JPH10241940A - Electric signal controller - Google Patents

Electric signal controller

Info

Publication number
JPH10241940A
JPH10241940A JP4312297A JP4312297A JPH10241940A JP H10241940 A JPH10241940 A JP H10241940A JP 4312297 A JP4312297 A JP 4312297A JP 4312297 A JP4312297 A JP 4312297A JP H10241940 A JPH10241940 A JP H10241940A
Authority
JP
Japan
Prior art keywords
electric signal
electric
control device
signal control
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4312297A
Other languages
Japanese (ja)
Inventor
Kazuhiro Seto
一弘 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP4312297A priority Critical patent/JPH10241940A/en
Publication of JPH10241940A publication Critical patent/JPH10241940A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electric signal controller in which electric signals flowing through transmission conductors control each other, by obtaining magnetic coupling having a high coupling coefficient even at a high frequency of several tens of MHz or higher. SOLUTION: After an electric signal transmitting conductor film which is electrically connected to an input terminal 3 and an output terminal 4 and has a thickness of 5μm is formed on a ceramic substrate by sputtering copper, the transmitting conductor is patterned by etching. Then, after a film composed of an electrically insulating resin, such as polyimide, etc., is formed to a thickness of 5μm by spin coating and a through hole is formed at a prescribed location by etching, a copper film having a thickness of 5μm is again formed by sputtering and the pattern of another electric signal transmitting conductor electrically connected to an input terminal 1 and an output terminal 2 is formed by etching.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子機器等に使用さ
れる電気信号制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric signal control device used for electronic equipment and the like.

【0002】[0002]

【従来の技術】従来この種の、磁気的に導体間が結合す
ることで電気信号を互いに制御する電気信号制御装置と
しては、磁性体である磁心に複数本の被覆導線を巻回し
た構造の部品や厚膜積層印刷法により複数の同方向に周
回する伝送導体が絶縁層を介し重畳印刷されている構造
の部品などが実用化されている。
2. Description of the Related Art Conventionally, an electric signal control device of this type, which controls electric signals mutually by magnetically coupling conductors, has a structure in which a plurality of coated conductive wires are wound around a magnetic core. Parts and parts having a structure in which a plurality of transmission conductors orbiting in the same direction are superimposed and printed via an insulating layer by a thick film lamination printing method have been put to practical use.

【0003】図5は従来の課題を説明する図であり、図
6および図7は従来の製品の外観図である。図6で示さ
れる製品は磁性体の磁心に伝送導体である複数の被覆電
線を巻き磁心に発生する磁束による相互誘導起電力によ
り各伝送導体の電気信号を制御しているが発明が解決し
ようとする課題で前述したように磁性体である磁心は高
周波数では透磁率が低減し、特に数10MHz以上の電
気信号の伝送線路では磁性体の強磁性は失われ、磁心に
発生する磁束による電気的磁気的な結合が減衰する。
FIG. 5 is a view for explaining a conventional problem, and FIGS. 6 and 7 are external views of a conventional product. In the product shown in FIG. 6, a plurality of coated electric wires as transmission conductors are wound around a magnetic core of a magnetic body, and the electric signal of each transmission conductor is controlled by a mutual induction electromotive force generated by a magnetic flux generated in the magnetic core. As described above, the magnetic core, which is a magnetic material, has a reduced permeability at high frequencies, and in particular, the ferromagnetic properties of the magnetic material are lost in transmission lines for electric signals of several tens of MHz or more, and the electric flux due to the magnetic flux generated in the magnetic core is lost. Magnetic coupling is attenuated.

