JPH10256633A - Optical fiber amplifier with dispersion compensation function - Google Patents

Optical fiber amplifier with dispersion compensation function

Info

Publication number
JPH10256633A
JPH10256633A JP9051261A JP5126197A JPH10256633A JP H10256633 A JPH10256633 A JP H10256633A JP 9051261 A JP9051261 A JP 9051261A JP 5126197 A JP5126197 A JP 5126197A JP H10256633 A JPH10256633 A JP H10256633A
Authority
JP
Japan
Prior art keywords
optical fiber
dispersion compensation
port
grating
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9051261A
Other languages
Japanese (ja)
Inventor
Tetsuo Komukai
哲郎 小向
Masataka Nakazawa
正隆 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9051261A priority Critical patent/JPH10256633A/en
Publication of JPH10256633A publication Critical patent/JPH10256633A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06725Fibre characterized by a specific dispersion, e.g. for pulse shaping in soliton lasers or for dispersion compensating [DCF]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2333Double-pass amplifiers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a compact low noise optical fiber amplifier with dispersion compensation function, by connecting a rare earth doped optical fiber with which a chirp fiber grating is connected, with the second port of a 3-port type circulator. SOLUTION: A WDM coupler 5, an erbium doped optical fiber 3 and a 1.55 μm band linear chirp fiber grating 8 are connected in series with the second port of a 3-port type circulator 1. Through the WDM coupler 5, the erbium doped optical fiber 3 is excited by a 1.48 μm band semiconductor laser 6. Thereby inputted optical pulses of 1.55 μm band are amplified and subjected to dispersion compensation. By connecting the long wavelength side of the chirp fiber grating 8 with the erbium doped optical fiber 3, the longer wavelength side light is the more rapidly reflected, so that the optical signal which has propagated in a 1.33 μm zero-dispersion fiber is subjected to dispersion compensation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ中を伝
搬する光信号を増幅するための、分散補償機能付き光フ
ァイバ増幅器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber amplifier having a dispersion compensation function for amplifying an optical signal propagating in an optical fiber.

【0002】光ファイバを用いて通信を行う光ファイバ
伝送において、長距離の伝送を行う場合は途中で増幅器
によって中継する必要がある。光ファイバ増幅器の構成
例を図1に示す。図1では、入射光信号2が入射し出射
光信号7が出射する3ポート型光サーキュレータ1の第
2のポートにWDMファイバカプラー5、エルビウム添
加光ファイバ3及び信号光反射ミラー4が接続され、W
DMファイバカプラー5に1.48μm 帯半導体レーザ6が
接続されている。この光増幅器は、半導体レーザ6から
の励起光によってエルビウム添加光ファイバ3を励起
し、入射光信号2を増幅するものである。
[0002] In the case of long-distance transmission in optical fiber transmission in which communication is performed using an optical fiber, it is necessary to relay the signal by an amplifier on the way. FIG. 1 shows a configuration example of an optical fiber amplifier. In FIG. 1, the WDM fiber coupler 5, the erbium-doped optical fiber 3, and the signal light reflecting mirror 4 are connected to the second port of the three-port optical circulator 1 from which the incident optical signal 2 enters and the output optical signal 7 exits. W
A 1.48 μm band semiconductor laser 6 is connected to the DM fiber coupler 5. This optical amplifier excites the erbium-doped optical fiber 3 with the excitation light from the semiconductor laser 6 and amplifies the incident optical signal 2.

【0003】高速長距離中継伝送を行う場合、光パルス
が波長分散によって広がるため、中継点において光増幅
のみならず分散補償を行う必要がある。例えば、 1.3μ
m 零分散ファイバ(SMF)を用いて波長1.55μm 帯で
伝送を行う場合等は、分散補償ファイバ又は分散補償平
面導波路によって分散補償を行い、次にエルビウム添加
光ファイバ増幅器で光パワーを増幅して光信号を送り出
す。
When performing high-speed long-distance relay transmission, an optical pulse spreads due to chromatic dispersion, so that it is necessary to perform not only optical amplification but also dispersion compensation at a relay point. For example, 1.3μ
m When transmission is performed in the 1.55 μm band using a zero-dispersion fiber (SMF), dispersion compensation is performed using a dispersion compensating fiber or a dispersion compensating planar waveguide, and then the optical power is amplified using an erbium-doped optical fiber amplifier. Send out an optical signal.

