JPH10241652A - Safety structure of sealed battery - Google Patents

Safety structure of sealed battery

Info

Publication number
JPH10241652A
JPH10241652A JP9039505A JP3950597A JPH10241652A JP H10241652 A JPH10241652 A JP H10241652A JP 9039505 A JP9039505 A JP 9039505A JP 3950597 A JP3950597 A JP 3950597A JP H10241652 A JPH10241652 A JP H10241652A
Authority
JP
Japan
Prior art keywords
rupture
battery
primary
pressure
rupture body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9039505A
Other languages
Japanese (ja)
Inventor
Keisuke Yamamoto
啓介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP9039505A priority Critical patent/JPH10241652A/en
Publication of JPH10241652A publication Critical patent/JPH10241652A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a safety structure of a sealed battery which is capable of stopping battery actuation within a prescribed battery internal pressure range and rupturing a rupture plate, within a prescribed battery internal pressure range higher than the above a prescribed pressure. SOLUTION: This safety structure stops battery actuation by rupture of a primary rupture body R1 having a smaller pressure resistant rupture strength than a secondary rupture body R2 and permits the battery internal pressure to be received by the secondary rupture body R2 after the rupture of the primary rupture body R1. This structure is superior in discharge capacity characteristics and charge and discharge cycle characteristics and particularly effective as a lithium secondary battery of a non-aqueous liquid electrolytic with its a high level for danger of explosion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉型電池の安全
構造に関し、特に非水液体電解質を有する各種二次電
池、特にリチウム二次電池の安全構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a safety structure of a sealed battery, and more particularly to a safety structure of various secondary batteries having a non-aqueous liquid electrolyte, in particular, a lithium secondary battery.

【0002】[0002]

【従来の技術】図5は、従来の非水液体電解質を有する
リチウム二次電池の断面図であり、図6は、図5におけ
る安全構造部分およびその近傍部の拡大断面図である。
図5および図6において、1は金属性の電池缶、2は負
極電気絶縁板、3は電池要素巻回体、31は電池要素巻
回体3の下部から延在する負極リード、32は同巻回体
3の上部から延在する正極リード、4はドーナツ状の正
極電気絶縁板、5は電池の安全構造、6は正極蓋、7は
安全構造5および正極蓋6とを電池缶1から絶縁するた
めの電気絶縁ガスケット、8は電池缶1の外壁上に設け
られ、正極電気絶縁板4以下の電池内容物をガタツキな
く固定するための窪みである。図6において安全構造5
は、導電板51、導電性のラプチャー板52、および導
電板51とラプチャー板52との間に設置された電気絶
縁板53とからなる。また導電板51とラプチャー板5
2とは、図示する点Aにおいて電気的に接触している。
負極リード31は、負極電気絶縁板2の外側を越えてそ
の先端が電池缶1の底内壁上に溶接されており、正極リ
ード32の先端はドーナツ状の正極電気絶縁板4の中心
孔を貫通して導電板51の裏面上に溶接されている。ま
た導電性のラプチャー板52は、正極蓋6の裏面と直接
接して電気的に接続されているので、正極リード32は
導電板51およびラプチャー板52とを介して正極蓋6
と電気的に導通状態とされている。
2. Description of the Related Art FIG. 5 is a cross-sectional view of a conventional lithium secondary battery having a non-aqueous liquid electrolyte, and FIG. 6 is an enlarged cross-sectional view of a safety structure portion and its vicinity in FIG.
5 and 6, reference numeral 1 denotes a metal battery can, 2 denotes a negative electrode electric insulating plate, 3 denotes a battery element winding body, 31 denotes a negative electrode lead extending from the lower portion of the battery element winding body 3, and 32 denotes the same. The positive electrode lead extending from the upper part of the wound body 3, 4 is a donut-shaped positive electric insulating plate, 5 is a battery safety structure, 6 is a positive electrode cover, 7 is a safety structure 5 and a positive electrode cover 6 from the battery can 1. An electric insulating gasket 8 for insulation is provided on the outer wall of the battery can 1 and is a depression for fixing the battery contents below the positive electric insulating plate 4 without looseness. In FIG. 6, the safety structure 5
Comprises a conductive plate 51, a conductive rupture plate 52, and an electrical insulating plate 53 provided between the conductive plate 51 and the rupture plate 52. The conductive plate 51 and the rupture plate 5
2 is in electrical contact with point A in the figure.
The tip of the negative electrode lead 31 is welded to the bottom inner wall of the battery can 1 beyond the outside of the negative electrode electrical insulating plate 2, and the tip of the positive electrode lead 32 passes through the center hole of the donut-shaped positive electrical insulating plate 4. And is welded on the back surface of the conductive plate 51. Since the conductive rupture plate 52 is in direct contact with and electrically connected to the back surface of the positive electrode lid 6, the positive electrode lead 32 is connected to the positive electrode lid 6 via the conductive plate 51 and the rupture plate 52.
Is electrically conducted.

