JPH10256148A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH10256148A
JPH10256148A JP9079097A JP7909797A JPH10256148A JP H10256148 A JPH10256148 A JP H10256148A JP 9079097 A JP9079097 A JP 9079097A JP 7909797 A JP7909797 A JP 7909797A JP H10256148 A JPH10256148 A JP H10256148A
Authority
JP
Japan
Prior art keywords
substrate
pattern
reticle
photosensitive substrate
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9079097A
Other languages
Japanese (ja)
Inventor
Gen Uchida
玄 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9079097A priority Critical patent/JPH10256148A/en
Publication of JPH10256148A publication Critical patent/JPH10256148A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a projection aligner which is used in a photolithographic process at the time of manufacturing a semiconductor device or liquid crystal display device and can perform projection alignment with high accuracy by suppressing the occurrence of transfer errors as much as possible even when the pattern of a reticle to be transferred has a curvature of field. SOLUTION: A projection aligner is provided with a projection optical system 2 which projects the pattern of a reticle 3 upon a photosensitive substrate 11 placed on a substrate stage 12, a shape measuring means 20 which measures the shape of the image forming surface of the system 2, a wafer deforming means 16 which deforms the wafer 11 placed on the stage 12, and a control means 10 which controls the deforming means 16 based on the measured results of the measuring means 20 so that the image forming surface may be nearly aligned with the exposed surface area of the wafer 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置あるい
は液晶表示装置の製造におけるフォトリソグラフィ工程
で使用される投影露光装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a projection exposure apparatus used in a photolithography process in manufacturing a semiconductor device or a liquid crystal display device.

【0002】[0002]

【従来の技術】半導体装置あるいは液晶表示装置を製造
する際のフォトリソグラフィ工程では、フォトマスクあ
るいはレチクル(以下、レチクルという)に描画された
回路パターンの像をフォトレジストが塗布された半導体
ウェハやガラス基板等の感光基板上に投影露光する投影
露光装置が用いられる。
2. Description of the Related Art In a photolithography process for manufacturing a semiconductor device or a liquid crystal display device, an image of a circuit pattern drawn on a photomask or a reticle (hereinafter referred to as a reticle) is formed on a semiconductor wafer or glass coated with a photoresist. A projection exposure apparatus that performs projection exposure on a photosensitive substrate such as a substrate is used.

【0003】投影露光装置は、レチクルを載置してX−
Y平面を移動可能なレチクルステージと、感光基板を載
置してX−Y平面を移動可能な基板ステージとを有し、
レチクルおよび感光基板に設けられた位置合わせ用マー
クを用いて両者を位置合わせして、レチクルに照射した
照明光による回路パターンの像を投影光学系を介して感
光基板上の所定の露光領域に投影して露光する。
[0003] A projection exposure apparatus mounts a reticle on an X-ray.
A reticle stage movable on the Y plane, and a substrate stage on which the photosensitive substrate is placed and movable on the XY plane,
Using a positioning mark provided on the reticle and the photosensitive substrate, they are aligned, and the image of the circuit pattern by the illumination light applied to the reticle is projected onto a predetermined exposure area on the photosensitive substrate via the projection optical system. And expose.

【0004】レチクルのパターンを高い精度で感光基板
に転写するには、レチクルを均一の照度分布で照明した
り、投影光学系の収差を少なくしたりする必要がある。
また、基板サイズが近年益々大型化してきている液晶表
示装置用のガラス基板に対して分割露光するような場合
には、ガラス基板自体の平面度はもちろん、ガラス基板
を載置する基板ステージの基板載置面の平面度も露光精
度に影響する。基板平面度が許容範囲を外れていれば、
投影光学系の収差が所定範囲に抑えられていても、転写
された回路パターンの線幅のばらつき等の転写誤差はな
くならない。従って、露光に先立ってレチクル及び感光
基板の平面度を測定し、それらが許容範囲内に収まるよ
うに調整、補正を行う必要がある。
In order to transfer a reticle pattern onto a photosensitive substrate with high precision, it is necessary to illuminate the reticle with a uniform illuminance distribution and to reduce the aberration of the projection optical system.
In the case where a glass substrate for a liquid crystal display device, whose substrate size has been increasing in size in recent years, is to be dividedly exposed, not only the flatness of the glass substrate itself but also the substrate stage substrate on which the glass substrate is mounted. The flatness of the mounting surface also affects the exposure accuracy. If the board flatness is out of the allowable range,
Even if the aberration of the projection optical system is suppressed to a predetermined range, a transfer error such as a variation in the line width of the transferred circuit pattern does not disappear. Therefore, it is necessary to measure the flatness of the reticle and the photosensitive substrate prior to exposure, and adjust and correct them so that they fall within an allowable range.

【0005】[0005]

【発明が解決しようとする課題】一方、基板の平面度が
仮に理想的に調整、補正されたとしても、投影光学系の
収差(特に像面湾曲)が許容範囲を超えていれば、転写
された回路パターンの線幅のばらつき等の転写誤差はな
くならない。投影光学系の収差は、装置の設計段階での
残留分、装置の製造段階での製造誤差分、及び装置の使
用時における周辺環境の変動、特に温度、気圧、湿度等
の要因により生じ、経時的に変化するものである。従っ
て、露光に先立って投影光学系の収差を小さくするよう
な調整、補正も随時行う必要がある。
On the other hand, even if the flatness of the substrate is ideally adjusted and corrected, if the aberration of the projection optical system (especially the curvature of field) exceeds an allowable range, the transferred image is transferred. The transfer error such as the variation in the line width of the circuit pattern does not disappear. Aberrations in the projection optical system are caused by factors such as residuals in the design stage of the device, manufacturing errors in the device manufacturing stage, and fluctuations in the surrounding environment during use of the device, especially temperature, pressure, humidity, and the like. It changes dynamically. Therefore, it is necessary to make adjustments and corrections to reduce the aberration of the projection optical system prior to exposure.

