続
される光ファイバが、現用光ファイバ15a(ただしノ
ード31dとの間のもの)となり、:第1の合波素子
41cの出力端子に接続される光ファイバが、予備光フ
ァイバ15b(ただしノード31fとの間のもの)とな
り、:第2の合波素子41dの出力端子に接続される
光ファイバが、現用光ファイバ15a(ただしノード3
1gとの間のもの)となるような接続関係を考える。そ
のため、この場合の光マトリクススイッチ41eは、図
3(A)に示したように、第2の波長分波素子41bと
第2の合波素子41dとの間の接続を有効とするように
スイッチングする。ただし、光マトリクススッチ41e
は、当該ノード31eに対し予め定めた波長λn の光信
号については、Add・Drop部43に接続するよう
にスイッチングする。
Here, here: the optical fiber connected to the input terminal of the first wavelength demultiplexing element 41a becomes the spare optical fiber 15b (however, the one between the node 31b); The optical fiber connected to the input terminal of the wave element 41b becomes the working optical fiber 15a (however, the one between the node 31d), and the optical fiber connected to the output terminal of the first multiplexing element 41c is The optical fiber 15b (however, the one between the node 31f) is used. The optical fiber connected to the output terminal of the second multiplexing element 41d is connected to the working optical fiber 15a (however, the node 3f).
1g). Therefore, as shown in FIG. 3A, the optical matrix switch 41e in this case performs switching so as to make the connection between the second wavelength demultiplexing element 41b and the second multiplexing element 41d effective. I do. However, the optical matrix switch 41e
Switches the optical signal of the predetermined wavelength λn to the node 31e so as to be connected to the Add / Drop unit 43.

【0043】なおここでもし、第2の波長分波素子41
bと第1の合波素子41cとの間を接続するように光マ
トリクススイッチ41eを動作させれば、第1の合波素
子41cに接続されていた光ファイバが今度は現用光フ
ァイバとなり、第2の合波素子41dに接続されていた
光ファイバが今度は予備光ファイバとなる。その結果、
ノード31eはノード31fと接続される。そしてさら
に、ノード31fの光マトリクススイッチ(図示せず)
を、ノード31fとノード31gとの間の光ファイバが
有効になるように動作させる。そうすると、第1の光通
信網31のトポロジを、31a,31b,31c,31
d,31e,31f,31gというように各ノードが順
に接続されたトポロジに変更することもできる。
Here, the second wavelength demultiplexing element 41
If the optical matrix switch 41e is operated so as to connect between the first multiplexing element 41c and the first multiplexing element 41c, the optical fiber connected to the first multiplexing element 41c becomes the working optical fiber, and The optical fiber connected to the second multiplexing element 41d is now a spare optical fiber. as a result,
Node 31e is connected to node 31f. Further, an optical matrix switch (not shown) at the node 31f
Is operated such that the optical fiber between the node 31f and the node 31g is enabled. Then, the topology of the first optical communication network 31 is changed to 31a, 31b, 31c, 31
It is also possible to change to a topology in which each node is connected in order, such as d, 31e, 31f, 31g.

【0044】一方、Add・Drop部43は、ここで
は特定の波長λn の光信号、あるいはその中の特定のパ
ケットあるいはチャネルの光信号については、交換機3
9e側に送る。交換機39eは、通信を希望している加
入者等21eに、この光信号を送る。また、加入者等2
1eから交換機39eを経てAdd・Drop部43に
光信号を入力する場合は、Add・Drop部43は、
この光通信システムで使用されている多重方式に適合す
る光信号を光マトリクススイッチ41eに送る。例え
ば、波長多重の場合でかつ例えば波長λ3 の光信号を送
る必要のある場合は、そのような光信号を、Add・D
rop部43は光マトリクススイッチ41eに送る。こ
のように入力された光信号は、光マトリクススイッチ4
1eにて、この場合は第2の合波素子41dに入力され
るようにスイッチングされる。
On the other hand, here, the Add / Drop unit 43 converts the optical signal of the specific wavelength λn or the optical signal of the specific packet or channel therein into the switching equipment 3.
Send to 9e side. The exchange 39e sends this optical signal to the subscriber 21e who wants to communicate. In addition, 2
When an optical signal is input from 1e to the Add / Drop unit 43 via the exchange 39e, the Add / Drop unit 43
An optical signal conforming to the multiplex system used in this optical communication system is sent to the optical matrix switch 41e. For example, in the case of wavelength multiplexing and when it is necessary to transmit an optical signal of wavelength λ3, for example, such an optical signal is added
The rop unit 43 sends the signal to the optical matrix switch 41e. The optical signal thus input is transmitted to the optical matrix switch 4
At 1e, switching is performed so as to be input to the second multiplexing element 41d in this case.