【0004】しかしながら、例えば、 1.3μm 零分散フ
ァイバ(SMF)を1.55μm 帯で利用する場合に分散補
償ファイバを用いるとすると、50kmのSMFに対して
10km程度の長さの分散補償ファイバが必要になり、必
ずしもコンパクトとは言い難いという問題点がある。ま
た、一般に分散補償ファイバはコア径が小さいので、自
己位相変調等の非線形光学効果が起き易く信号が劣化し
易い。一方、分散補償平面導波路はコンパクトではある
が挿入損失が大きく、信号対雑音(S/N比)が劣化し
易いという問題点がある。従ってコンパクトで低雑音の
分散補償機能付き光ファイバ増幅器の実現が望まれてい
た。
However, if a dispersion compensating fiber is used when a 1.3 μm zero dispersion fiber (SMF) is used in the 1.55 μm band, for example, a dispersion compensating fiber having a length of about 10 km is required for a 50 km SMF. However, there is a problem that it is not necessarily compact. In addition, since a dispersion compensating fiber generally has a small core diameter, a nonlinear optical effect such as self-phase modulation easily occurs and a signal is easily deteriorated. On the other hand, although the dispersion-compensating planar waveguide is compact, there is a problem that the insertion loss is large and the signal-to-noise (S / N ratio) is easily deteriorated. Accordingly, it has been desired to realize a compact, low-noise optical fiber amplifier with a dispersion compensation function.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上述
のような従来技術における問題点に鑑み、低雑音で且つ
コンパクトな分散補償機能付き光ファイバ増幅器を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a low-noise and compact optical fiber amplifier with a dispersion compensation function in view of the above-mentioned problems in the prior art.

【0006】[0006]

【課題を解決するための手段】本発明の分散補償機能付
き光ファイバ増幅器は、上記の目的を達成するため、チ
ャープファイバグレーティングを接続した希土類添加光
ファイバを3ポート型光サーキュレータの第2ポートに
接続し、励起用半導体レーザで希土類添加光ファイバを
励起する構成を有する。
In order to achieve the above object, an optical fiber amplifier with a dispersion compensating function according to the present invention uses a rare earth-doped optical fiber connected to a chirped fiber grating at a second port of a three-port optical circulator. It is configured to connect and excite the rare earth-doped optical fiber with the semiconductor laser for excitation.

【0007】このような本発明の分散補償機能付き光フ
ァイバ増幅器は、更に希土類添加光ファイバ励起光を反
射するグレーティングを接続してもよい。このようにす
れば、希土類添加光ファイバを励起するための励起光を
効率よく利用することができる。
In the optical fiber amplifier with dispersion compensation function of the present invention, a grating that reflects a rare-earth-doped optical fiber excitation light may be further connected. In this case, the pumping light for pumping the rare earth-doped optical fiber can be used efficiently.

【0008】更に他の本発明の分散補償機能付き光ファ
イバ増幅器は、チャープファイバグレーティングをその
一部に形成した希土類添加光ファイバを3ポート型光サ
ーキュレータの第2ポートに接続し、励起用半導体レー
ザで希土類添加光ファイバを励起する構成を有する。
In another optical fiber amplifier with dispersion compensation function of the present invention, a rare earth-doped optical fiber having a chirped fiber grating formed in a part thereof is connected to a second port of a three-port optical circulator, and a pumping semiconductor laser is provided. To excite the rare-earth-doped optical fiber.