【0006】ところが、この投影光学系の収差を少なく
するための調整や補正、あるいは基板の平面度の調整や
補正を行うためには、複雑で大掛かりな機構を必要と
し、装置全体も大型で高価なものになってしまうという
問題を有している。また、これらの調整、補正には、極
めて煩雑で手間のかかる作業が伴ってしまうという問題
も有している。
However, in order to adjust and correct the aberration of the projection optical system or to adjust and correct the flatness of the substrate, a complicated and large-scale mechanism is required, and the entire apparatus is large and expensive. There is a problem that it becomes a thing. In addition, there is a problem that these adjustments and corrections are accompanied by extremely complicated and troublesome work.

【0007】本発明の目的は、転写されるべきレチクル
のパターンの像が像面湾曲を生じていても、転写誤差を
極力抑えた高精度の投影露光が行える投影露光装置を提
供することにある。
An object of the present invention is to provide a projection exposure apparatus capable of performing high-precision projection exposure while minimizing a transfer error even when an image of a reticle pattern to be transferred has a field curvature. .

【0008】[0008]

【課題を解決するための手段】一実施の形態を表す図1
および図4とに対応付けて説明すると上記目的は、レチ
クル(3)のパターンを基板ステージ(12)上に載置
された感光基板(11)上に露光する投影光学系(2)
を備えた投影露光装置において、投影光学系(2)の結
像面の形状を測定する形状測定手段(20)と、基板ス
テージ(12)に載置された感光基板(11)の形状を
変形させる基板変形手段(16、21、24、26、2
8、30)と、結像面と感光基板(11)の露光領域表
面とがほぼ一致するように形状測定手段(20)の測定
結果に基づいて基板変形手段(16、21、24、2
6、28、30)を制御する制御手段(10)とを備え
ることを特徴とする投影露光装置によって達成される。
FIG. 1 shows an embodiment of the present invention.
The object of the present invention is described in association with FIG. 4 and FIG. 4. The purpose of the projection optical system (2) is to expose a pattern of a reticle (3) onto a photosensitive substrate (11) mounted on a substrate stage (12).
And a shape measuring means (20) for measuring the shape of the image plane of the projection optical system (2) and a shape of a photosensitive substrate (11) mounted on a substrate stage (12). Substrate deformation means (16, 21, 24, 26, 2
8, 30) and the substrate deforming means (16, 21, 24, 2) based on the measurement result of the shape measuring means (20) such that the image plane and the surface of the exposure area of the photosensitive substrate (11) substantially match.
And control means (10) for controlling (6, 28, 30).

【0009】また、上記の投影露光装置において、基板
変形手段は、基板ステージ(12)の感光基板(11)
の載置面に複数設けられた凹部(21)と、複数の凹部
(21)と各凹部(21)上の感光基板(11)裏面と
の間の空気圧をそれぞれ変化させる空気圧変更手段(1
6、24)とを有するようにしている。さらに、上記投
影露光装置において、形状測定手段(20)は、基板ス
テージ(12)に載置された感光基板(11)の表面の
形状も測定できるようにしている。
In the above-mentioned projection exposure apparatus, the substrate deforming means includes a photosensitive substrate (11) on a substrate stage (12).
Air pressure changing means (1) for changing the air pressure between the plurality of recesses (21) provided on the mounting surface of the substrate and the back surface of the photosensitive substrate (11) on each of the plurality of recesses (21) and each recess (21).
6, 24). Further, in the above-described projection exposure apparatus, the shape measuring means (20) can measure the shape of the surface of the photosensitive substrate (11) mounted on the substrate stage (12).

【0010】本発明によれば、投影光学系の像面の形状
を予め計測した後、感光基板の投影領域をその測定値に
基づいて投影光学系の像面に合わせるように強制的に変
形させるようにしている。
According to the present invention, after the shape of the image plane of the projection optical system is measured in advance, the projection area of the photosensitive substrate is forcibly deformed to match the image plane of the projection optical system based on the measured value. Like that.

【0011】こうすることにより、投影光学系の像面湾
曲によるレチクルパターンの像の劣化を小さくできると
ともに、焦点深度を大きく取ることができるようになる
ので、より微細化されたパターンを精度よく露光するこ
とができるようになる。
By doing so, the deterioration of the image of the reticle pattern due to the curvature of field of the projection optical system can be reduced, and the depth of focus can be increased, so that a finer pattern can be accurately exposed. Will be able to

【0012】[0012]

【発明の実施の形態】本発明の第1の実施の形態による
投影露光装置を図1乃至図5を用いて説明する。図1
は、本実施の形態による投影露光装置の概略の構成を示
している。図1において、レチクルパターンを下面に有
するレチクル3はレチクルステージ3aに保持されてい
る。レチクル3は、投影光学系2を介して基板ステージ
12と対向しており、投影露光時には露光照明系4によ
り照明される。感光基板11を載置した基板ステージ1
2は、XY駆動系15によって基板ステージ12上の任
意の場所を投影光学系2の直下に移動でき、Zθ駆動系
9によって基板ステージ12全体を任意の高さおよび傾
きに調整できる。基板ステージ12上には、所定の開口
パターン1aが形成された基準板1が設けられ、開口パ
ターン1aには、照明光源8、グラスファイバーケーブ
ル13等を含む照明光学系と、グラスファイバーケーブ
ル13、光量検出器7、ハーフミラー14等を含む検出
光学系とからなる投影光学系2の結像面の形状を測定す
る形状測定部20が接続されている。投影光学系2には
感光基板面検出用の斜入射フォーカスセンサ用の投光系
5と受光系6が固定されている。受光系6および検出器
7の出力は制御系10に入力され、Zθ駆動系9および
XY駆動系15は制御系10により制御される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A projection exposure apparatus according to a first embodiment of the present invention will be described with reference to FIGS. FIG.
1 shows a schematic configuration of a projection exposure apparatus according to the present embodiment. In FIG. 1, a reticle 3 having a reticle pattern on a lower surface is held on a reticle stage 3a. The reticle 3 faces the substrate stage 12 via the projection optical system 2 and is illuminated by the exposure illumination system 4 during projection exposure. Substrate stage 1 on which photosensitive substrate 11 is mounted
2 can move an arbitrary position on the substrate stage 12 directly below the projection optical system 2 by the XY drive system 15, and can adjust the entire substrate stage 12 to an arbitrary height and inclination by the Zθ drive system 9. A reference plate 1 on which a predetermined opening pattern 1a is formed is provided on the substrate stage 12, and the opening pattern 1a includes an illumination optical system including an illumination light source 8, a glass fiber cable 13, etc., a glass fiber cable 13, A shape measuring unit 20 for measuring the shape of the imaging surface of the projection optical system 2 including the light amount detector 7, the detection optical system including the half mirror 14, and the like is connected. A projection system 5 and a light receiving system 6 for an oblique incidence focus sensor for detecting a photosensitive substrate surface are fixed to the projection optical system 2. Outputs of the light receiving system 6 and the detector 7 are input to a control system 10, and the Zθ drive system 9 and the XY drive system 15 are controlled by the control system 10.