【0003】安全構造5の作動機構を説明する前に、一
般的な安全構造の作動原理を説明する。電池の破裂は種
々の原因によって生じるが、その主たるものは電池内で
の短絡事故である。その短絡事故により電池内が異常昇
温し、ひいては液体電解質の異常気化およびそれによる
内圧上昇に繋がって電池破裂を惹起するに至る。従って
電池の内圧が異常上昇すると、先ず電池の短絡を遮断し
て電池作動を停止させて内圧の異常上昇を抑制せんとす
る。つぎにこの抑制措置によっても未だ内圧上昇が継続
する場合には、ラプチャー板をその上昇内圧にて破裂さ
せて電池内を大気圧に曝して電池の破裂を防止する。
Before describing the operation mechanism of the safety structure 5, the operation principle of a general safety structure will be described. The rupture of a battery is caused by various causes, the main one being a short circuit accident in the battery. Due to the short circuit accident, the temperature inside the battery rises abnormally, which leads to the abnormal vaporization of the liquid electrolyte and the resulting increase in the internal pressure, leading to the rupture of the battery. Therefore, when the internal pressure of the battery rises abnormally, first, the short circuit of the battery is cut off to stop the operation of the battery, so as to suppress the abnormal rise of the internal pressure. Next, if the internal pressure continues to rise even after this suppression measure, the rupture plate is ruptured at the increased internal pressure and the inside of the battery is exposed to the atmospheric pressure to prevent the battery from bursting.

【0004】図6に示す従来の安全構造5も上記した機
構を踏襲するものであって、電池の内圧が異常上昇する
と、その上昇内圧を利用して点Aでの導電板51とラプ
チャー板52との電気的導通を遮断し、それにより正極
リード32と正極蓋6とを、ひいては正極リード32と
負極リード31とを遮断して電池作動を停止させる。こ
の電池作動の停止によっても上昇内圧が継続される場合
には、電池内圧は導電板51に設けられている多数の貫
通孔511を通じてラプチャー板52に受圧され、ラプ
チャー板52の破裂により、詳しくは、そこに設けられ
ている弱点部521の破裂により電池内圧は正極蓋6に
設けられている多数の貫通孔61を通じて大気に開放さ
れる。その場合、ラプチャー板52の耐圧力破裂強度は
当然、実用される電池缶1の耐圧力破裂強度以下である
必要がある。そこで実用されている電池缶1の耐圧力破
裂強度を考慮して、点Aでの導電板51とラプチャー板
52との電気的導通を遮断させる電池の内圧範囲P1は
3〜20kgf/cm2程度とし、且つラプチャー板5
2の耐圧力破裂強度P2は1.2P1〜2.5P1程度
に設計されている。
The conventional safety structure 5 shown in FIG. 6 also follows the above-mentioned mechanism. When the internal pressure of the battery rises abnormally, the conductive plate 51 and the rupture plate 52 at the point A are utilized by using the increased internal pressure. Then, the electrical conduction between the positive electrode lead 32 and the positive electrode cover 6 and thus the positive electrode lead 32 and the negative electrode lead 31 are interrupted to stop the operation of the battery. If the rising internal pressure is continued even after the operation of the battery is stopped, the internal pressure of the battery is received by the rupture plate 52 through a large number of through holes 511 provided in the conductive plate 51, and the rupture of the rupture plate 52 causes The internal pressure of the battery is released to the atmosphere through a large number of through holes 61 provided in the positive electrode lid 6 due to the rupture of the weak point portion 521 provided therein. In this case, the pressure rupture strength of the rupture plate 52 must be, of course, equal to or less than the pressure rupture strength of the battery can 1 to be practically used. Therefore, in consideration of the pressure rupture strength of the battery can 1 used in practice, the internal pressure range P1 of the battery for interrupting the electrical conduction between the conductive plate 51 and the rupture plate 52 at the point A is about 3 to 20 kgf / cm 2. And rupture board 5
The pressure rupture strength P2 of No. 2 is designed to be about 1.2P1 to 2.5P1.