【0009】このような本発明の分散補償機能付き光フ
ァイバ増幅器は、更に希土類添加光ファイバ励起光を反
射するグレーティングをその一部に形成した希土類添加
光ファイバを3ポート型光サーキュレータの第2ポート
に接続してもよい。このようにすれば、希土類添加光フ
ァイバを励起するための励起光を効率よく利用すること
ができる。
Such an optical fiber amplifier with dispersion compensation function of the present invention further comprises a rare earth-doped optical fiber having a grating for reflecting the excitation light of the rare earth-doped optical fiber formed in a part of the second port of the three-port optical circulator. May be connected. In this case, the pumping light for pumping the rare earth-doped optical fiber can be used efficiently.

【0010】チャープファイバグレーティングは、ピッ
チ(屈折率変化の周期)がファイバの長さ方向に変化し
ており、反射する光の波長も長さ方向に変化するファイ
バ型のグレーティングである。図2はこれを図示したも
のである。図2において8は1.55μm 帯チャープファイ
バグレーティング、9は長波長の光、10は短波長の光で
ある。図2に示されるようにピッチが変化しているグレ
ーティング8において、ピッチが長い方(長波長反射
側)から光を入射させると、長波長の光9はグレーティ
ングに入射後直ちに反射されるが、短波長の光10はグレ
ーティング中をかなり進んでから反射されるため、結果
的に短波長の光ほど遅れて反射されることになる。ま
た、ピッチが短い方から光を入射させると、今度は逆の
特性が得られる。このため、波長に依存したパルスの遅
延特性が得られる。
A chirped fiber grating is a fiber type grating in which the pitch (period of refractive index change) changes in the length direction of the fiber, and the wavelength of reflected light also changes in the length direction. FIG. 2 illustrates this. In FIG. 2, reference numeral 8 denotes a 1.55 μm band chirped fiber grating, 9 denotes long-wavelength light, and 10 denotes short-wavelength light. As shown in FIG. 2, in the grating 8 in which the pitch changes, when light is made incident from the longer pitch (the longer wavelength reflection side), the longer wavelength light 9 is immediately reflected after being incident on the grating. Since the short-wavelength light 10 is reflected after traveling considerably through the grating, the shorter-wavelength light is eventually reflected later. In addition, when light is incident from the shorter pitch, the opposite characteristic is obtained this time. Therefore, a pulse delay characteristic depending on the wavelength is obtained.

【0011】このように、チャープファイバグレーティ
ングは分散媒質の役割を果たすことができ、入射方向に
よって分散の正負が変化する。そこで、入射して来る光
パルスのチャープの状態に応じてグレーティングの分散
を設定しさえすれば、光パルスを反射する際に圧縮する
ことができることになる。
As described above, the chirped fiber grating can serve as a dispersion medium, and the sign of the dispersion changes depending on the incident direction. Therefore, if the dispersion of the grating is set in accordance with the state of chirp of the incoming light pulse, the light pulse can be compressed when reflected.

【0012】本発明によれば、このようなチャープファ
イバグレーティングを希土類添加光ファイバに接続し、
更に3ポート型光サーキュレータと組合せて光増幅器を
構成する。本発明の光ファイバ増幅器においては、光フ
ァイバを伝搬することによって波長分散を介してパルス
幅が広がり且つパワーが減衰した光信号が光サーキュレ
ータに入射すると、先ず最初に希土類添加光ファイバに
送られ、光信号のレベルが増幅される。その後、チャー
プファイバグレーティングにより反射されるが、ここで
光ファイバの分散とは逆の分散を持つようにチャープフ
ァイバグレーティングを設定しておけば、光パルスは圧
縮されて再び希土類添加光ファイバに入射する。そこで
再び光増幅された後、再び光サーキュレータを通過して
出射される。このようにして、パワーが弱まり且つ分散
広がりを持つ光信号を再び元の状態に戻すことができ
る。
According to the present invention, such a chirped fiber grating is connected to a rare earth-doped optical fiber,
Further, an optical amplifier is configured by combining with a three-port optical circulator. In the optical fiber amplifier of the present invention, when an optical signal whose pulse width is widened and whose power is attenuated through chromatic dispersion by propagating through the optical fiber is incident on the optical circulator, the optical signal is first sent to the rare earth-doped optical fiber, The level of the optical signal is amplified. After that, the light is reflected by the chirped fiber grating, but if the chirped fiber grating is set to have a dispersion opposite to the dispersion of the optical fiber, the light pulse is compressed and enters the rare-earth-doped optical fiber again. . Then, after the light is amplified again, it passes through the optical circulator again and is emitted. In this way, an optical signal whose power is weakened and has a dispersion spread can be returned to the original state.