【0013】形状測定部20においては、照明光源8か
ら出力された照明光がグラスファイバーケーブル13を
経て基準板1にまで導かれ、基準板1の開口パターン1
aを通して上方に射出され、さらに投影光学系2を介し
てレチクルのパターン面(レチクルの下面)に開口パタ
ーン1aの投影像を形成する。この投影像は、XY駆動
系15を用いて基板ステージ12を2次元移動して投影
光学系2の視野の範囲内で基準板1を走査することによ
り、レチクルパターン上の任意の場所に移動することが
でき、それぞれの場所で個別に合焦点、すなわちレチク
ルパターンの結像位置を検出することができる。
In the shape measuring section 20, the illumination light output from the illumination light source 8 is guided to the reference plate 1 via the glass fiber cable 13, and the opening pattern 1 of the reference plate 1 is formed.
a, and is projected upward through the projection optical system 2 to form a projection image of the aperture pattern 1a on the pattern surface of the reticle (the lower surface of the reticle). The projected image is moved to an arbitrary position on the reticle pattern by moving the substrate stage 12 two-dimensionally using the XY drive system 15 and scanning the reference plate 1 within the field of view of the projection optical system 2. It is possible to individually detect the focal point, that is, the image forming position of the reticle pattern at each location.

【0014】また、レチクル3のパターン面の投影像か
らの光情報は照明光の光路をさかのぼってレチクルパタ
ーンの投影光学系2に関する共役面に結像する。このと
き、基準板1の開口パターン1a面の高さがレチクル3
のパターン面と投影光学系2に関して共役な位置関係に
あればレチクル3のパターン面上の投影像はピントが合
った境界の明らかなものとなり、この投影像の反射光に
よって基準板1の開口パターン1a上に形成される反射
投影像もまたピントが合った境界の明らかなものとな
る。ここで、開口パターン1aの反射投影像は、当然、
開口パターン1aと同一形状、同一寸法、同一姿勢であ
るから、レチクルパターン面の投影像からの光情報は最
大限に開口パターン1aに入射して検出光学系を進み、
検出器7に達して受光量のピークを与える。一方、基準
板1の開口パターン1a面の高さがレチクル3のパター
ン面の共役面からずれている場合、レチクル3のパター
ン面の投影像および基準板1上の反射投影像はピントが
ずれて境界のぼけたものとなる。従って、反射投影像が
開口パターン1aからはみだした分だけ光情報が損なわ
れて開口パターン1aに入射することとなり、検出器7
に達する受光量を低下させる。
Further, optical information from the projected image of the pattern surface of the reticle 3 forms an image on the conjugate plane of the projection optical system 2 of the reticle pattern by going back the optical path of the illumination light. At this time, the height of the opening pattern 1a surface of the reference plate 1 is
If the pattern surface of the reticle 3 and the projection optical system 2 have a conjugate positional relationship, the projected image on the pattern surface of the reticle 3 will have a clear boundary with focus, and the reflected light of the projected image will cause the aperture pattern of the reference plate 1 to be opened. The reflection projection image formed on 1a also has an in-focus boundary. Here, the reflection projection image of the aperture pattern 1a is, of course,
Since it has the same shape, the same size, and the same posture as the aperture pattern 1a, the optical information from the projected image of the reticle pattern surface enters the aperture pattern 1a to the maximum extent and travels through the detection optical system.
The light reaches the detector 7 and gives a peak of the amount of received light. On the other hand, when the height of the opening pattern 1a surface of the reference plate 1 is shifted from the conjugate plane of the pattern surface of the reticle 3, the projected image of the pattern surface of the reticle 3 and the reflected projected image on the reference plate 1 are out of focus. The border is blurred. Accordingly, the optical information is lost by the amount of the reflected projection image protruding from the opening pattern 1a, and the reflected light enters the opening pattern 1a.
To reduce the amount of light received.

【0015】従って、XY駆動系15により基板ステー
ジ12を移動して、基準板1の開口パターン1aの投影
像をレチクル3のパターン面上に定めた複数の場所に順
番に位置決めし、それぞれの場所で制御系10はZθ駆
動系9により、検出器7が光量変化を検出する高さまで
基板ステージ12の高さを調整して基板ステージ12の
高さ情報、すなわちレチクルのパターンの結像位置情報
を次々に蓄積する。制御系10は、こうして得られたレ
チクル3のパターンの結像面の情報を用いて、後述する
基板ステージ12に載置された感光基板11の形状を変
形させる基板変形手段の構成要素である基板面形状駆動
系16を制御し、載置された感光基板11の露光領域表
面の形状をレチクルのパターンの結像面に合致させる。
Accordingly, the substrate stage 12 is moved by the XY drive system 15, and the projected image of the opening pattern 1a of the reference plate 1 is sequentially positioned at a plurality of locations defined on the pattern surface of the reticle 3, and The control system 10 adjusts the height of the substrate stage 12 to the height at which the detector 7 detects a change in the amount of light by the Zθ driving system 9 to obtain the height information of the substrate stage 12, that is, the image formation position information of the reticle pattern. Accumulate one after another. The control system 10 uses the information on the image forming surface of the pattern of the reticle 3 obtained in this manner to change the shape of a photosensitive substrate 11 mounted on a substrate stage 12 which will be described later. The surface shape driving system 16 is controlled so that the shape of the surface of the exposure area of the placed photosensitive substrate 11 matches the image forming surface of the reticle pattern.