【0045】Add・Drop部43が、この光通信シ
ステムで使用されている多重方式に適合する光信号を光
マトリクススイッチ41eに送るようにするには、Ad
d・Drop部43内、或は、加入者等21e自体にそ
のような信号発生装置を設ければ良い。そのような信号
発生装置としては、例えば波長多重の例で考えれば、波
長多重にて使用する必要がある各種の波長を発する光源
(例えば半導体レーザ)群を含む光信号発生装置とする
ことができる。
In order for the Add / Drop unit 43 to send an optical signal conforming to the multiplexing system used in this optical communication system to the optical matrix switch 41e, Add
Such a signal generator may be provided in the d-Drop section 43 or in the subscriber 21e itself. As such a signal generator, for example, in the case of wavelength multiplexing, an optical signal generator including a group of light sources (for example, semiconductor lasers) emitting various wavelengths that need to be used in wavelength multiplexing can be used. .

【0046】また、図3(B)に示した第2の例のノー
ドでは、光マトリクススイッチ41eの出力端子を合波
素子41gを介してAdd・Drop部43に接続し、
かつ、Add・Drop部43から光通信網へ入力する
光信号は波長分波素子41fを介し光マトリクススイッ
チ41eに接続した構成としてある。
In the node of the second example shown in FIG. 3B, the output terminal of the optical matrix switch 41e is connected to the Add / Drop section 43 via the multiplexing element 41g.
The optical signal input from the Add / Drop unit 43 to the optical communication network is connected to the optical matrix switch 41e via the wavelength demultiplexing element 41f.

【0047】この第2の例のノードであると、上記の第
1の例に比べ、複数の波長の光を加入者等21eに出力
出来、一方、加入者等21eから複数の波長の光を光通
信網に入力することができる。
In the node of the second example, light of a plurality of wavelengths can be output to the subscriber 21e and the like, and light of a plurality of wavelengths can be output from the subscriber 21e, as compared with the first example. It can be input to an optical communication network.

【0048】この第1の実施の形態の光通信システムで
は、第1の光通信網31にあっては現在6つのノードが
使用可能であるので6種類の波長を用いることで各ノー
ドのルーティングができる。また、第2の光通信網33
では5種類の波長を用いることで各ノードのルーティン
グができる。また第3の光通信網35および第4の光通
信網37それぞれでは、4種類の波長を用いることで各
ノードのルーティングができる。しかも、各光通信網3
1〜37が独立しているので、各光通信網31〜37で
は同じ波長を用いても問題がない。また、加入者等21
aは、この場合、第1の光通信網31での6個のノー
ド、第2の光通信網33での5個のノードおよび第4の
光通信網37での4個のノードの合計19個のノードと
通信ができる。ただし、この通信可能なノード数は各光
通信網のトポロジを変更すれば変更することができる。
そして、この図2の例の場合は、加入者等21aは、最
大、4×7=28個のノードと通信ができる。
In the optical communication system according to the first embodiment, since six nodes are currently available in the first optical communication network 31, the routing of each node is performed by using six types of wavelengths. it can. Also, the second optical communication network 33
In this case, each node can be routed by using five types of wavelengths. In each of the third optical communication network 35 and the fourth optical communication network 37, routing of each node can be performed by using four types of wavelengths. Moreover, each optical communication network 3
Since 1 to 37 are independent, there is no problem even if the same wavelength is used in each of the optical communication networks 31 to 37. In addition, subscribers 21
In this case, a is a total of 19 nodes of 6 nodes in the first optical communication network 31, 5 nodes in the second optical communication network 33, and 4 nodes in the fourth optical communication network 37. Can communicate with this number of nodes. However, the number of communicable nodes can be changed by changing the topology of each optical communication network.
In the example of FIG. 2, the subscriber 21a can communicate with a maximum of 4 × 7 = 28 nodes.