【0005】従来においては、図6における点Aでの導
電板51とラプチャー板52との電気的導通は、両者を
溶接する方法、あるいは単に接触させる方法との2法が
採用されてきた。しかし、いずれの方法もつぎに述べる
欠点がある。即ち、溶接法にて接続された個所(点A)
の剥離などによる接続破壊を上記内圧範囲P1で確実に
生ぜしめるには、極めて高度の溶接技術が必要となり、
しかも溶接力の管理が必要となるが、実際には溶接力は
導電板51やラプチャー板52の加工精度やそれらの構
成材料によって大きく影響されるので、その実現は実際
上すこぶる困難である。一方、単に接触させる方法で
は、導電板51とラプチャー板52との各バネ弾性を利
用して両板同士を点Aにて互いに押力を作用させあう。
この場合、この押力の大きさが上記のP1の範囲となる
ように制御する必要があるが、この制御が困難であるの
みならず、該押力は電池の正常な運転中においても変動
する問題がある。即ち、電池の充電時と放電時との温度
差や外気温度の変動などによる電池内の圧力変動により
押力が変動するためである。
Conventionally, the electrical conduction between the conductive plate 51 and the rupture plate 52 at the point A in FIG. 6 has been achieved by two methods, a method of welding the two or a method of simply contacting the two. However, both methods have the following disadvantages. That is, the points connected by the welding method (point A)
In order to surely cause connection destruction due to peeling off of the inner pressure range P1 in the above-mentioned internal pressure range P1, extremely high welding technology is required.
Moreover, it is necessary to control the welding force. However, in practice, the welding force is greatly affected by the processing accuracy of the conductive plate 51 and the rupture plate 52 and the constituent materials thereof, so that it is practically very difficult to realize the welding force. On the other hand, in the simple contact method, the springs of the conductive plate 51 and the rupture plate 52 are used to apply a pressing force to each other at a point A by using the respective spring elasticity.
In this case, it is necessary to control the magnitude of the pressing force to be in the range of the above P1, but this control is not only difficult, but the pressing force fluctuates even during normal operation of the battery. There's a problem. That is, the pressing force fluctuates due to the pressure difference in the battery due to the temperature difference between the time of charging and the time of discharging of the battery and the fluctuation of the outside air temperature.

【0006】[0006]

【発明が解決しようとする課題】しかして本発明は、所
定の電池内圧範囲で電池作動を停止させ得、且つ前記所
定の圧力より高い所定の電池内圧範囲でラプチャー板を
破裂させ得る密閉型電池の安全構造を提供することを目
的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a sealed battery capable of stopping battery operation in a predetermined battery internal pressure range and bursting a rupture plate in a predetermined battery internal pressure range higher than the predetermined pressure. The purpose is to provide a safety structure.

【0007】[0007]

【課題を解決するための手段】本発明は、つぎの特徴を
有する。 (1) 電池内の圧力を直接受圧する一次ラプチャー体とそ
の上に空間を介して設置され且つ一次ラプチャー体より
大きな耐圧力破裂強度を有する二次ラプチャー体とが部
分的接触により電気的に導通されており、且つ一次ラプ
チャー体を破裂させ得る電池内圧は一次ラプチャー体の
破裂により二次ラプチャー体に作用し、且つ一次ラプチ
ャー体の破裂に基づき上記の電気的導通が遮断されるよ
うにしたことを特徴とする密閉型電池の安全構造。 (2) 一次ラプチャー体と二次ラプチャー体との電気的導
通が、互いの部分的な接触によりなされており、一次ラ
プチャー体の破裂による両ラプチャー体間の該空間の圧
力の急上昇により二次ラプチャー体が変形して該接触が
外れるようにした上記(1) 記載の密閉型電池の安全構
造。 (3) 一次ラプチャー体と二次ラプチャー体との電気的導
通が、一次ラプチャー体の表面上に設けた突起部の側壁
と二次ラプチャー体の裏面上に設けた突起の側壁との接
触によりなされている上記(2) 記載の密閉型電池の安全
構造。 (4) 一次ラプチャー体と二次ラプチャー体との電気的導
通が、一次ラプチャー体の表面上に設けた突起部の側壁
斜面と二次ラプチャー体の裏面上に設けた突起の側壁斜
面との接触によりなされている上記(3) 記載の密閉型電
池の安全構造。
The present invention has the following features. (1) Partial contact between the primary rupture body that directly receives the pressure in the battery and the secondary rupture body that is installed above the primary rupture body through a space and has a higher pressure rupture strength than the primary rupture body That the internal pressure of the battery capable of bursting the primary rupture body acts on the secondary rupture body due to the rupture of the primary rupture body, and the above-mentioned electrical conduction is interrupted based on the rupture of the primary rupture body. Safety structure of sealed battery. (2) Electrical continuity between the primary rupture body and the secondary rupture body is established by partial contact with each other, and the secondary rupture is caused by a sudden increase in pressure in the space between the two rupture bodies due to the rupture of the primary rupture body. The safety structure of the sealed battery according to the above (1), wherein the body is deformed to release the contact. (3) Electrical continuity between the primary rupture body and the secondary rupture body is achieved by contact between the side wall of the protrusion provided on the surface of the primary rupture body and the side wall of the protrusion provided on the back surface of the secondary rupture body. The safety structure of the sealed battery according to the above (2). (4) The electrical conduction between the primary rupture body and the secondary rupture body is caused by the contact between the side wall slope of the projection provided on the surface of the primary rupture body and the side wall slope of the projection provided on the back surface of the secondary rupture body. (3) The safety structure of a sealed battery according to the above (3).