【0016】感光基板11の形状が調整された後、開口
パターン1aの投影像は再度レチクル3のパターン面の
ほぼ中央に移動され、再度、基準板1が合焦点の高さに
なるまでZθ駆動系9により基板ステージ12の高さを
調整する。その後、合焦点高さに調整された基準板1を
用いて斜入射フォーカスセンサの投光系5及び受光系6
の原点調整が実行される。すなわち、基準板1における
反射ビーム・スポット高さが原点として記憶され、以
後、基板ステージ12上の任意の場所に投影光学系2の
視野を走査した際には、斜入射フォーカスセンサの投光
系5及び受光系6における反射ビーム・スポット高さに
より感光基板11の露光面高さが計測され、その高さが
原点高さとなるように制御系10はZθ駆動系9により
基板ステージ12の高さを調整する。
After the shape of the photosensitive substrate 11 is adjusted, the projected image of the aperture pattern 1a is moved to the center of the pattern surface of the reticle 3 again, and is driven again by Zθ until the reference plate 1 is at the height of the focal point. The height of the substrate stage 12 is adjusted by the system 9. Thereafter, the light projecting system 5 and the light receiving system 6 of the oblique incidence focus sensor are used by using the reference plate 1 adjusted to the focal point height.
Is performed. That is, the height of the reflected beam / spot on the reference plate 1 is stored as the origin. Thereafter, when the field of view of the projection optical system 2 is scanned at an arbitrary position on the substrate stage 12, the projection system of the oblique incidence focus sensor is scanned. The exposure surface height of the photosensitive substrate 11 is measured based on the height of the reflected beam and the spot in the light receiving system 5 and the light receiving system 6, and the control system 10 controls the height of the substrate stage 12 by the Zθ drive system 9 so that the height becomes the height of the origin. To adjust.

【0017】次に、投影光学系2の結像面の形状を測定
する形状測定部20によるレチクル3のパターン結像位
置の検出例を詳細に説明する。図2は、レチクル3のパ
ターン結像面(合焦点)の上下における検出器7による
検出光量の変化を表す線図である。図1において、基準
板1に設けられた開口パターン1aを透過した光が投影
光学系2を介してレチクル3のパターン面に投影され、
レチクル3のパターン面で反射された投影像が投影光学
系2によって開口パターン1a上に再結像され、再び開
口パターン1aを通過して検出器7に入射した光量とレ
チクル3のパターン結像位置の関係を示している。
Next, an example of detection of the pattern image forming position of the reticle 3 by the shape measuring section 20 for measuring the shape of the image forming surface of the projection optical system 2 will be described in detail. FIG. 2 is a diagram showing a change in the amount of light detected by the detector 7 above and below a pattern image forming plane (focus point) of the reticle 3. In FIG. 1, light transmitted through an aperture pattern 1a provided in a reference plate 1 is projected onto a pattern surface of a reticle 3 via a projection optical system 2,
The projection image reflected by the pattern surface of the reticle 3 is re-imaged on the aperture pattern 1a by the projection optical system 2, and again passes through the aperture pattern 1a to enter the detector 7 and the pattern image position of the reticle 3. Shows the relationship.

【0018】図2において、横軸は基板ステージ12の
高さで、合焦点高さZ0 を中心にして投影光学系2に近
い方をZ-、遠い方をZ+とする。縦軸は検出器7によっ
て検出された光量である。基板ステージ12を上下させ
ると光量が最大となる高さがあるが、これが合焦点高さ
(レチクル3のパターンの結像位置)Z0 である。これ
を見つけるために、斜入射フォーカスセンサの受光系6
の信号に基いて基板ステージ12を投影光学系2の光軸
に沿って上下させる。これと同時に検出器7の光量をモ
ニタすれば図2の線図が得られる。
In FIG. 2, the horizontal axis represents the height of the substrate stage 12, with Z- being closer to the projection optical system 2 and Z + being farther from the focal point height Z0. The vertical axis is the amount of light detected by the detector 7. When the substrate stage 12 is moved up and down, there is a height at which the amount of light is maximized, and this is the focal height (the image forming position of the pattern of the reticle 3) Z0. To find this, the light receiving system 6 of the oblique incidence focus sensor
The substrate stage 12 is moved up and down along the optical axis of the projection optical system 2 on the basis of the above signal. At the same time, if the light amount of the detector 7 is monitored, the diagram of FIG. 2 can be obtained.

【0019】ところで、図2に示したような信号はでき
るだけ光量変化部での傾きが大きいのが好ましい。その
ためには基準板1から投影する開口パターン1aのパタ
ーンを適当な線幅を有したものとする必要がある。例え
ば、開口パターン1aとして図3に示すようなライン・
アンド・スペースを考える。ライン・アンド・スペース
のピッチをp、開口部の幅をa、デューティ比(a/
p)を50%とすると、図2における検出光のフォーカ
ス位置に対する変化は大体次式のようになる。
Incidentally, it is preferable that the signal as shown in FIG. 2 has as large a slope as possible at the light amount changing portion. For that purpose, the pattern of the opening pattern 1a projected from the reference plate 1 needs to have an appropriate line width. For example, a line as shown in FIG.
Think and space. The line and space pitch is p, the width of the opening is a, and the duty ratio (a /
Assuming that p) is 50%, the change of the detection light with respect to the focus position in FIG.