【0013】[0013]

【発明の実施の形態】次に図面を用いて本発明の実施例
を説明する。図3は本発明の光ファイバ増幅器の第1の
実施例を示す図である。3ポート型光サーキュレータ1
の第2ポートに1.48μm /1.55μm WDMカプラー5、
エルビウム添加光ファイバ3及び1.55μm 帯線形チャー
プファイバグレーティング8を直列に接続する。WDM
カプラー5を介してエルビウム添加光ファイバ3を1.48
μm 帯半導体レーザ6で励起することにより、入射して
来た1.55μm 帯の光パルスに対して増幅及び分散補償を
行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a diagram showing a first embodiment of the optical fiber amplifier of the present invention. 3-port optical circulator 1
1.48μm / 1.55μm WDM coupler 5,
An erbium-doped optical fiber 3 and a 1.55 μm band linear chirped fiber grating 8 are connected in series. WDM
The erbium-doped optical fiber 3 is connected through the coupler 5 to 1.48.
By pumping with the μm band semiconductor laser 6, amplification and dispersion compensation are performed on the incoming 1.55 μm band light pulse.

【0014】ここで、チャープファイバグレーティング
8の長波長側をエルビウム添加光ファイバ3に接続する
と、長波長側の光ほど早く反射されるので 1.3μm 零分
散ファイバを伝搬してきた1.55μm 帯の光信号が分散補
償される。 1.3μm 零分散ファイバ(SMF)の1.55μ
m での波長分散(17ps/nm/km)をD0 とし、長さをL
とすると、総分散量は D0 L (1) である。
Here, when the long wavelength side of the chirped fiber grating 8 is connected to the erbium-doped optical fiber 3, the light on the long wavelength side is reflected earlier, so that the optical signal in the 1.55 μm band propagated through the 1.3 μm zero dispersion fiber. Is dispersion compensated. 1.5 μm of 1.3 μm zero dispersion fiber (SMF)
The wavelength dispersion at 17 m (17 ps / nm / km) is D 0 , and the length is L
Then, the total variance is D 0 L (1).

【0015】一方、グレーティング中の群速度vg は、
nをグレーティングの有効コア屈折率(1.45)とし、c
を真空中での光速( 3.0×108m)とすると、 vg =c/n (2) と近似される。よって、長さLg で帯域Δλ(入射端で
の反射波長と最深部での反射波長との差)のグレーティ
ングで補償できる分散量は 2nLg /cΔλ (3) で表される。そこで式(1)と式(3)とを等しいとお
くと、 Lg /Δλ=cD0 L/2n (4) の関係が得られる。従って 1.3μm 零分散ファイバの長
さLが50kmのときグレーティングの長さLg を100
mmにすると、グレーティング帯域Δλを 1.2nmにする必
要がある。
[0015] On the other hand, the group velocity v g in the grating,
Let n be the effective core refractive index of the grating (1.45) and c
Is the speed of light in a vacuum (3.0 × 10 8 m), it is approximated as vg = c / n (2). Therefore, the amount of dispersion that can be compensated for by the grating in the band Δλ (the difference between the reflection wavelength at the incident end and the reflection wavelength at the deepest point) with the length L g is expressed by 2nL g / cΔλ (3). Therefore, if the equations (1) and (3) are assumed to be equal, the relationship of L g / Δλ = cD 0 L / 2n (4) is obtained. Therefore the length L of 1.3μm zero dispersion fiber grating when 50km length L g 100
When it is set to mm, the grating band Δλ needs to be 1.2 nm.