【0049】また、例えば、第1〜第4の光通信網31
〜37それぞれのトポロジを、7個のノードがリング状
に接続されたトポロジに変更し、かつ、各通信網から重
複なく1つずつ選択したノードで構成される組ごとに交
換機を設けると、7×7=49のノード間の通信が可能
になる。そうしたとしても、波長多重度は7で済む。な
お、ここでのトポロジの変更は、ノード(この実施の形
態では光クロスコネクト部41)が有する経路切換機能
により予備光ファイバを現用光ファイバに変更すること
で行なえる。
Also, for example, the first to fourth optical communication networks 31
-37 is changed to a topology in which seven nodes are connected in a ring, and a switch is provided for each set of nodes selected one by one from each communication network without duplication. Communication between × 7 = 49 nodes becomes possible. Even so, the wavelength multiplicity is only seven. Note that the topology can be changed here by changing the spare optical fiber to the working optical fiber by the path switching function of the node (the optical cross-connect unit 41 in this embodiment).

【0050】2.第2の実施の形態第1の実施の形態で
は、光クロスコネクト部41における光信号の経路切換
を波長により行なう例を説明した。すなわち波長分波素
子41a,41b(図3参照)で波長ごとの光信号を
得、波長ごとの光信号を光マトリクススイッチ41eで
スイッチングしていた。しかし、光クロスコネクト部で
は波長多重光のまま経路変更をし、Add・Drop部
で多重方式により定められている光信号分離要素に基づ
く信号分離(ここでは特定波長の分離)をしても良い。
この第2の実施の形態はその例である。
2. Second Embodiment In the first embodiment, an example has been described in which the path switching of the optical signal in the optical cross-connect unit 41 is performed based on the wavelength. That is, an optical signal for each wavelength is obtained by the wavelength demultiplexing elements 41a and 41b (see FIG. 3), and the optical signal for each wavelength is switched by the optical matrix switch 41e. However, the optical cross-connect unit may change the path while maintaining the wavelength multiplexed light, and the Add / Drop unit may perform signal separation (here, separation of a specific wavelength) based on an optical signal separation element determined by the multiplexing method. .
The second embodiment is an example.

【0051】図4は第2の実施の形態の第1の例の説明
図であり、主にノードの部分に着目して示した図であ
る。この場合もノード31eを例に挙げて説明する。し
かも、どの光ファイバが現用光ファイバまたは予備光フ
ァイバかという点は、図3の例と同じとしてある。
FIG. 4 is an explanatory diagram of a first example of the second embodiment, and mainly shows a node portion. Also in this case, the description will be given using the node 31e as an example. Further, which optical fiber is the working optical fiber or the standby optical fiber is the same as the example in FIG.

【0052】この第2の実施の形態のノード31eで
は、光クロスコネクト部を、M×Nの光マトリクススイ
ッチ45で構成する。このM×Nの光マトリクススイッ
チ45の、入力端子の一部と出力端子の一部との間に、
Add・Drop部47(詳細は後述する)を接続して
ある。また、この光マトリクススイッチ45の残りの入
力端子に入力側の現用光ファイバ15aおよび予備光フ
ァイバ15bを別々に接続し、残りの出力端子に出力側
の現用光ファイバ15aおよび予備光ファイバ15bを
別々に接続してある。
In the node 31e of the second embodiment, the optical cross-connect section is constituted by an M × N optical matrix switch 45. Between the part of the input terminal and the part of the output terminal of the M × N optical matrix switch 45,
The Add / Drop unit 47 (details will be described later) is connected. Also, the input working optical fiber 15a and the standby optical fiber 15b are separately connected to the remaining input terminals of the optical matrix switch 45, and the output working optical fiber 15a and the standby optical fiber 15b are separately connected to the remaining output terminals. Connected to