【0020】 |Z0−Z-|=|Z+−Z0|=a/2tanθ ただし、θは光線の傾き角で、回折を無視した場合の見
積りである。例えば、NA=0.5、σ=0.5、a=
2μmの場合、θ=14.5度となり、|Z0−Z-|は
3.9μmとなる。
| Z0−Z− | = | Z + −Z0 | = a / 2 tan θ where θ is a tilt angle of a light ray and is an estimate when diffraction is ignored. For example, NA = 0.5, σ = 0.5, a =
In the case of 2 μm, θ = 14.5 degrees, and | Z0−Z− | becomes 3.9 μm.

【0021】次に、本実施の形態における基板変形手段
を図4および図5を用いて説明する。図4は、基板ステ
ージ12の基板載置面上の一つの露光領域を含む部分断
面図である。基板載置面には、露光領域の大きさに対応
した形状を有し、上方が開放した凹部21が形成されて
いる。隣接する凹部21間には感光基板11を吸引して
真空吸着する吸引孔26が設けられている。凹部21の
底部のほぼ中央には、凹部21と感光基板11の裏面と
で形成される空間内の圧力を調整して感光基板11を変
形させるための加減圧孔24が設けられている。加減圧
孔24および吸引孔26はそれぞれ加減圧路28および
減圧路30を介して基板面形状駆動系16に接続されて
いる。基板面形状駆動系16は制御系10に接続され、
制御系10の指令により、吸引孔26により所定の吸引
力で感光基板11を吸着しつつ、加減圧孔26を介して
感光基板11裏面と凹部21で形成される空間の圧力を
調整し、感光基板11を投影光学系2の像面湾曲に合わ
せて変形させる。
Next, the substrate deforming means in this embodiment will be described with reference to FIGS. FIG. 4 is a partial cross-sectional view including one exposure area on the substrate mounting surface of the substrate stage 12. A concave portion 21 having a shape corresponding to the size of the exposure region and having an open top is formed on the substrate mounting surface. A suction hole 26 is provided between the adjacent concave portions 21 for sucking the photosensitive substrate 11 and sucking it in vacuum. At approximately the center of the bottom of the concave portion 21, a pressurizing / depressurizing hole 24 for adjusting the pressure in a space formed by the concave portion 21 and the back surface of the photosensitive substrate 11 to deform the photosensitive substrate 11 is provided. The pressurizing / depressurizing hole 24 and the suction hole 26 are connected to the substrate surface shape driving system 16 via a pressurizing / depressurizing path 28 and a depressurizing path 30, respectively. The board surface shape drive system 16 is connected to the control system 10,
In accordance with a command from the control system 10, the pressure in the space formed between the back surface of the photosensitive substrate 11 and the concave portion 21 is adjusted through the pressurizing and depressurizing holes 26 while adsorbing the photosensitive substrate 11 with a predetermined suction force through the suction holes 26, and The substrate 11 is deformed according to the field curvature of the projection optical system 2.

【0022】例えば、簡略化してレチクル3、投影光学
系2、および感光基板11のみを図示した図5におい
て、破線で示した像面湾曲量FCが上述の形状測定部2
0により予め測定されているとする。このような像面湾
曲に対して、吸引孔26から感光基板11の裏面と凹部
21で形成される空間内の気体を吸引することにより、
図5の破線で示した像面湾曲に倣うように感光基板11
を変形させることができる。像面湾曲に倣うように変形
させた感光基板11を図4の破線で示している。
For example, in FIG. 5, which shows only the reticle 3, the projection optical system 2, and the photosensitive substrate 11 in a simplified manner, the field curvature amount FC shown by a broken line is the same as the shape measurement unit 2 described above.
It is assumed that it is measured in advance by 0. In response to such a curvature of field, the gas in the space formed by the back surface of the photosensitive substrate 11 and the concave portion 21 is sucked from the suction hole 26,
The photosensitive substrate 11 is moved so as to follow the field curvature shown by the broken line in FIG.
Can be transformed. The photosensitive substrate 11 deformed so as to follow the curvature of field is shown by a broken line in FIG.

【0023】図5において一点鎖線で示した像面湾曲量
FC’のように、像面が傾斜しているような場合には、
基板ステージ12のZθ駆動系9によって基板ステージ
12全体を傾けることにより、上述と同様にして感光基
板11の投影領域を像面湾曲に倣うように変形させるこ
とができる。また、投影光学系2の像面湾曲量FCが一
定の曲率を有していない場合には、2次近似を行うこと
により誤差の少ない基板変形を行わせることができる。
In the case where the image plane is inclined like the field curvature amount FC 'shown by a dashed line in FIG.
By tilting the entire substrate stage 12 by the Zθ drive system 9 of the substrate stage 12, the projection area of the photosensitive substrate 11 can be deformed so as to follow the curvature of field in the same manner as described above. When the curvature of field FC of the projection optical system 2 does not have a constant curvature, the substrate can be deformed with a small error by performing a quadratic approximation.