【0008】[0008]

【作用】本発明においては、一次ラプチャー体と二次ラ
プチャー体との二体のラプチャー体を採用し、且つ両ラ
プチャー体の間に空間が設けられる。一次ラプチャー体
は電池内の圧力を絶えず直接受圧するものであり、電池
内圧力が上昇してこの一次ラプチャー体を破裂させるよ
うな高圧力に達すると、その高圧力は一次ラプチャー体
を破裂して上記の空間に伝えられて二次ラプチャー体に
作用する。したがって、一次ラプチャー体と二次ラプチ
ャー体との各耐圧力破裂強度は、互いに独立に設定し
得、しかして両ラプチャー体は、それぞれ、所定の圧力
にて互いに独立に破裂させることができる。さらに両ラ
プチャー体は、常態においては互いの部分的接触により
電気的に導通しているが、本発明においてはこの電気的
導通は一次ラプチャー体の破裂に基づき遮断されるよう
に構成されている。そこで電池内圧力が、電池作動を停
止させる必要のある程に上昇した時点で一次ラプチャー
体が破裂するようにその耐圧力破裂強度を予め設定して
おくと、確実にその圧力上昇時点で電池作動を停止させ
ることができる。一方、二次ラプチャー体の耐圧力破裂
強度を一次ラプチャー体と電池缶の耐圧力破裂強度の中
間に設定しておくと、電池缶を破裂させることなく、安
定して電池内圧を大気に開放することができる。なお一
次ラプチャー体の破裂による上記空間の急激な昇圧は、
二次ラプチャー体に衝撃力を賦与してそれを機械的に大
なり小なり変形させる。この変形を利用して、一次ラプ
チャー体と二次ラプチャー体との電気的導通を遮断する
ことができる。あるいは一次ラプチャー体の破裂による
自体の崩壊を利用して上記と同じ目的を達成することも
できる。
According to the present invention, two rupture bodies, a primary rupture body and a secondary rupture body, are employed, and a space is provided between the two rupture bodies. The primary rupture body continuously receives the pressure in the battery directly, and when the pressure in the battery rises and reaches a high pressure that ruptures the primary rupture body, the high pressure ruptures the primary rupture body. It is transmitted to the above space and acts on the secondary rupture body. Accordingly, the pressure rupture strengths of the primary rupture body and the secondary rupture body can be set independently of each other, so that both rupture bodies can be ruptured independently of each other at a predetermined pressure. Further, both rupture bodies are electrically connected to each other in a normal state due to partial contact with each other, but in the present invention, the electrical continuity is configured to be cut off based on the rupture of the primary rupture body. Therefore, if the pressure rupture strength is set in advance so that the primary rupture body ruptures when the pressure in the battery rises to such an extent that the operation of the battery needs to be stopped, it is ensured that the battery operates at the time of the pressure rise. Can be stopped. On the other hand, if the pressure rupture strength of the secondary rupture body is set to an intermediate value between the pressure rupture strengths of the primary rupture body and the battery can, the battery internal pressure is stably released to the atmosphere without bursting the battery can. be able to. The sudden pressure rise in the above space due to the rupture of the primary rupture body,
An impact force is applied to the secondary rupture body to mechanically deform it to a greater or lesser extent. By utilizing this deformation, the electrical conduction between the primary rupture body and the secondary rupture body can be cut off. Alternatively, the same purpose as described above can be achieved by utilizing the collapse of the primary rupture body due to its rupture.