【0053】また、Add・Drop部47は、波長分
波素子47aと、合波素子47bと、波長分波素子47
aの各出力端子および合波素子47bの各入力端子の間
にそれぞれ設けられた光スイッチ47cと、各種波長を
発する光源例えば半導体レーザ(図示せず)とで構成し
てある。波長分波素子47aは、光マトリクススイッチ
45から入力される波長多重光を分波する。光スイッチ
47cの群は所望の波長の光を交換機39e側(ひいて
は加入者等21e)に出力しそれ以外の光を合波素子4
7bに入力する。また、加入者等21eが光通信網31
に信号を送信する場合は、この光スイッチ47cの群
は、図示しない光源からの光のうちの所望の波長の光
を、合波素子47bに入力する。合波素子47bは入力
端子に入力された光を合波してこれを光マトリクススイ
ッチ45に出力する。
The Add / Drop unit 47 includes a wavelength demultiplexing element 47a, a multiplexing element 47b, and a wavelength demultiplexing element 47b.
It is composed of an optical switch 47c provided between each output terminal of a and each input terminal of the multiplexing element 47b, and a light source that emits various wavelengths, for example, a semiconductor laser (not shown). The wavelength demultiplexing element 47a demultiplexes the wavelength multiplexed light input from the optical matrix switch 45. The group of optical switches 47c outputs light of a desired wavelength to the exchange 39e (and thus the subscriber 21e) and outputs the other light to the multiplexing device 4.
7b. Also, the subscriber or the like 21e is connected to the optical communication network 31.
When a signal is transmitted to the optical switch 47c, the group of optical switches 47c inputs light having a desired wavelength from light from a light source (not shown) to the multiplexing element 47b. The multiplexing element 47 b multiplexes the light input to the input terminal and outputs the multiplexed light to the optical matrix switch 45.

【0054】したがって、この第2の実施の形態の第1
の例の光クロスコネクト部45およびAdd・Drop
部47でも、加入者等21eと光通信網との接続が可能
である。
Therefore, the first embodiment of the second embodiment
Optical cross-connect part 45 and Add-Drop
The unit 47 can also connect the subscriber 21e and the optical communication network.

【0055】次に、第2の実施の形態の第2の例を説明
する。この第2の例は、波長多重かつパケット多重の光
信号をAdd・Dropする際に好適なAdd・Dro
p部を有した例である。この説明を図5を主に参照して
行なう。ここで、この図は、第2の例の光通信システム
での主にAdd・Drop部に着目した図である。
Next, a second example of the second embodiment will be described. This second example is suitable for Add / Drop when adding / dropping a wavelength-multiplexed and packet-multiplexed optical signal.
This is an example having a p-part. This description will be made mainly with reference to FIG. Here, this diagram is a diagram mainly focusing on the Add / Drop section in the optical communication system of the second example.

【0056】この第2の実施の形態の第2の例では、A
dd・Drop部47を、分岐部47d、分波部47
e、増幅部47fおよび交換部47gで構成する。
In the second example of the second embodiment, A
The dd / Drop unit 47 is divided into a branching unit 47d and a branching unit 47.
e, an amplification section 47f and an exchange section 47g.

【0057】分岐部47dは、光クロスコネクト部45
(図4参照)から送られてくる光信号を分岐する。分波
部47eは、分岐部47dで分岐された一方の光を波長
ごとに分ける。波長ごとに分けた光のうち、加入者等2
1aが必要な光信号は交換機39eを介し加入者等21
eに出力される。増幅部47fは分岐部47dで分岐さ
れた他方の光信号のパワーを回復するために該光信号を
増幅して交換部47gに送る。交換部47gは、ここに
入力された光信号の中から、所定のパケットの信号を消
去し、かつ、加入者等21eが光通信網へ送信したいパ
ケット化された光信号を挿入する。この第2の例によれ
ば、波長多重かつパケット多重された光信号をも扱える
光通信システムを実現することができる。
The branching section 47d is connected to the optical cross-connect section 45.
(See FIG. 4) The optical signal transmitted from FIG. The splitter 47e splits one of the lights split by the splitter 47d for each wavelength. Of the light divided for each wavelength,
The optical signal requiring 1a is transmitted to the subscriber 21 via the exchange 39e.
e. The amplifying unit 47f amplifies the optical signal to recover the power of the other optical signal branched by the branching unit 47d and sends the amplified optical signal to the switching unit 47g. The switching unit 47g deletes a signal of a predetermined packet from the optical signal input thereto, and inserts a packetized optical signal that the subscriber 21e wants to transmit to the optical communication network. According to the second example, it is possible to realize an optical communication system capable of handling wavelength-multiplexed and packet-multiplexed optical signals.

【0058】なお、この第2の例において用いたAdd
・Drop部は、この出願人に係る特許2509332
に記載されているので、これ以上の詳細な説明はここで
は省略する。
The Add used in the second example is
-The Drop section is based on the patent 2509332 of the present applicant.
Therefore, further detailed description is omitted here.