【0024】なお以上の説明は、基板ステージ12に吸
着された感光基板11の平面度が所定の許容範囲内にあ
ることを前提としているが、基板ステージ12に吸着さ
れた感光基板11の平面度が許容範囲を超えている可能
性を考慮する場合には、予め感光基板11を基板ステー
ジ12で真空吸着した状態で感光基板11の平面度を計
測しておく必要がある。その場合にも、本実施の形態に
おける形状測定部20の斜入射フォーカスセンサの投光
系5及び受光系6を用いることにより、反射ビーム・ス
ポット高さから感光基板11の露光面高さを複数点計測
して感光基板11の平面度を求めることができる。予め
求めた感光基板11の平面度と、測定した像面湾曲量F
Cとに基づいて、最適な像面を計算し、さらに感光基板
11の張力等も考慮して、感光基板11の裏面と凹部2
1とで形成される空間内の空気圧を調整して感光基板1
1の露光領域を変形させればよい。
The above description is based on the premise that the flatness of the photosensitive substrate 11 sucked on the substrate stage 12 is within a predetermined allowable range. Is considered to be outside the allowable range, it is necessary to measure the flatness of the photosensitive substrate 11 in a state where the photosensitive substrate 11 is vacuum-adsorbed by the substrate stage 12 in advance. Also in this case, by using the light projecting system 5 and the light receiving system 6 of the oblique incidence focus sensor of the shape measuring unit 20 in the present embodiment, the height of the exposed surface of the photosensitive substrate 11 can be changed from the height of the reflected beam / spot. By measuring points, the flatness of the photosensitive substrate 11 can be obtained. The flatness of the photosensitive substrate 11 obtained in advance and the measured field curvature amount F
C, the optimum image plane is calculated, and the back surface of the photosensitive substrate 11 and the concave portion 2 are also considered in consideration of the tension of the photosensitive substrate 11 and the like.
1 to adjust the air pressure in the space formed by the photosensitive substrate 1
The first exposure region may be deformed.

【0025】また、ステツプ・アンド・リピート方式の
投影露光装置のように、感光基板11上の複数のショッ
ト領域に同一のレチクルパターンを反復して露光する場
合であって、基板の平面度が一定である場合には、その
ショット領域の配列ピッチにあわせて同一の伸縮パター
ンで複数の凹部21の加減圧を制御すればよい。
In the case where the same reticle pattern is repeatedly exposed to a plurality of shot areas on the photosensitive substrate 11 as in a step-and-repeat type projection exposure apparatus, the flatness of the substrate is constant. In this case, the compression / decompression of the plurality of recesses 21 may be controlled by the same expansion / contraction pattern in accordance with the arrangement pitch of the shot areas.

【0026】このように、本実施の形態による投影露光
装置は、レチクルのパターン結像面の像面湾曲を検出
し、検出された像面湾曲に対して感光基板の露光領域表
面を一致させてパターン露光を行うものであるため、レ
チクルのパターンを感光基板上の露光領域の全域で常に
ベストフォーカス状態で露光することができるようにな
る。
As described above, the projection exposure apparatus according to the present embodiment detects the curvature of field of the pattern image forming surface of the reticle, and matches the surface of the exposure area of the photosensitive substrate with the detected curvature of field. Since the pattern exposure is performed, the reticle pattern can always be exposed in the best focus state over the entire exposure area on the photosensitive substrate.

【0027】次に、本発明の第2の実施の形態による投
影露光装置を図6を用いて説明する。本実施の形態によ
る投影露光装置は、図6に示す基板変形手段が第1の実
施の形態と異なる点以外は第1の実施の形態による投影
録装置と同一であるので同一の構成要素についてはその
説明および図示は省略する。第1の実施の形態では、感
光基板11の露光領域内を一様に加減圧したが、本実施
の形態においては、露光領域を複数の領域に分けて、さ
らに細かい変形を行わせる点に特徴を有している。
Next, a projection exposure apparatus according to a second embodiment of the present invention will be described with reference to FIG. The projection exposure apparatus according to the present embodiment is the same as the projection recording apparatus according to the first embodiment except that the substrate deformation means shown in FIG. 6 is different from that of the first embodiment. The description and illustration are omitted. In the first embodiment, the inside of the exposure region of the photosensitive substrate 11 is uniformly pressurized and depressurized. However, the present embodiment is characterized in that the exposure region is divided into a plurality of regions and finer deformation is performed. have.

【0028】図6は、基板ステージ12の基板載置面上
の一つの露光領域を含む部分断面図である。基板載置面
には、一つの露光領域内に、上方が開放した凹部21が
複数形成されている。隣接する凹部21間には感光基板
11を吸引して真空吸着する吸引孔26が設けられてい
る。凹部21の底部のほぼ中央には、凹部21と感光基
板11の裏面とで形成される空間内の圧力を調整して感
光基板11を変形させるための加減圧孔24が設けられ
ている。加減圧孔24および吸引孔26はそれぞれ加減
圧路28および減圧路30を介して基板面形状駆動系1
6に接続されている。基板面形状駆動系16は制御系1
0に接続され、制御系10の指令により、吸引孔26に
より所定の吸引力で感光基板11を吸着しつつ、加減圧
孔26を介して感光基板11裏面と凹部21で形成され
る空間の圧力を調整し、感光基板11を投影光学系2の
像面湾曲に合わせて変形させる。
FIG. 6 is a partial sectional view including one exposure area on the substrate mounting surface of the substrate stage 12. On the substrate mounting surface, a plurality of concave portions 21 whose upper sides are open are formed in one exposure area. A suction hole 26 is provided between the adjacent concave portions 21 for sucking the photosensitive substrate 11 and sucking it in vacuum. At approximately the center of the bottom of the concave portion 21, a pressurizing / depressurizing hole 24 for adjusting the pressure in a space formed by the concave portion 21 and the back surface of the photosensitive substrate 11 to deform the photosensitive substrate 11 is provided. The pressurizing and depressurizing holes 24 and the suction holes 26 are respectively connected to the substrate surface shape driving system 1 through pressurizing and depressurizing paths 28 and 30.
6 is connected. The board surface shape drive system 16 is the control system 1
0, and the pressure of the space formed between the back surface of the photosensitive substrate 11 and the concave portion 21 through the pressurizing / depressurizing hole 26 while adsorbing the photosensitive substrate 11 with a predetermined suction force by the suction hole 26 according to a command of the control system 10. Is adjusted, and the photosensitive substrate 11 is deformed in accordance with the field curvature of the projection optical system 2.