【0009】[0009]

【発明の実施の形態】以下、本発明を図例により詳細に
説明する。図1は本発明の実施例の常態における断面図
であり、図2は図1の実施例において一次ラプチャー体
が破裂した状態の断面図である。図3〜図4は、いずれ
も本発明の他の実施例の部分拡大断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a cross-sectional view of an embodiment of the present invention in a normal state, and FIG. 2 is a cross-sectional view of the embodiment of FIG. 1 in which a primary rupture body has ruptured. 3 and 4 are partially enlarged sectional views of another embodiment of the present invention.

【0010】図1において、R1は一次ラプチャー体、
R2は一次ラプチャー体R1よりも大きな耐圧力破裂強
度を有する二次ラプチャー体、Sは一次ラプチャー体R
1と二次ラプチャー体R2との間の空間、53は両ラプ
チャー体R1、R2の間に設置されて両者を絶縁状態に
保持するためのドーナツ状の電気絶縁板である。二次ラ
プチャー体R2の上には、従来と同様に貫通孔61を有
するドーム状の正極蓋6が置かれ、正極蓋6はそのドー
ムの平坦部において二次ラプチャー体R2と電気的に導
通している。両ラプチャー体R1とR2、電気絶縁板5
3、および正極蓋6の全体は、電気絶縁ガスケット7を
介して図6に示す従来例のように図5に示すような電池
缶1の上部に設置される。
In FIG. 1, R1 is a primary rupture body,
R2 is a secondary rupture body having a higher pressure rupture strength than the primary rupture body R1, and S is a primary rupture body R
A space 53 between the primary rupture body R2 and the secondary rupture body R2 is a donut-shaped electric insulating plate provided between the two rupture bodies R1 and R2 to keep them insulated. A dome-shaped positive lid 6 having a through hole 61 is placed on the secondary rupture body R2 as in the conventional case, and the positive lid 6 is electrically connected to the secondary rupture body R2 at a flat portion of the dome. ing. Both rupture bodies R1 and R2, electrical insulating plate 5
3 and the entirety of the positive electrode lid 6 are installed via an electrically insulating gasket 7 on the upper part of the battery can 1 as shown in FIG.

【0011】一次ラプチャー体R1は円盤状を呈し、突
起部の一実施態様たる外側の厚肉部R11と内側に位置
する薄肉の平板部R12とからなり、厚肉部R11の裏
面に正極リード32が溶接されている。二次ラプチャー
体R2も円盤状を呈し、その裏面に突起部R22を有す
る。R21は、二次ラプチャー体R2の弱点部である。
両ラプチャー体R1とR2とは、共に導電材にて形成さ
れており且つ一次ラプチャー体R1の厚肉部R11の側
面R111と二次ラプチャー体R2の突起部R22の側
面R221との単なる接触により電気的に導通してい
る。
The primary rupture body R1 has a disk shape and comprises an outer thick portion R11 as an embodiment of a projection and a thin flat plate portion R12 located inside, and a positive electrode lead 32 is provided on the back surface of the thick portion R11. Are welded. The secondary rupture body R2 also has a disk shape, and has a projection R22 on the back surface. R21 is a weak point of the secondary rupture body R2.
Both rupture bodies R1 and R2 are both formed of a conductive material, and are electrically connected by simple contact between the side surface R111 of the thick portion R11 of the primary rupture body R1 and the side surface R221 of the protrusion R22 of the secondary rupture body R2. Is electrically conductive.