【0004】また図7で示される厚膜積層印刷法による
部品では各伝送線路で共有する磁束により電気的磁気的
な結合を得るが、絶縁層厚みは各線路間の電気的絶縁性
を確保するため、一般に50μm以上であり、図5に模
式的に示すように線路間の絶縁層を通過する共有されて
いない漏洩磁束16及び17が結合率を低減させて、相
互インダクタンスと各インダクタンス相乗平均との比で
ある結合係数が最大でも0.8前後であった。
[0004] Further, in a component manufactured by the thick film lamination printing method shown in FIG. 7, electric and magnetic coupling is obtained by a magnetic flux shared by each transmission line, but the thickness of the insulating layer secures electrical insulation between the lines. For this reason, it is generally 50 μm or more, and as shown schematically in FIG. 5, the unshared leakage magnetic fluxes 16 and 17 passing through the insulating layer between the lines reduce the coupling rate, and the mutual inductance and the geometric mean of each inductance are reduced. Was about 0.8 at the maximum.

【0005】[0005]

【発明が解決しようとする課題】しかしながら前述した
従来の電子部品における課題として、磁性体である磁心
は高周波数では透磁率が低減し、特に数10MHz以上
の電気信号の伝送線路では磁性体の強磁性は失われ、磁
心に発生する磁束による電気的磁気的な結合が減衰す
る。
However, as a problem in the above-mentioned conventional electronic parts, the magnetic core, which is a magnetic material, has a reduced magnetic permeability at high frequencies, and in particular, has a strong magnetic material in a transmission line for electric signals of several tens of MHz or more. The magnetism is lost, and the electric and magnetic coupling due to the magnetic flux generated in the magnetic core is attenuated.

【0006】また厚膜積層印刷法による部品では各伝送
線路で共有する磁束により電気的磁気的な結合を得る
が、絶縁層厚みは一般に50μm以上であり線路間の絶
縁層を通過する共有されていない漏洩磁束が結合率を低
減させて、相互インダクタンスと各インダクタンスの相
乗平均との比である結合係数が最大でも0.8前後であ
る。したがって効率の良い電気信号の制御のため結合係
数の向上が課題であった。
In a component manufactured by the thick film lamination printing method, electric and magnetic coupling is obtained by a magnetic flux shared by each transmission line. However, the thickness of the insulating layer is generally 50 μm or more, and the insulating layer is commonly used to pass through the insulating layer between the lines. No leakage flux reduces the coupling ratio, and the coupling coefficient, which is the ratio between the mutual inductance and the geometric mean of each inductance, is around 0.8 at the maximum. Therefore, improvement of the coupling coefficient has been a problem for efficient control of electric signals.

【0007】本発明の目的は、前述の課題に対し特に数
10MHz以上の高周波においても結合係数の高い磁気
結合を得て、各伝送導体に流れる電気信号をお互いに制
御し合う電気信号制御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electric signal control device which obtains a magnetic coupling having a high coupling coefficient even at a high frequency of several tens of MHz or more and controls electric signals flowing through respective transmission conductors. To provide.

【0008】[0008]

【課題を解決するための手段】本発明によれば、電気信
号を伝送する2本以上の電気線路の互いの信号を制御す
る電気信号制御装置であって、装置外部に4以上の電極
端子を有し、前記電極端子と電気的に接続されかつ装置
内部に形成される2以上の伝送導体を有し、かつ前記伝
送導体の各々が、該伝送導体と異なる少なくとも1以上
の伝送導体と電気的かつ磁気的に結合することで該伝送
導体間に流れる電気信号を互いに制御する電気信号制御
装置において、前記電気的かつ磁気的に結合する2以上
の伝送導体の少なくとも一部は、重畳構造でありかつ重
畳部の伝送導体間は非磁性の電気絶縁物であり、前記電
気絶縁物は厚みが50μm未満の絶縁樹脂であること特
徴とする電気信号制御装置が得られる。
According to the present invention, there is provided an electric signal control device for controlling mutual signals of two or more electric lines for transmitting electric signals, wherein four or more electrode terminals are provided outside the device. And two or more transmission conductors electrically connected to the electrode terminals and formed inside the device, and each of the transmission conductors is electrically connected to at least one or more transmission conductors different from the transmission conductor. In an electric signal control device that controls electric signals flowing between the transmission conductors by magnetically coupling with each other, at least a part of the two or more transmission conductors that are electrically and magnetically coupled has a superposed structure. In addition, a non-magnetic electric insulator is provided between the transmission conductors of the superimposed portion, and the electric insulator is an insulating resin having a thickness of less than 50 μm.