【0016】図4は本発明の光ファイバ増幅器の第2の
実施例を示す図である。この実施例では、第1の実施例
の構成に加えて更に1.48μm 帯反射グレーティング11を
チャープファイバグレーティング8の後に直列に接続す
る。このような構成によれば、エルビウム添加光ファイ
バ3に吸収しきれなかった1.48μm 帯の光を再びエルビ
ウム添加光ファイバ3の方に戻すことができ、励起パワ
ーを再利用することによって効率の高い光増幅を行うこ
とができる。
FIG. 4 is a diagram showing a second embodiment of the optical fiber amplifier according to the present invention. In this embodiment, in addition to the configuration of the first embodiment, a reflection grating 11 of 1.48 μm band is further connected in series after the chirped fiber grating 8. According to such a configuration, light in the 1.48 μm band that could not be absorbed by the erbium-doped optical fiber 3 can be returned to the erbium-doped optical fiber 3 again, and high efficiency can be achieved by reusing the pump power. Optical amplification can be performed.

【0017】図5は本発明の光ファイバ増幅器の第3の
実施例を示す図である。この実施例では、WDMカプラ
ーを用いないで光ファイバ増幅器を構成している。即
ち、図5に示すように、1.48μm 帯高出力半導体レーザ
6をチャープファイバグレーティング8の後に直列に配
置する。このようにしてもエルビウム添加光ファイバ3
を励起することができる。
FIG. 5 is a diagram showing a third embodiment of the optical fiber amplifier according to the present invention. In this embodiment, an optical fiber amplifier is configured without using a WDM coupler. That is, as shown in FIG. 5, a 1.48 μm band high power semiconductor laser 6 is arranged in series after the chirped fiber grating 8. Even in this case, the erbium-doped optical fiber 3
Can be excited.

【0018】図6は本発明の光ファイバ増幅器の第4の
実施例を示す図である。この実施例では、3ポート型光
サーキュレータ1の第2ポートとエルビウム添加光ファ
イバ3との間に1.48μm 帯反射グレーティング11を直列
に配置する。このようにすれば、第2の実施例と同様に
励起パワーを再利用することができる。
FIG. 6 is a diagram showing a fourth embodiment of the optical fiber amplifier according to the present invention. In this embodiment, a 1.48 μm reflection grating 11 is arranged in series between the second port of the three-port optical circulator 1 and the erbium-doped optical fiber 3. In this way, the pump power can be reused as in the second embodiment.

【0019】以上の実施例では、希土類添加光ファイバ
3及び1.55μm 帯線形チャープファイバグレーティング
8を、また、これに加えて1.48μm 帯反射グレーティン
グ11を直列に接続して本発明の光ファイバ増幅器を構成
する場合について説明したが、これに代えて、チャープ
ファイバグレーティングをその一部に形成した希土類添
加光ファイバ、又は、チャープファイバグレーティング
及び希土類添加光ファイバ励起光を反射するグレーティ
ングをその一部に形成した希土類添加光ファイバを、3
ポート型光サーキュレータの第2ポートに接続し、励起
用半導体レーザで希土類添加光ファイバを励起する構成
によっても、本発明の分散補償機能付き光ファイバ増幅
器を得ることができる。
In the above embodiment, the rare-earth doped optical fiber 3 and the 1.55 μm band linear chirped fiber grating 8 and the 1.48 μm band reflection grating 11 are connected in series to provide the optical fiber amplifier of the present invention. Although the configuration is described, instead of this, a rare earth-doped optical fiber having a chirped fiber grating formed on a part thereof, or a chirped fiber grating and a grating reflecting a rare earth-doped optical fiber excitation light are formed on a part thereof. The rare earth-doped optical fiber
The optical fiber amplifier with the dispersion compensation function of the present invention can also be obtained by connecting to the second port of the port type optical circulator and exciting the rare-earth-doped optical fiber with the semiconductor laser for excitation.