【0012】一次ラプチャー体R1は、設置位置の観点
からすれば図6に示す従来例における導電板51に対応
するものであるが、導電板51とは根本的に異なってそ
れが有するような貫通孔を有しない。したがって両ラプ
チャー体R1、R2の間の空間Sは、電池の常態におい
ては電池内の内圧から一次ラプチャー体R1にて隔離さ
れた状態に保持される。なお本発明において、空間Sの
気圧を電池内圧力から十分に保護するために特別のシー
ル機構を施すことは差し支えないが、実際上はそのよう
な必要はなく、両ラプチャー体R1とR2、電気絶縁板
53、および正極蓋6の全体を電気絶縁ガスケット7を
介して図6に示す従来例のように電池缶の上部に通常通
り設置するだけでよい。電池に異常事態が発生すると、
一般に電池内圧力は急上昇する。ところが空間Sが、た
とえ多数の小間隙にて電池内と連通していても、急上昇
圧力の伝達はそれら小間隙を経由するために遅延が生
じ、この遅延が実質的な圧力の隔離作用をなす。
Although the primary rupture member R1 corresponds to the conductive plate 51 in the conventional example shown in FIG. 6 from the viewpoint of the installation position, the primary rupture member R1 is fundamentally different from the conductive plate 51 and has a penetration No holes. Therefore, the space S between the two rupture bodies R1 and R2 is kept in a state where the primary rupture body R1 is isolated from the internal pressure in the battery in the normal state of the battery. In the present invention, a special sealing mechanism may be provided to sufficiently protect the pressure in the space S from the pressure in the battery. However, such a mechanism is not actually required, and both rupture members R1 and R2, electric The insulating plate 53 and the entirety of the positive electrode lid 6 need only be placed on the upper part of the battery can through the electric insulating gasket 7 as in the conventional example shown in FIG. When the battery becomes abnormal,
Generally, the pressure in the battery rises sharply. However, even if the space S communicates with the inside of the battery through a number of small gaps, the transmission of the rapidly rising pressure is delayed due to passing through the small gaps, and this delay has a substantial pressure isolating effect. .

【0013】しかして電池に異常事態が発生して電池内
圧力が上昇し、該圧力が一次ラプチャー体R1の耐圧力
破裂強度を越えると一次ラプチャー体R1は破裂し、空
間Sの気圧はその瞬間に電池内圧力に達して二次ラプチ
ャー体R2にその圧力を伝える。電池内圧力を衝撃的に
受けた二次ラプチャー体R2は、図2に示すように、正
極蓋6の側に膨らむように変形し、この変形と同時に二
次ラプチャー体R2の突起部R22が一次ラプチャー体
R1の厚肉部R11の側面R111から離れて両ラプチ
ャー体R1、R2同士の電気的導通が遮断され、この結
果、電池作用も停止するに至る。電池の異常事態の原因
あるいは異常事態の大きさの程度などによって異なる
が、多くの場合、この電池作用の停止により電池内圧力
の上昇が止まって二次ラプチャー体R2が変形したまま
で治まる。場合によっては、電池作用の停止後も電池内
圧力の上昇が続くが、上昇圧力が二次ラプチャー体R2
の耐圧力破裂強度を越えるとそれも破裂し、電池内圧力
は正極蓋6の貫通孔61を経由して大気に開放される。
However, when an abnormal condition occurs in the battery and the pressure inside the battery rises and the pressure exceeds the pressure rupture strength of the primary rupture member R1, the primary rupture member R1 bursts, and the pressure in the space S becomes instantaneous. The pressure reaches the pressure inside the battery and the pressure is transmitted to the secondary rupture body R2. As shown in FIG. 2, the secondary rupture body R2 which has received the pressure in the battery as a shock is deformed so as to expand toward the positive electrode lid 6, and at the same time as this deformation, the projection R22 of the secondary rupture body R2 is primarily deformed. The rupture member R1 is separated from the side surface R111 of the thick portion R11, and the electrical conduction between the rupture members R1 and R2 is interrupted. As a result, the battery operation also stops. Although it depends on the cause of the abnormal situation of the battery or the degree of the magnitude of the abnormal situation, in many cases, the stop of the battery action stops the increase of the pressure in the battery, and the secondary rupture body R2 stops deforming. In some cases, the pressure in the battery continues to rise even after the battery operation is stopped, but the rising pressure is reduced by the secondary rupture member R2.
When the pressure exceeds the pressure rupture strength of the positive electrode, the pressure rupture also occurs, and the internal pressure of the battery is released to the atmosphere via the through hole 61 of the positive electrode lid 6.