【0059】次に、第2の実施の形態の第3の例を説明
する。この第3の例とは、予備光ファイバ15b同士を
接続して構成した光ファイバ網部分も、有効かつ独立の
光通信網とした例である。光ファイバの利用効率を高め
た例である。この説明を図6を参照して行なう。ここ
で、図6(A)、(B)は第2の実施の形態の第3の例
の光通信システムの主にノードに着目した図である。こ
の場合もノード31eを例に挙げて説明する。
Next, a third example of the second embodiment will be described. The third example is an example in which the optical fiber network portion configured by connecting the spare optical fibers 15b is also an effective and independent optical communication network. This is an example in which the utilization efficiency of the optical fiber is increased. This will be described with reference to FIG. Here, FIGS. 6A and 6B are diagrams mainly focusing on nodes in the optical communication system of the third example of the second embodiment. Also in this case, the description will be given using the node 31e as an example.

【0060】この第2の実施の形態の第3の例では、光
クロスコネクト部45は、その入出力側それぞれの現用
光ファイバ15a同士を接続することに加え、予備光フ
ァイバ15b同士も接続する。そして、現用光ファイバ
15a同士を接続した経路中および予備光ファイバ15
b同士を接続した経路中に、Add・Drop部47を
それぞれ配置してある。以下、詳細に説明する。
In the third example of the second embodiment, the optical cross-connect unit 45 connects the working optical fibers 15a on the input and output sides thereof and also connects the spare optical fibers 15b. . Then, in the path connecting the working optical fibers 15a and the spare optical fiber 15a.
The Add / Drop units 47 are respectively arranged in the paths connecting b with each other. The details will be described below.

【0061】例えば図6(A)の例では、光クロスコネ
クト部を、入力側の光マトリクススイッチ45aおよび
出力側の光マトリクススイッチ45bの2個の光マトリ
クススイッチで構成する。そして、入力側の光マトリク
ススイッイ45aの入力端子に入力側の予備光ファイバ
15bおよび現用光ファイバ15aを接続する。また、
出力側の光マトリクススイッチ45bの出力端子に出力
側の予備光ファイバ15bおよび現用光ファイバ15a
を接続する。そして、この場合は、各光マトリクススイ
ッチ45a,45bそれぞれは、入力側および出力側の
予備光ファイバ15b同士が接続され、かつ、入力側お
よび出力側の現用光ファイバ15a同士が接続されるよ
う、経路設定する。ただし、各光マトリクススイッチ4
5a,45b間の、現用光ファイバの経路中および予備
光ファバの経路中それぞれに、図4を用いて説明したA
dd・Drop部47を設けてある。
For example, in the example of FIG. 6A, the optical cross-connect section is composed of two optical matrix switches, an input-side optical matrix switch 45a and an output-side optical matrix switch 45b. Then, the input-side spare optical fiber 15b and the working optical fiber 15a are connected to the input terminals of the input-side optical matrix switch 45a. Also,
The output side spare optical fiber 15b and the working optical fiber 15a are connected to the output terminals of the output side optical matrix switch 45b.
Connect. In this case, each of the optical matrix switches 45a and 45b is connected such that the input side and output side spare optical fibers 15b are connected to each other, and the input side and output side working optical fibers 15a are connected to each other. Set the route. However, each optical matrix switch 4
5A and 45b, in the path of the working optical fiber and in the path of the standby optical fiber, respectively.
A dd / Drop unit 47 is provided.

【0062】また、図6(B)の例は、図6(A)での
2個用いていた光マトリクススイッチ45a,45bを
1つの光マトリクススイッチで代替した例である。
The example of FIG. 6B is an example in which two optical matrix switches 45a and 45b used in FIG. 6A are replaced with one optical matrix switch.

【0063】図6(A)、(B)いずれの場合も、現用
光ファイバによる光ファイバ網と予備光ファイバによる
光ファイバ網とが独立かつ有効な光通信網になることが
理解できる。従って、光ファイバの利用効率を高められ
ることが分かる。
6A and 6B, it can be understood that the optical fiber network using the working optical fiber and the optical fiber network using the backup optical fiber are independent and effective optical communication networks. Therefore, it is understood that the utilization efficiency of the optical fiber can be improved.