【0020】以上の実施例では励起光として1.48μm 帯
の光を用いる例を説明したが、他の波長、例えば0.98μ
m 帯の光を用いても、WDMカプラー及び励起光反射用
グレーティングを変更すれば、同様に本発明を適用でき
ることは勿論である。
In the above embodiment, an example in which light in the 1.48 μm band is used as the excitation light has been described.
Of course, the present invention can be similarly applied to the m-band light by changing the WDM coupler and the excitation light reflection grating.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
低雑音であり且つコンパクトな分散補償機能付き光ファ
イバ増幅器が得られる。また、非線形光学効果も起き難
いため、従来の分散補償ファイバを用いる方法より良好
な信号波形を再生することができる。
As described above, according to the present invention,
An optical fiber amplifier having a low noise and a compact dispersion compensation function can be obtained. In addition, since a nonlinear optical effect is unlikely to occur, a better signal waveform can be reproduced than a conventional method using a dispersion compensating fiber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の光ファイバ増幅器の構成例を示す図であ
る。
FIG. 1 is a diagram illustrating a configuration example of a conventional optical fiber amplifier.

【図2】チャープファイバグレーティングの動作原理を
説明する図である。
FIG. 2 is a diagram illustrating the operation principle of a chirped fiber grating.

【図3】本発明の光ファイバ増幅器の第1の実施例を示
す図である。
FIG. 3 is a diagram showing a first embodiment of the optical fiber amplifier of the present invention.

【図4】本発明の光ファイバ増幅器の第2の実施例を示
す図である。
FIG. 4 is a diagram showing a second embodiment of the optical fiber amplifier according to the present invention.

【図5】本発明の光ファイバ増幅器の第3の実施例を示
す図である。
FIG. 5 is a diagram showing a third embodiment of the optical fiber amplifier of the present invention.

【図6】本発明の光ファイバ増幅器の第4の実施例を示
す図である。
FIG. 6 is a diagram showing a fourth embodiment of the optical fiber amplifier according to the present invention.

【符号の説明】[Explanation of symbols]

1 3ポート型光サーキュレータ 2 入射光信号 3 エルビウム添加光ファイバ 4 信号光反射ミラー 5 WDMファイバカプラー 6 1.48μm 帯半導体レーザ 7 出射光信号 8 1.55μm 帯チャープファイバグレーティング 9 長波長の光 10 短波長の光 11 1.48μm 帯反射グレーティング DESCRIPTION OF SYMBOLS 1 3-port optical circulator 2 Incident optical signal 3 Erbium-doped optical fiber 4 Signal light reflecting mirror 5 WDM fiber coupler 6 1.48 μm band semiconductor laser 7 Outgoing optical signal 8 1.55 μm band chirped fiber grating 9 Long wavelength light 10 Short wavelength Light 11 1.48μm reflection grating