【0009】さらに、本発明によれば、前記絶縁樹脂は
感光性を有する樹脂であること特徴とする電気信号制御
装置が得られる。
Further, according to the present invention, there is provided an electric signal control device, wherein the insulating resin is a resin having photosensitivity.

【0010】さらに、本発明によれば、前記電気絶縁物
は厚みが50μm未満の酸素化合物或いは窒素化合物で
あること特徴とする電気信号制御装置が得られる。
Further, according to the present invention, there is provided an electric signal control device, wherein the electric insulator is an oxygen compound or a nitrogen compound having a thickness of less than 50 μm.

【0011】[0011]

【作用】前述手段で得られる前記導体間の電気絶縁物を
スピーンコーティング法等により塗布形成した厚みが5
0μm未満の非磁性の電気絶縁樹脂とすることで、特に
数10MHz以上の高周波においても結合係数を0.8
以上、さらに薄くすることで0.9以上の高い磁気結合
が得られ、各伝送導体に流れる電気信号を効率良く制御
し合う、高性能でかつ信頼性の高い電気信号制御装置が
実現できる。
The electric insulator between the conductors obtained by the above-mentioned means is applied by a spin coating method or the like to a thickness of 5%.
By using a nonmagnetic electrically insulating resin having a thickness of less than 0 μm, the coupling coefficient can be reduced to 0.8 even at a high frequency of several tens MHz or more.
As described above, by further reducing the thickness, a high magnetic coupling of 0.9 or more can be obtained, and a high-performance and highly reliable electric signal control device that efficiently controls electric signals flowing through each transmission conductor can be realized.

【0012】また、前述手段で得られる前記導体間の電
気絶縁物を前記導体の酸化物或いは窒化物である構成に
より、前記導体の表層を酸化或いは窒化することで導体
間を良好な電気的絶縁とすることができ、容易に導体間
を50μm未満の厚みの非磁性の電気絶縁物である構成
が可能であり、特に数10MHz以上の高周波において
も結合係数を0.8以上、さらに薄くすることで0.9
以上の高い磁気結合が得られ、各伝送導体に流れる電気
信号を効率良く制御し合う、高性能でありかつ信頼性の
高い電気信号制御装置が実現できる。
[0012] In addition, the electric insulator between the conductors obtained by the above-mentioned means is an oxide or nitride of the conductor, so that the surface layer of the conductor is oxidized or nitrided to provide good electrical insulation between the conductors. It is possible to easily form a nonmagnetic electric insulator having a thickness of less than 50 μm between conductors, and to further reduce the coupling coefficient to 0.8 or more even at a high frequency of several tens MHz or more. At 0.9
The above-described high magnetic coupling is obtained, and a high-performance and highly reliable electric signal control device that efficiently controls electric signals flowing through each transmission conductor can be realized.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施の形態につ
いて図面を用いて説明する。図1は本発明の電気信号制
御装置の一実施の形態を示した外観斜視図である。図2
は図1の電気信号制御装置の電気的等価回路図である。
図3は本発明の電気信号制御装置の伝送導体どうしを結
合している結合部の部分詳細図である。図4は本発明の
電気信号制御装置の動作原理を説明する図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an external perspective view showing an embodiment of the electric signal control device of the present invention. FIG.
2 is an electrical equivalent circuit diagram of the electrical signal control device of FIG.
FIG. 3 is a partial detailed view of a connecting portion connecting the transmission conductors of the electric signal control device of the present invention. FIG. 4 is a diagram for explaining the operation principle of the electric signal control device of the present invention.