【0064】[0064]

【発明の効果】上述した説明から明らかなように、この
発明の光通信システムは、複数の光通信網であって、各
光通信網が、経路切換機能を有する複数のノードおよび
これらを結ぶ光ファイバ網を含み、しかも、各光通信網
ごとの光ファイバ網が、各光通信網ごとで予め予定した
トポロジを形成する現用光ファイバとトポロジの変更に
寄与する予備光ファイバとで構成されている、複数の光
通信網を具える。さらに、該複数の光通信網のうちの少
なくとも2つの光通信網に、これら光通信網それぞれの
1つのノードを介して一端が接続され、他端が加入者等
に接続され、該加入者等を前記少なくとも2つの光通信
網のいずれかに選択的に接続する交換機を少なくとも1
つ具える。
As is apparent from the above description, the optical communication system of the present invention comprises a plurality of optical communication networks, each of which comprises a plurality of nodes having a path switching function and an optical connection between them. In addition, the optical fiber network for each optical communication network includes a working optical fiber that forms a predetermined topology for each optical communication network and a spare optical fiber that contributes to the change of the topology. , Comprising a plurality of optical communication networks. Further, one end is connected to at least two optical communication networks of the plurality of optical communication networks via one node of each of the optical communication networks, and the other end is connected to a subscriber or the like. At least one switch for selectively connecting the switch to one of the at least two optical communication networks.
I have it.

【0065】そのため、各光通信網は交換機で縁切りさ
れるので互いは独立した光通信網となる。したがって、
各光通信網で例えば同じ波長を用いた光多重通信を行な
ったとしても、通信が可能になる。このことから、大規
模な光通信システムを少ない多重度でかつ簡易に構成す
ることができる。
For this reason, since each optical communication network is cut off by the exchange, it becomes an independent optical communication network. Therefore,
Even if, for example, optical multiplex communication using the same wavelength is performed in each optical communication network, communication becomes possible. This makes it possible to easily configure a large-scale optical communication system with a small number of multiplexes.

【0066】然も、予備光ファイバを現用光ファイバに
変更することにより、各光通信網のトポロジを簡易に変
更することができる。したがって、トポロジの変更に柔
軟に対応できる光通信システムを実現することができ
る。
By changing the spare optical fiber to the working optical fiber, the topology of each optical communication network can be easily changed. Therefore, it is possible to realize an optical communication system that can flexibly respond to a change in topology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の作用の説明図である。FIG. 1 is an explanatory diagram of the operation of the present invention.

【図2】第1の実施の形態の説明図である。FIG. 2 is an explanatory diagram of the first embodiment.

【図3】ノードの構成例の説明図である。FIG. 3 is an explanatory diagram of a configuration example of a node;

【図4】第2の実施の形態の第1の例の説明図であり、
主にノードに着目した図である。
FIG. 4 is an explanatory diagram of a first example of the second embodiment,
FIG. 3 is a diagram mainly focusing on nodes.

【図5】第2の実施の形態の第2の例の説明図であり、
主にAdd・Drop部に着目した図である。
FIG. 5 is an explanatory diagram of a second example of the second embodiment;
FIG. 3 is a diagram mainly focusing on an Add / Drop unit.

【図6】第2の実施の形態の第3の例の説明図であり、
主にノードに着目した図である。
FIG. 6 is an explanatory diagram of a third example of the second embodiment;
FIG. 3 is a diagram mainly focusing on nodes.

【符号の説明】 11,13,31,33,35,37:光通信網 11a〜11d、13a〜13d、31a〜31g、3
3a〜33g、35a〜35g、37a〜37g:ノー
ド 15a:光ファイバ(現用光ファイバ) 15b:光ファイバ(予備光ファイバ) 17、39a〜39g:交換機 19a〜19d:ノードの組 21a〜21g:加入者等 21x:加入者 21y:下位の通信網 41:光クロスコネクト部 41a,41b,41f:波長分波素子 41c,41d,41g:合波素子 41e:光マトリクススイッチ 43:Add・Drop部 45:第2の実施の形態の光クロスコネクト部 45a,45b:光マトリクススイッチ 47:第2の実施の形態のAdd・Drop部 47a:波長分波素子 47b:合波素子 47c:光スイッチ 47d:分岐部 47e:分波部 47f:増幅部 47g:交換部
[Description of Signs] 11, 13, 31, 33, 35, 37: Optical communication networks 11a to 11d, 13a to 13d, 31a to 31g, 3
3a to 33g, 35a to 35g, 37a to 37g: Node 15a: Optical fiber (working optical fiber) 15b: Optical fiber (standby optical fiber) 17, 39a to 39g: Switch 19a to 19d: Node set 21a to 21g: Join 21x: subscriber 21y: lower communication network 41: optical cross-connect unit 41a, 41b, 41f: wavelength demultiplexing device 41c, 41d, 41g: multiplexing device 41e: optical matrix switch 43: Add / Drop unit 45: Optical cross-connect portions 45a and 45b of the second embodiment: optical matrix switches 47: Add / drop portions of the second embodiment 47a: wavelength demultiplexing devices 47b: multiplexing devices 47c: optical switches 47d: branch portions 47e: Demultiplexing unit 47f: Amplifying unit 47g: Exchange unit