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 チャープファイバグレーティングを接続
した希土類添加光ファイバを3ポート型光サーキュレー
タの第2ポートに接続し、励起用半導体レーザで希土類
添加光ファイバを励起することにより、分散補償と高効
率の光増幅とを同時に実現することを特徴とする分散補
償機能付き光ファイバ増幅器。
A rare earth-doped optical fiber to which a chirped fiber grating is connected is connected to a second port of a three-port optical circulator, and the rare-earth-doped optical fiber is pumped by a pumping semiconductor laser to achieve dispersion compensation and high efficiency. An optical fiber amplifier with a dispersion compensation function, which simultaneously realizes optical amplification.
【請求項2】 チャープファイバグレーティング及び希
土類添加光ファイバ励起光を反射するグレーティングを
接続した希土類添加光ファイバを3ポート型光サーキュ
レータの第2ポートに接続し、励起用半導体レーザで希
土類添加光ファイバを励起することにより、分散補償と
高効率の光増幅とを同時に実現することを特徴とする分
散補償機能付き光ファイバ増幅器。
2. A rare earth-doped optical fiber to which a chirped fiber grating and a rare earth-doped optical fiber-grating reflecting optical fiber are connected is connected to a second port of a three-port optical circulator. An optical fiber amplifier with a dispersion compensation function, which realizes both dispersion compensation and highly efficient optical amplification by exciting.
【請求項3】 チャープファイバグレーティングをその
一部に形成した希土類添加光ファイバを3ポート型光サ
ーキュレータの第2ポートに接続し、励起用半導体レー
ザで希土類添加光ファイバを励起することにより、分散
補償と高効率の光増幅とを同時に実現することを特徴と
する分散補償機能付き光ファイバ増幅器。
3. Dispersion compensation by connecting a rare earth-doped optical fiber having a chirped fiber grating formed in a part thereof to a second port of a three-port optical circulator and exciting the rare earth-doped optical fiber with a semiconductor laser for excitation. An optical fiber amplifier with a dispersion compensation function, which simultaneously realizes optical amplification with high efficiency.
【請求項4】 チャープファイバグレーティング及び希
土類添加光ファイバ励起光を反射するグレーティングを
その一部に形成した希土類添加光ファイバを3ポート型
光サーキュレータの第2ポートに接続し、励起用半導体
レーザで希土類添加光ファイバを励起することにより、
分散補償と高効率の光増幅とを同時に実現することを特
徴とする分散補償機能付き光ファイバ増幅器。
4. A rare earth-doped optical fiber in which a chirped fiber grating and a grating for reflecting a rare earth-doped optical fiber pumping light are formed in a part thereof are connected to a second port of a three-port optical circulator, and a rare-earth semiconductor laser is used for excitation. By exciting the doped optical fiber,
An optical fiber amplifier with a dispersion compensation function, which realizes both dispersion compensation and highly efficient optical amplification at the same time.
JP9051261A 1997-03-06 1997-03-06 Optical fiber amplifier with dispersion compensation function Pending JPH10256633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9051261A JPH10256633A (en) 1997-03-06 1997-03-06 Optical fiber amplifier with dispersion compensation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9051261A JPH10256633A (en) 1997-03-06 1997-03-06 Optical fiber amplifier with dispersion compensation function

Publications (1)

Publication Number Publication Date
JPH10256633A true JPH10256633A (en) 1998-09-25

Family

ID=12882012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9051261A Pending JPH10256633A (en) 1997-03-06 1997-03-06 Optical fiber amplifier with dispersion compensation function

Country Status (1)

Country Link
JP (1) JPH10256633A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063545A1 (en) * 1999-06-23 2000-12-27 Nortel Networks Limited Dispersion compensation
JP2002176215A (en) * 2000-12-07 2002-06-21 Fujikura Ltd Optical fiber amplifier
US6563614B1 (en) 1999-05-21 2003-05-13 Corvis Corporation Optical transmission system and amplifier control apparatuses and methods
JP2004503944A (en) * 2000-04-11 2004-02-05 スリーエム イノベイティブ プロパティズ カンパニー Method and apparatus for generating frequency modulated pulses
US6907195B2 (en) 2001-08-28 2005-06-14 Dorsal Networks, Inc. Terminals having sub-band substitute signal control in optical communication systems
US6944399B2 (en) 2001-08-28 2005-09-13 Dorsal Networks, Inc. Methods of signal substitution for maintenance of amplifier saturation
US20100272391A1 (en) * 2009-04-23 2010-10-28 Fujitsu Limited Chromatic dispersion compensator
JP2013239738A (en) * 2000-05-23 2013-11-28 Imra America Inc Modular, high-energy, widely wavelength tunable and ultrafast fiber light source
US11817672B2 (en) * 2019-06-25 2023-11-14 Lumentum Operations Llc Femtosecond pulse stretching fiber oscillator