【0014】一次ラプチャー体の耐圧力破裂強度は、電
池内圧力の過大な急上昇を防止する観点から経験則に基
づいて設定し、一方、二次ラプチャー体のそれは、通常
の金属製電池缶の耐圧力破裂強度を考慮して決定してよ
い。一般的には、一次ラプチャー体の耐圧力破裂強度
は、2〜30kgf/cm2 程度、特に3〜20kgf
/cm2 程度に設定するのが好ましく、一方、二次ラプ
チャー体R2のそれは一次ラプチャー体R1のそれの
1.2〜3倍程度、特に1.2〜2.5倍程度とするこ
とが好ましい。各ラプチャー体の構成材料や構造、特に
弱点部の構造につき種々の態様を採用することにより、
上記の耐圧力破裂強度を有するものをそれぞれ作成する
ことができる。
The pressure rupture strength of the primary rupture body is set based on an empirical rule from the viewpoint of preventing an excessive rapid rise in the pressure in the battery, while that of the secondary rupture body is the same as that of a normal metal battery can. It may be determined in consideration of the pressure rupture strength. Generally, the pressure rupture strength of the primary rupture body is about 2 to 30 kgf / cm 2 , especially 3 to 20 kgf / cm 2.
/ Cm 2 , while that of the secondary rupture body R2 is preferably about 1.2 to 3 times, especially about 1.2 to 2.5 times that of the primary rupture body R1. . By adopting various aspects for the material and structure of each rupture body, especially the structure of the weak point,
Each having the above-mentioned pressure rupture strength can be produced.

【0015】一次ラプチャー体R1および二次ラプチャ
ー体R2を構成するための導電性材料としては、アルミ
ニウム、ニッケル、銅、鉄、ステンレスあるいはそれら
の合金などの導電性金属、導電性賦与剤、例えば上記の
導電性金属の粉末、導電性カーボンブラック、導電性カ
ーボン繊維、グラファイト繊維、グラファイト粒と有機
高分子との混合物からなる導電性有機高分子組成物、各
種有機高分子シートの表面に上記の導電性金属や合金の
メッキ層を有する導電メッキシートなどが例示される。
上記の各導電性材料は、単独あるいは他材と組合わせて
単独板や複合板として使用し得る。
Examples of the conductive material for forming the primary rupture body R1 and the secondary rupture body R2 include a conductive metal such as aluminum, nickel, copper, iron, stainless steel or an alloy thereof, and a conductivity-imparting agent. Conductive metal powder, conductive carbon black, conductive carbon fiber, graphite fiber, conductive organic polymer composition comprising a mixture of graphite particles and an organic polymer, and the above conductive material on the surface of various organic polymer sheets. A conductive plated sheet having a plated layer of a conductive metal or alloy is exemplified.
Each of the conductive materials described above can be used alone or in combination with other materials as a single plate or a composite plate.

【0016】一次ラプチャー体R1は、厚肉部R11と
薄肉の平板部R12とからなるが、その全体が単一の導
電性材料にて形成されていてもよく、1枚の円盤状薄板
の上にドーナツ状の導電性材料板を導電的に接着あるい
は溶接などにて結着して厚肉部R11が形成されていて
もよい。その場合、該ドーナツ状の導電性材料板が結着
されない残部が平板部R12として機能する。なお平板
部R12は、前記した通りの比較的小さい耐圧力破裂強
度を有しているので、この部分を1枚の導電性材料にて
形成する場合にはその部分の機械的強度も小さく、しか
して製造面や取扱面から困難を来すことがある。かかる
場合には、平板部R12を(あるいは製造の容易さの観
点から厚肉部R11の底部までをも)機械的強度の大き
い比較的厚肉の孔明き板の片面に上記の耐圧力破裂強度
を有する導電性材料の薄板を貼着した複合板にて形成す
るとよい。その際、上記の厚肉の孔明き板は導電性材料
品であっても電気絶縁性材料品であってもよい。電気絶
縁性材料品であるときは、正極リード32は導電性材料
の薄板に溶接される。かかる複合板からなる一次ラプチ
ャー体R1を採用するときは、該薄板が裏側(正極リー
ド32側)に来るように用いられ、かくすると電池内圧
力が一次ラプチャー体R1の耐圧力破裂強度を越える
と、厚肉孔明き板の孔明き部において裏側の該薄板が破
裂して電池内圧力を二次ラプチャー体R2に伝えること
になる。
The primary rupture body R1 comprises a thick portion R11 and a thin flat plate portion R12. The whole may be formed of a single conductive material, and may be formed on a single disc-shaped thin plate. A thick-walled portion R11 may be formed by electrically bonding a donut-shaped conductive material plate by bonding or welding. In this case, the remaining portion to which the donut-shaped conductive material plate is not bound functions as the flat plate portion R12. Since the flat plate portion R12 has a relatively small pressure rupture strength as described above, when this portion is formed of one sheet of conductive material, the mechanical strength of the portion is small, but This can cause difficulties in production and handling. In such a case, the flat plate portion R12 (or even the bottom portion of the thick portion R11 from the viewpoint of ease of manufacture) is provided on one surface of a relatively thick perforated plate having high mechanical strength with the above-mentioned pressure rupture strength. It is good to form with the composite board which stuck the thin board of the conductive material which has this. At this time, the thick perforated plate may be a conductive material or an electrically insulating material. In the case of an electrically insulating material, the positive electrode lead 32 is welded to a thin plate of a conductive material. When employing the primary rupture body R1 made of such a composite plate, the thin plate is used so as to come to the back side (the positive electrode lead 32 side). Thus, when the pressure in the battery exceeds the pressure rupture strength of the primary rupture body R1. At the perforated portion of the thick perforated plate, the thin plate on the back side ruptures and transmits the internal pressure of the battery to the secondary rupture body R2.