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 所定の方式で多重された光信号を用い通
信を行なう光通信システムにおいて、 複数の光通信網であって、各光通信網が、経路切換機能
を有する複数のノードおよびこれらノードを結ぶ光ファ
イバ網を含み、しかも、各光通信網ごとの光ファイバ網
が、各光通信網ごとで予め予定したトポロジを形成する
現用光ファイバと前記ノードが有する経路切り換え機能
によって有効とされるとトポロジの変更に寄与する予備
光ファイバとで構成されている、複数の光通信網を具
え、 該複数の光通信網のうちの少なくとも2つの光通信網
に、これら光通信網それぞれの1つのノードを介して一
端が接続され、他端が加入者等に接続され、該加入者等
を前記少なくとも2つの光通信網のいずれかに選択的に
接続する交換機を少なくとも1つ具えたことを特徴とす
る光通信システム。
1. An optical communication system for performing communication using optical signals multiplexed by a predetermined method, comprising: a plurality of optical communication networks, each of which has a plurality of nodes having a path switching function; And the optical fiber network for each optical communication network is enabled by a working optical fiber forming a predetermined topology for each optical communication network and a path switching function of the node. And a spare optical fiber contributing to a change in topology, comprising a plurality of optical communication networks, wherein at least two of the plurality of optical communication networks have one of each of the optical communication networks. At least one switch having one end connected via a node and the other end connected to a subscriber or the like, and selectively connecting the subscriber or the like to one of the at least two optical communication networks. Optical communication system characterized by the.
【請求項2】 請求項1に記載の光通信システムにおい
て、 前記の各光通信網としてノード数が同じである光通信網
をそれぞれ具え、 前記交換機を、各光通信網から1つずつ選ばれるノード
と接続してあることを特徴とする光通信システム(ただ
し、前記交換機を複数用いる場合は、これら交換機が同
一の光通信網の同一ノードに接続されないようにしてあ
る)。
2. The optical communication system according to claim 1, further comprising: an optical communication network having the same number of nodes as each of the optical communication networks; and selecting one of the switches from each of the optical communication networks. An optical communication system characterized by being connected to a node (however, when a plurality of switches are used, these switches are not connected to the same node of the same optical communication network).
【請求項3】 請求項1に記載の光通信システムにおい
て、 前記複数のノードそれぞれを、 当該ノードでの前記多重された光信号の経路切り換えを
担当する光クロスコネクト部と、 該光クロスコネクト部および前記光交換機間に設けら
れ、前記加入者等から該光クロスコネクト部へ前記多重
方式に適合した任意の光信号を入力し、また、前記多重
された光信号の中から当該ノードについて予め定めた特
定の光信号を前記加入者等へ出力するAdd・Drop
部とを含む構成としたことを特徴とする光通信システ
ム。
3. The optical communication system according to claim 1, wherein each of the plurality of nodes is configured to switch a path of the multiplexed optical signal at the node, and an optical cross-connect unit. And an optical switch provided between the optical switches, inputting an arbitrary optical signal conforming to the multiplexing method from the subscriber or the like to the optical cross-connect unit, and determining the node in advance from among the multiplexed optical signals. Add-Drop for outputting a specific optical signal to the subscriber or the like
And an optical communication system comprising:
【請求項4】 請求項3に記載の光通信システムにおい
て、 前記光クロスコネクト部を、前記多重方式により定めら
れている光信号分離要素に基づいて経路を切り換える光
クロスコネクト部としたことを特徴とする光通信システ
ム。
4. The optical communication system according to claim 3, wherein the optical cross-connect unit is an optical cross-connect unit that switches a path based on an optical signal separation element defined by the multiplexing method. Optical communication system.
【請求項5】 請求項3に記載の光通信システムにおい
て、 前記光クロスコネクト部を、複数の波長分波素子と、複
数の合波素子と、前記複数の波長分波素子の出力端子
群、前記複数の合波素子の入力端子群および前記Add
・Drop部の間の接続関係を制御する光マトリクスス
イッチとで構成したことを特徴とする光通信システム。
5. The optical communication system according to claim 3, wherein the optical cross-connect unit includes a plurality of wavelength demultiplexing elements, a plurality of multiplexing elements, and an output terminal group of the plurality of wavelength demultiplexing elements. The input terminal group of the plurality of multiplexing elements and the Add
An optical communication system comprising an optical matrix switch for controlling a connection relationship between the Drop units.
【請求項6】 請求項3に記載の光通信システムにおい
て、 前記光クロスコネクト部を、M×Nの光マトリクススイ
ッチであってその入力端子の一部とその出力端子の一部
との間に前記Add・Drop部が接続されているM×
N光マトリクススイッチで構成したことを特徴とする光
通信システム(ただし、M、Nは2以上の整数であり、
互いが同じでも良い。)。
6. The optical communication system according to claim 3, wherein the optical cross-connect unit is an M × N optical matrix switch between a part of its input terminal and a part of its output terminal. Mx to which the Add / Drop unit is connected
An optical communication system comprising N optical matrix switches (where M and N are integers of 2 or more;
Each other may be the same. ).
【請求項7】 請求項1に記載の光通信システムにおい
て、 予備光ファイバ同士を接続することで構成される光ファ
イバ網部分も、独立の光通信網としてあることを特徴と
する光通信システム。
7. The optical communication system according to claim 1, wherein an optical fiber network portion configured by connecting the spare optical fibers is also an independent optical communication network.
【請求項8】 請求項1に記載の光通信システムにおい
て、 前記各光通信網をリング網またはバス網としたことを特
徴とする光通信システム。
8. The optical communication system according to claim 1, wherein each of the optical communication networks is a ring network or a bus network.
JP9068606A 1997-03-21 1997-03-21 Optical communication system Withdrawn JPH10271071A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9068606A JPH10271071A (en) 1997-03-21 1997-03-21 Optical communication system
US09/044,187 US6154587A (en) 1997-03-21 1998-03-19 Optical cross connector apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9068606A JPH10271071A (en) 1997-03-21 1997-03-21 Optical communication system