【0029】像面湾曲量FCと、感光基板11の吸着後
の平面度が上述の形状測定部20により予め測定されて
いるとする。制御系10は、前述のようにレチクル3の
パターン結像面の情報を用いて演算した結果をもとに、
基板面形状駆動系16に指令を発して複数の凹部21の
加減圧値をそれぞれ制御し、露光領域の基板面形状をレ
チクル3のパターンの結像面に合致させる。
It is assumed that the field curvature amount FC and the flatness of the photosensitive substrate 11 after adsorption are measured in advance by the shape measuring unit 20 described above. The control system 10 uses the result calculated using the information on the pattern image plane of the reticle 3 as described above,
A command is issued to the substrate surface shape drive system 16 to control the pressure values of the plurality of concave portions 21, respectively, so that the substrate surface shape of the exposure area matches the image forming surface of the pattern of the reticle 3.

【0030】そして、この像面湾曲が局所的に許容範囲
を超えるうねりを生じているが全体としてはほぼ平面形
状であるような場合や、像面湾曲は所定の許容範囲内に
あるが、感光基板11が局所的に許容範囲を超えるうね
りを生じているような場合に、本実施の形態による基板
変形手段が好適に機能する。すなわち、本実施の形態に
よる基板変形手段は、一つの露光領域内に複数の凹部2
1が形成されているので、感光基板11の裏面とそれぞ
れの凹部21とで形成される各空間内の圧力を、各凹部
21底部に設けられた加減圧孔26により変化させるこ
とができるので、投影領域内の局所的な結像位置の変化
に対応して感光基板11の形状を変形させることができ
るようになる。
In the case where the curvature of field locally exceeds the allowable range but swells, but the overall shape is substantially flat, or the curvature of field is within the predetermined allowable range, In a case where the substrate 11 locally has undulations exceeding an allowable range, the substrate deforming means according to the present embodiment suitably functions. That is, the substrate deforming means according to the present embodiment includes a plurality of recesses 2 in one exposure area.
1 is formed, the pressure in each space formed by the back surface of the photosensitive substrate 11 and each concave portion 21 can be changed by the pressurizing and depressurizing holes 26 provided at the bottom of each concave portion 21. The shape of the photosensitive substrate 11 can be deformed in accordance with a local change in the image forming position in the projection area.

【0031】図6において、感光基板11の変形は破線
で示しており、例えば図中、中央の凹部21上の感光基
板のように、感光基板11裏面と凹部21で形成される
空間の圧力を加減圧孔26から気体を送り込むことによ
って加圧し、基板面を投影光学系2側に持ち上げるよう
にすることも可能である。このように、本実施の形態に
おける基板変形手段を用いると、投影領域内の感光基板
11をより細かい領域毎に変形させることができるの
で、微細なパターンを高精度で転写することができるよ
うになる。
In FIG. 6, the deformation of the photosensitive substrate 11 is indicated by a broken line. For example, in the figure, the pressure of the space formed by the back surface of the photosensitive substrate 11 and the concave portion 21 like the photosensitive substrate on the central concave portion 21 is shown. It is also possible to pressurize by sending gas through the pressurizing / depressurizing hole 26 to raise the substrate surface to the projection optical system 2 side. As described above, by using the substrate deforming means in the present embodiment, the photosensitive substrate 11 in the projection area can be deformed for each smaller area, so that a fine pattern can be transferred with high precision. Become.

【0032】以上第1および第2の実施の形態によれ
ば、感光基板11の露光領域表面はレチクル3のパター
ン結像面とほぼ一致し、露光領域の全域においてベスト
フォーカス状態でレチクル3のパターン露光を行うこと
ができる。
According to the first and second embodiments, the surface of the exposure area of the photosensitive substrate 11 substantially coincides with the pattern image forming surface of the reticle 3, and the pattern of the reticle 3 is in the best focus state over the entire exposure area. Exposure can be performed.

【0033】本発明は、上記実施の形態に限らず種々の
変形が可能である。例えば、上記実施の形態においては
投影露光装置の一構成要素として形状測定部20を設け
たが、投影露光装置に付属させずに、投影露光装置とは
別個の専用装置とすることも可能である。
The present invention is not limited to the above embodiment, but can be variously modified. For example, in the above-described embodiment, the shape measuring unit 20 is provided as one component of the projection exposure apparatus. However, it is also possible to use a dedicated apparatus separate from the projection exposure apparatus without attaching to the projection exposure apparatus. .

【0034】[0034]

【発明の効果】以上の通り、本発明によれば、転写され
るべきレチクルのパターンの像が像面湾曲を生じていて
も、転写誤差を極力抑えた高精度の投影露光を行うこと
ができる。
As described above, according to the present invention, even if the image of the pattern of the reticle to be transferred has a field curvature, it is possible to perform high-precision projection exposure with a transfer error minimized. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態による投影露光装置
の概略の構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a projection exposure apparatus according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態による投影露光装置
の形状測定部での検出光量を説明する図である。
FIG. 2 is a diagram illustrating a detected light amount in a shape measuring unit of the projection exposure apparatus according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態による投影露光装置
の形状測定部により投影する開口パターンの例を示す図
である。
FIG. 3 is a diagram showing an example of an aperture pattern projected by a shape measuring unit of the projection exposure apparatus according to the first embodiment of the present invention.

【図4】本発明の第1の実施の形態による投影露光装置
の基板変形手段の概略の構成を示す図である。
FIG. 4 is a diagram showing a schematic configuration of a substrate deforming means of the projection exposure apparatus according to the first embodiment of the present invention.

【図5】像面湾曲の例を示す図である。FIG. 5 is a diagram illustrating an example of field curvature.