【0014】図1において、セラミック基板上に入力端
子3と出力端子4と電気的に接続される電気信号伝送導
体8(図3参照)を、厚さ5μmの銅をスパッタ成膜法
により成膜しエッチングにより伝送導体のパターンを形
成した。次に電気絶縁樹脂であるポリイミド等の樹脂を
スピンコーティング法により5μmの厚さで成膜し、更
にエッチングにより所定の場所にスルーホールを形成
し、再度厚さ5μmの銅をスパッタ成膜法により成膜し
エッチングにより入力端子1と出力端子2と電気的に接
続される電気信号伝送導体7(図3参照)のパターンを
形成した。最後に銅の腐食などの防止として表面の保護
コーティング樹脂を形成し電気信号制御装置5を得た。
In FIG. 1, an electric signal transmission conductor 8 (see FIG. 3) electrically connected to the input terminal 3 and the output terminal 4 is formed on a ceramic substrate by sputtering a 5 μm-thick copper film. A transmission conductor pattern was formed by etching. Next, a resin such as polyimide, which is an electrically insulating resin, is formed into a film with a thickness of 5 μm by a spin coating method, a through hole is formed in a predetermined place by etching, and copper having a thickness of 5 μm is formed again by a sputtering film forming method. The pattern of the electric signal transmission conductor 7 (see FIG. 3) electrically connected to the input terminal 1 and the output terminal 2 was formed by film formation and etching. Finally, a protective coating resin was formed on the surface to prevent corrosion of copper and the like, and an electric signal control device 5 was obtained.

【0015】また、他の実施の形態として図1におい
て、セラミック基板上に入力端子3と出力端子4と電気
的に接続される電気信号伝送導体8を、厚さ5μmの銅
をスパッタ成膜法により成膜しエッチングにより伝送導
体のパターンを形成する。次に電気絶縁樹脂であるSi
2 等の酸素化合物或いはSi3 4 等の窒素化合物を
スパッタ成膜法により1μmの厚さで成膜し、更にエッ
チングにより所定の場所にスルーホールを形成し、再度
厚さ5μmの銅をスパッタ成膜法により成膜しエッチン
グにより入力端子1と出力端子2と電気的に接続される
電気信号伝送導体7のパターンを形成した。伝送導体の
パターンを形成した。最後に銅の腐食などの防止として
表面の保護コーティング樹脂を形成し電気信号制御装置
5を得た。
As another embodiment, in FIG. 1, an electric signal transmission conductor 8 electrically connected to the input terminal 3 and the output terminal 4 is formed on a ceramic substrate by sputtering a 5 μm thick copper film. To form a transmission conductor pattern by etching. Next, the electrical insulating resin Si
An oxygen compound such as O 2 or a nitrogen compound such as Si 3 N 4 is formed into a film having a thickness of 1 μm by a sputtering film forming method, a through hole is formed at a predetermined place by etching, and copper having a thickness of 5 μm is formed again. The pattern of the electric signal transmission conductor 7 electrically connected to the input terminal 1 and the output terminal 2 was formed by sputtering and then etching. A transmission conductor pattern was formed. Finally, a protective coating resin was formed on the surface to prevent corrosion of copper and the like, and an electric signal control device 5 was obtained.

【0016】この電気信号制御装置5の電気的等価回路
を図2に示す。電気信号伝送導体7と電気信号伝送導体
8は、相互インダクタンスMによる結合部6により磁気
的に結合している。
FIG. 2 shows an electric equivalent circuit of the electric signal control device 5. The electric signal transmission conductor 7 and the electric signal transmission conductor 8 are magnetically coupled by a coupling portion 6 having a mutual inductance M.