Publications (1)

Publication Number Publication Date
JPH10271071A true JPH10271071A (en) 1998-10-09

Family

ID=13378613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9068606A Withdrawn JPH10271071A (en) 1997-03-21 1997-03-21 Optical communication system

Country Status (1)

Country Link
JP (1) JPH10271071A (en)

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452683C (en) * 2003-12-04 2009-01-14 上海交通大学 Intelligent wavelength routing optical network node structure supporting link management protocol
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith

Cited By (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452683C (en) * 2003-12-04 2009-01-14 上海交通大学 Intelligent wavelength routing optical network node structure supporting link management protocol
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices

Similar Documents

Publication Publication Date Title
JPH10271071A (en) Optical communication system
US6154587A (en) Optical cross connector apparatus
JP5004914B2 (en) Optical cross-connect device and optical network
US7162632B2 (en) Efficient optical network design using multi-granular optical cross-connects with wavelength band switching
KR100271210B1 (en) Optical cross-connect with layered modularity
JP5287993B2 (en) Optical signal transmitter, optical signal receiver, wavelength division multiplexing optical communication device, and wavelength path system
JP2001016625A (en) Optical cross connector and optical network
JP2002208895A (en) Optical add/drop device
US20020159114A1 (en) Method and apparatus for routing signals through an optical network
JP4294493B2 (en) Optical cross-connector including multi-stage Clos network in which a single-stage matrix constitutes one stage of Clos network
US6842554B2 (en) Optical cross-connect device and optical network
JP2003198485A (en) Cross connect device and optical communication system
JP3574754B2 (en) Optical path cross connect device
JP4408806B2 (en) Path protection method for WDM network and corresponding node
JP2002246983A (en) Packet router for optical transmission network
JP2000004460A (en) Optical communication node and optical communication network
JPH06350563A (en) Wavelength multiple network
JP2000115133A (en) Optical path cross connection device and optical network
JP3751860B2 (en) Optical node equipment
JP5622197B2 (en) Hierarchical optical path cross-connect equipment for optical path networks
JP3566593B2 (en) WDM network
US20030118274A1 (en) Optical cross-connect device and optical network
US20020109880A1 (en) Method and apparatus for switching wavelength-division-multiplexed optical signals
JP3615464B2 (en) Full-mesh wavelength division multiplexing optical network system and nodes used in this system
JP3889721B2 (en) Optical wavelength division multiplexing network equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601