【図6】本発明の第2の実施の形態による投影露光装置
の基板変形手段の概略の構成を示す図である。
FIG. 6 is a view showing a schematic configuration of a substrate deforming means of a projection exposure apparatus according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1a 開口パターン 2 投影光学系 3 レチクル 3a レチクルステージ 4 露光照明系 5 投光系 6 受光系 7 検出器 8 照明光源 9 Zθ駆動系 10 制御系 11 感光基板 12 基板ステージ 13 グラスファイバーケーブル 14 ハーフミラー 15 XY駆動系 16 基板面形状駆動系 21 凹部 24 加減圧孔 26 吸引孔 Reference Signs List 1a Opening pattern 2 Projection optical system 3 Reticle 3a Reticle stage 4 Exposure illumination system 5 Projection system 6 Light reception system 7 Detector 8 Illumination light source 9 Zθ drive system 10 Control system 11 Photosensitive substrate 12 Substrate stage 13 Glass fiber cable 14 Half mirror 15 XY drive system 16 Substrate surface shape drive system 21 Concave portion 24 Pressurizing / depressurizing hole 26 Suction hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】レチクルのパターンを基板ステージ上に載
置された感光基板上に露光する投影光学系を備えた投影
露光装置において、 前記投影光学系の結像面の形状を測定する形状測定手段
と、 前記基板ステージに載置された前記感光基板の形状を変
形させる基板変形手段と、 前記結像面と前記感光基板の露光領域表面とがほぼ一致
するように前記形状測定手段の測定結果に基づいて前記
基板変形手段を制御する制御手段とを備えることを特徴
とする投影露光装置。
1. A projection exposure apparatus having a projection optical system for exposing a pattern of a reticle onto a photosensitive substrate mounted on a substrate stage, wherein a shape measuring means for measuring a shape of an image forming surface of the projection optical system. Substrate deformation means for deforming the shape of the photosensitive substrate placed on the substrate stage; and a measurement result of the shape measurement means such that the image plane and the exposed area surface of the photosensitive substrate substantially match. Control means for controlling the substrate deforming means based on the information.
【請求項2】請求項1記載の投影露光装置において、 前記基板変形手段は、前記基板ステージの前記感光基板
の載置面に複数設けられた凹部と、前記複数の凹部と前
記各凹部上の前記感光基板裏面との間の空気圧をそれぞ
れ変化させる空気圧変更手段とを有することを特徴とす
る投影露光装置。
2. The projection exposure apparatus according to claim 1, wherein said substrate deforming means includes a plurality of concave portions provided on a surface of said substrate stage on which said photosensitive substrate is placed, and said plurality of concave portions and said plurality of concave portions. A projection exposure apparatus comprising: air pressure changing means for changing the air pressure between the photosensitive substrate and the rear surface thereof.
【請求項3】請求項1又は2に記載の投影露光装置にお
いて、 前記形状測定手段は、前記基板ステージに載置された前
記感光基板の表面の形状も測定することを特徴とする投
影露光装置。
3. The projection exposure apparatus according to claim 1, wherein said shape measuring means also measures a shape of a surface of said photosensitive substrate mounted on said substrate stage. .
JP9079097A 1997-03-13 1997-03-13 Projection aligner Withdrawn JPH10256148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9079097A JPH10256148A (en) 1997-03-13 1997-03-13 Projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9079097A JPH10256148A (en) 1997-03-13 1997-03-13 Projection aligner

Publications (1)

Publication Number Publication Date
JPH10256148A true JPH10256148A (en) 1998-09-25

Family

ID=13680383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9079097A Withdrawn JPH10256148A (en) 1997-03-13 1997-03-13 Projection aligner

Country Status (1)

Country Link
JP (1) JPH10256148A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310577A (en) * 2005-04-28 2006-11-09 Canon Inc Reflective mirror device and exposure device employing it
JP2010034243A (en) * 2008-07-28 2010-02-12 Canon Inc Substrate retaining device, aligner, and method of manufacturing device
JP2011059489A (en) * 2009-09-11 2011-03-24 Nikon Corp Substrate treatment method and substrate treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310577A (en) * 2005-04-28 2006-11-09 Canon Inc Reflective mirror device and exposure device employing it
JP2010034243A (en) * 2008-07-28 2010-02-12 Canon Inc Substrate retaining device, aligner, and method of manufacturing device
JP2011059489A (en) * 2009-09-11 2011-03-24 Nikon Corp Substrate treatment method and substrate treatment apparatus

Similar Documents

Publication Publication Date Title
US5502311A (en) Method of and apparatus for detecting plane position
US6654097B1 (en) Projection exposure apparatus
KR940006341B1 (en) Method and device for detectiong image plane
US5563684A (en) Adaptive wafer modulator for placing a selected pattern on a semiconductor wafer
US6433872B1 (en) Exposure method and apparatus
JP3634068B2 (en) Exposure method and apparatus
US6333776B1 (en) Projection exposure apparatus
US4444492A (en) Apparatus for projecting a series of images onto dies of a semiconductor wafer
JP3308063B2 (en) Projection exposure method and apparatus
JPH0945608A (en) Surface position detection method
JPWO2007043535A1 (en) Optical characteristic measuring method, exposure method, device manufacturing method, inspection apparatus and measuring method
JPH09237752A (en) Adjustment of projection optical system and projection aligner using it
WO1999005709A1 (en) Exposure method and aligner
JPH08316123A (en) Projection aligner
JPH1064814A (en) Surface position detecting device and manufacture of device using it
JP3518826B2 (en) Surface position detecting method and apparatus, and exposure apparatus
US6545284B1 (en) Face position detection method and apparatus, and exposure method and exposure apparatus, a production method for an exposure apparatus and a production method for a semiconductor device
JP2003156322A (en) Method and apparatus for position measurement, positioning method, aligner as well as method of manufacturing microdevice
JPH10256148A (en) Projection aligner
JPH0636987A (en) Projection aligner
JP2580651B2 (en) Projection exposure apparatus and exposure method
JPH08288192A (en) Projection aligner
JPH11195579A (en) Aligner and method of exposure
JP3428825B2 (en) Surface position detection method and surface position detection device
JPH10209030A (en) Method and apparatus for projection exposure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601