【0017】図3は前記相互インダクタンスMによる結
合部6を模式的に表す図である。電気信号伝送導体7は
厚さ5μmの銅のパターンであり、電気信号伝送導体8
は厚さ5μmの銅のパターンであり、電気絶縁体9は厚
さ5μmの絶縁樹脂或いは厚さ1μmのSiO2 等の酸
素化合物或いはSi3 4 等の窒素化合物である。
FIG. 3 is a diagram schematically showing the coupling portion 6 formed by the mutual inductance M. The electric signal transmission conductor 7 is a copper pattern having a thickness of 5 μm.
Is a 5 μm thick copper pattern, and the electrical insulator 9 is a 5 μm thick insulating resin or a 1 μm thick oxygen compound such as SiO 2 or a nitrogen compound such as Si 3 N 4 .

【0018】図4は前述構造の電気信号制御装置の動作
原理を説明する図であるが、(a)において電気信号伝
送導体10に電気信号電流i10が流れた際、電気信号伝
送導体10と電気信号伝送導体11の両方のパターンを
囲む磁束Φi10が発生し、(b)において前記磁束Φi
10により前記電気信号伝送導体10には自己誘導起電力
12が発生し、前記電気信号伝送導体11には相互誘導
起電力13が発生することで11に流れる電気信号を制
御することができる。
[0018] While FIG. 4 is a diagram for explaining the operating principle of the electric signal controlling device described above structure, when the electric signal current i 10 to an electric signal transmission conductor 10 flows (a), the electrical signal transmission conductors 10 A magnetic flux Φi 10 surrounding both patterns of the electric signal transmission conductor 11 is generated, and in FIG.
The self-induced electromotive force 12 is generated in the electric signal transmission conductor 10 by the electric signal transmission conductor 10, and the mutual induction electromotive force 13 is generated in the electric signal transmission conductor 11, so that the electric signal flowing through the electric signal transmission conductor 11 can be controlled.

【0019】なお本発明の実施例での伝送導体の材質と
して銅を用いたが、本発明は上記した実施の形態に限定
されるものではない。したがって、電気信号を伝送でき
る如何なる金属あるいは不純物が混合されているシリコ
ンなどの如何なる半導体であってもよい。
Although copper is used as the material of the transmission conductor in the embodiment of the present invention, the present invention is not limited to the above embodiment. Therefore, any semiconductor such as silicon mixed with any metal or impurity capable of transmitting an electric signal may be used.

【0020】また、基板としてセラミック基板を用いた
がセラミック基板以外の材質でもよいし、その形状に関
しても本実施の形態に限定されるものではない。
Although a ceramic substrate is used as the substrate, a material other than the ceramic substrate may be used, and the shape is not limited to this embodiment.

【0021】また、伝送導体の数は2以上であって、外
部端子電極数も4以上であれば、その本数は本実施の形
態に限定されるものではない。
If the number of transmission conductors is two or more and the number of external terminal electrodes is four or more, the number is not limited to the present embodiment.

【0022】更に、回路基板等の多層構造の電子部品を
実装する基板等であってもその一部の構造が本発明を利
用し、外部に4以上の電極端子を有する基板等であれば
本実施の形態に限定されるものではない。
Furthermore, even if a circuit board or the like on which electronic parts having a multilayer structure are mounted, such as a circuit board, a part of the structure utilizes the present invention, and if the board has four or more electrode terminals on the outside, the present invention It is not limited to the embodiment.

【0023】[0023]

【発明の効果】本発明によれば、重畳される導体間に5
0μm未満の非磁性の電気絶縁樹脂を形成した構成によ
り、前記導体間を良好な電気的絶縁とすることができ、
かつ導体間を50μm未満の厚みの非磁性の電気絶縁物
である構成が可能であり、特に数10MHz以上の高周
波においても結合係数を0.8以上、さらに薄くするこ
とで0.9以上の高い磁気結合が得られ、各伝送導体に
流れる電気信号を効率良く制御し合う、高性能でありか
つ信頼性の高い電気制御装置が得られる。
According to the present invention, five conductors are superposed between superposed conductors.
With a configuration in which a non-magnetic electric insulating resin of less than 0 μm is formed, good electrical insulation can be provided between the conductors,
In addition, a configuration in which a nonmagnetic electric insulator having a thickness of less than 50 μm between conductors is possible. Particularly, even at a high frequency of several tens of MHz or more, the coupling coefficient is 0.8 or more, and is further increased to 0.9 or more by further thinning. Magnetic coupling is obtained, and a high-performance and highly reliable electric control device that efficiently controls electric signals flowing through each transmission conductor is obtained.