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7903978B2 (en) 1999-05-21 2011-03-08 Broadwing, Llc Optical transmission systems and amplifier control apparatuses and methods
US6563614B1 (en) 1999-05-21 2003-05-13 Corvis Corporation Optical transmission system and amplifier control apparatuses and methods
EP1063545A1 (en) * 1999-06-23 2000-12-27 Nortel Networks Limited Dispersion compensation
US6438287B1 (en) 1999-06-23 2002-08-20 Nortel Networks Limited Dispersion compensation
JP2004503944A (en) * 2000-04-11 2004-02-05 スリーエム イノベイティブ プロパティズ カンパニー Method and apparatus for generating frequency modulated pulses
US9819142B2 (en) 2000-05-23 2017-11-14 Imra America, Inc. Modular, high energy, widely-tunable ultrafast fiber source
JP2013239738A (en) * 2000-05-23 2013-11-28 Imra America Inc Modular, high-energy, widely wavelength tunable and ultrafast fiber light source
JP2002176215A (en) * 2000-12-07 2002-06-21 Fujikura Ltd Optical fiber amplifier
US6944399B2 (en) 2001-08-28 2005-09-13 Dorsal Networks, Inc. Methods of signal substitution for maintenance of amplifier saturation
US6907195B2 (en) 2001-08-28 2005-06-14 Dorsal Networks, Inc. Terminals having sub-band substitute signal control in optical communication systems
JP4698746B2 (en) * 2009-04-23 2011-06-08 富士通株式会社 Chromatic dispersion compensator
JP2010256527A (en) * 2009-04-23 2010-11-11 Fujitsu Ltd Wavelength dispersion compensator
US20100272391A1 (en) * 2009-04-23 2010-10-28 Fujitsu Limited Chromatic dispersion compensator
US11817672B2 (en) * 2019-06-25 2023-11-14 Lumentum Operations Llc Femtosecond pulse stretching fiber oscillator

Similar Documents

Publication Publication Date Title
US6178038B1 (en) Optical amplifier having an improved noise figure
JP2734209B2 (en) Optical fiber amplifier
JP3195160B2 (en) Optical amplifier
JPH04301626A (en) Optical amplifier
EP1263096A2 (en) Improved wide band erbium-doped fiber amplfier (EDFA)
EP1263097A2 (en) Wide band erbium-doped fiber amplfier (EDFA)
JP2001223420A (en) Raman amplifier, optical transmission system and optical fiber
JP4483041B2 (en) Raman amplifier and Raman amplification transmission system
JPH10256633A (en) Optical fiber amplifier with dispersion compensation function
CA2254487A1 (en) Optical fiber amplifier
JP2003273427A (en) Dispersion compensation erbium-added optical fiber amplifier
EP1372276A2 (en) Raman optical fiber amplifier using Erbium doped fiber
CA2321439A1 (en) Optical amplifying unit and optical transmission system
US7136218B2 (en) Raman optical amplifier
KR100446541B1 (en) Dispersion-compensated raman optical fiber amplifier
EP1189315B1 (en) Optical amplifier and optical transmission system using same
US7038840B1 (en) Discrete Raman fiber oscillator
JPH11163449A (en) Bidirectional optical amplifier
EP0964486B1 (en) Optical fiber amplifier
JP2002319726A (en) Optical amplifier
KR100269170B1 (en) Optical amplifier using optical fiber reflector
JP2002261366A (en) Amplifying optical fiber, and optical fiber amplifier including the same
JPH11122171A (en) Wavelength disperion compensation-type optical amplifier and optical communication system
KR0183911B1 (en) Optical fiber amplifier having flat gain and low noise-figure
KR100327299B1 (en) Fiber-optic amplifier using a 2-port wavelength selective coupler