【0024】また、本発明によれば、重畳される下の導
体の表層を酸化或いは窒化することで導体間を良好な電
気的絶縁とすることができ、容易に導体間を50μm未
満の厚みの非磁性の電気絶縁物である構成が可能であ
り、特に数10MHz以上の高周波においても結合係数
を0.8以上、さらに薄くすることで0.9以上の高い
磁気結合が得られ、各伝送導体に流れる電気信号を効率
良く制御し合う、高性能でありかつ信頼性の高い電気信
号制御装置が得られる。
Further, according to the present invention, by oxidizing or nitriding the surface layer of the lower conductor to be superimposed, good electrical insulation between the conductors can be obtained, and the gap between the conductors having a thickness of less than 50 μm can be easily achieved. It is possible to use a non-magnetic electrical insulator, especially at high frequencies of several tens of MHz or more, and to obtain a high magnetic coupling of 0.9 or more by further reducing the coupling coefficient to 0.8 or more. A high-performance and highly reliable electric signal control device which efficiently controls electric signals flowing through the electric device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気信号制御装置の一実施の形態を示
した外観斜視図である。
FIG. 1 is an external perspective view showing an embodiment of an electric signal control device of the present invention.

【図2】図1の電気信号制御装置の電気的等価回路図で
ある。
FIG. 2 is an electrical equivalent circuit diagram of the electrical signal control device of FIG.

【図3】本発明の電気信号制御装置の伝送導体どうしを
結合している結合部の部分詳細図である。
FIG. 3 is a partial detailed view of a connecting portion connecting transmission conductors of the electric signal control device of the present invention.

【図4】本発明の電気信号制御装置の動作原理を説明す
る図である。
FIG. 4 is a diagram illustrating the operation principle of the electric signal control device of the present invention.

【図5】従来の課題を説明する図である。FIG. 5 is a diagram illustrating a conventional problem.

【図6】従来の製品の外観図である。FIG. 6 is an external view of a conventional product.

【図7】従来の製品の外観図である。FIG. 7 is an external view of a conventional product.

【符号の説明】[Explanation of symbols]

1,3 入力端子 2,4 出力端子 5 電気信号制御装置 6 結合部 7,8,10,11,14,15 電気信号伝送導体 9 電気絶縁体 12 自己誘導起電力 13 相互誘導起電力 16,17 漏洩磁束 18 共有磁束 1,3 input terminal 2,4 output terminal 5 electric signal control device 6 coupling part 7,8,10,11,14,15 electric signal transmission conductor 9 electric insulator 12 self-induced electromotive force 13 mutual induced electromotive force 16,17 Leakage flux 18 Shared flux

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気信号を伝送する2本以上の電気線路
の互いの信号を制御する電気信号制御装置であって、装
置外部に4以上の電極端子を有し、前記電極端子と電気
的に接続されかつ装置内部に形成される2以上の伝送導
体を有し、かつ前記伝送導体の各々が、該伝送導体と異
なる少なくとも1以上の伝送導体と電気的かつ磁気的に
結合することで該伝送導体間に流れる電気信号を互いに
制御する電気信号制御装置において、前記電気的かつ磁
気的に結合する2以上の伝送導体の少なくとも一部は、
重畳構造でありかつ重畳部の伝送導体間は非磁性の電気
絶縁物であり、前記電気絶縁物は厚みが50μm未満の
絶縁樹脂であること特徴とする電気信号制御装置。
1. An electric signal control device for controlling signals of two or more electric lines for transmitting electric signals, wherein the electric signal control device has four or more electrode terminals outside the device and is electrically connected to the electrode terminals. The transmission conductor having two or more transmission conductors connected and formed inside the device, and each of the transmission conductors is electrically and magnetically coupled to at least one or more transmission conductors different from the transmission conductor. In an electric signal control device that controls electric signals flowing between conductors, at least a part of the two or more transmission conductors that are electrically and magnetically coupled to each other,
An electric signal control device having a superimposed structure and a non-magnetic electric insulator between transmission conductors in the superimposed portion, wherein the electric insulator is an insulating resin having a thickness of less than 50 μm.
【請求項2】 前記絶縁樹脂は感光性を有する樹脂であ
ること特徴とする請求項1記載の電気信号制御装置。
2. The electric signal control device according to claim 1, wherein said insulating resin is a resin having photosensitivity.
【請求項3】 前記電気絶縁物は厚みが50μm未満の
酸素化合物或いは窒素化合物であること特徴とする請求
項1記載の電気信号制御装置。
3. The electric signal control device according to claim 1, wherein the electric insulator is an oxygen compound or a nitrogen compound having a thickness of less than 50 μm.
JP4312297A 1997-02-27 1997-02-27 Electric signal controller Withdrawn JPH10241940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4312297A JPH10241940A (en) 1997-02-27 1997-02-27 Electric signal controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4312297A JPH10241940A (en) 1997-02-27 1997-02-27 Electric signal controller

Publications (1)

Publication Number Publication Date
JPH10241940A true JPH10241940A (en) 1998-09-11

Family

ID=12655043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4312297A Withdrawn JPH10241940A (en) 1997-02-27 1997-02-27 Electric signal controller

Country Status (1)

Country Link
JP (1) JPH10241940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534726A (en) * 2000-05-23 2003-11-18 ワイア21,インコーポレーテツド High frequency network communication on various power lines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534726A (en) * 2000-05-23 2003-11-18 ワイア21,インコーポレーテツド High frequency network communication on various power lines
JP2011188532A (en) * 2000-05-23 2011-09-22 Satius Inc Communication device and coupler for communication device

Similar Documents

Publication Publication Date Title
US5738931A (en) Electronic device and magnetic device
EP1063661B1 (en) An integrated circuit having a micromagnetic device and method of manufacture therefor
US6163234A (en) Micromagnetic device for data transmission applications and method of manufacture therefor
JP3441082B2 (en) Planar magnetic element
EP0856855A2 (en) Printed coil with magnetic layer
WO2005096007A1 (en) Magnetic field sensor
GB2083952A (en) Microcoil Assembly
US6191495B1 (en) Micromagnetic device having an anisotropic ferromagnetic core and method of manufacture therefor
US20020101683A1 (en) Thin film coil and method of forming the same, thin film magnetic head, thin film inductor and thin film magnetic sensor
US20030234436A1 (en) Semiconductor device with a spiral inductor and magnetic material
JPS60136363A (en) Semiconductor device
JPH10241940A (en) Electric signal controller
US6873242B2 (en) Magnetic component
RU2691061C1 (en) Inductor
JPH05109557A (en) High frequency thin film transformer and high frequency thin film inductor
JP2002110423A (en) Common mode choke coil
JP2020155733A (en) Thin-film magnetic device
JPH02208909A (en) Inductance element and transformer
JPS62152111A (en) High frequency coil
JPH0479305A (en) Inductance element
JP3146672B2 (en) A thin-film laminated magnetic induction element and an electronic device using the same.
JPS5898906A (en) Iron core
JPH0582354A (en) Film transformer
JPS5877221A (en) Manufacture of thick film transformer
JP2000235919A (en) Laminated common mode choke coil element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511