【0017】二次ラプチャー体R2は、その裏側に突起
部R22を有する以外、従来のラプチャー板と構造や機
能的に特に変わったところがないので、従来と同様の方
法、例えば板材からの打ち抜きプレス加工、切削加工、
あるいはそれらの組み合わせ加工などにて製造すること
ができる。
The secondary rupture body R2 has no particular difference in structure or function from the conventional rupture plate except that it has a projection R22 on the back side thereof. , Cutting,
Alternatively, it can be manufactured by a combination processing thereof.

【0018】一次ラプチャー体R1と二次ラプチャー体
R2とは、常態においては両ラプチャー体同士が確実な
電気的導通状態となっているように接触しており、一次
ラプチャー体R1が破裂すると確実にその電気的導通が
遮断されるようになっていることが肝要である。かかる
導通−遮断は、図1に示す実施例の場合、一次ラプチャ
ー体R1の厚肉部側面R111と二次ラプチャー体R2
の突起部側面R221とが適当な接触面積をもって単に
適度の相互押圧にて面接触することにより達成される。
しかしてその接触面積は、図1の断面図での上下方向の
接触距離で表わして0.05〜0.5mm程度、特に
0.1〜0.3mm程度が適当であり、適度の嵌め力に
て両ラプチャー体同士を嵌め合うことが好ましい。なお
その場合、厚肉部R11の高さは0.05〜0.5mm
程度、特に0.1〜0.3mm程度が適当である。
The primary rupture member R1 and the secondary rupture member R2 are in contact with each other in a normal state so that the two rupture members are in a reliable electrical conduction state. It is important that the electrical conduction be cut off. In the case of the embodiment shown in FIG. 1, the conduction-interruption is performed by the thick portion side surface R111 of the primary rupture member R1 and the secondary rupture member R2.
This is achieved by simply making surface contact with the protrusion side surface R221 with an appropriate contact area with an appropriate mutual pressing.
The contact area is approximately 0.05 to 0.5 mm, particularly approximately 0.1 to 0.3 mm, as a vertical contact distance in the cross-sectional view of FIG. It is preferable that both rupture bodies be fitted together. In this case, the height of the thick portion R11 is 0.05 to 0.5 mm.
About 0.1 to 0.3 mm is appropriate.

【0019】厚肉部側面R111と突起部側面R221
とは、図1に示すように共に垂直方向に延在していても
よいが、図3に示す実施例のように互いに傾斜している
と電池の製造時における両者の嵌め合いが容易であり、
しかも接触面積が大きく取れて一次ラプチャー体R1が
破裂した際に二次ラプチャー体R2の一次ラプチャー体
R1からの離脱が円滑に進行する。
Thick portion side face R111 and protrusion side face R221
1 means that both may extend in the vertical direction as shown in FIG. 1, but if they are inclined with respect to each other as in the embodiment shown in FIG. ,
In addition, when the primary rupture member R1 ruptures due to a large contact area, the secondary rupture member R2 smoothly separates from the primary rupture member R1.

【0020】図4においては、一次ラプチャー体R1
は、平板部R12と厚肉部R11との間に両部の中間の
高さを有する中間部R13を有し、中間部R13は二次
ラプチャー体R2の突起部R22の真下に位置する。か
くすると、一次ラプチャー体R1の平板部R12と二次
ラプチャー体R2の突起部R22の下端とが直接接触す
ることがなく、そのために電池内の上昇圧力により平板
部R12が二次ラプチャー体R2の方向に変形する際、
該突起部R22の下端に妨害されることなく容易に変形
して一次ラプチャー体R1の破裂および両ラプチャー体
間の電気的遮断が円滑に進行する。
In FIG. 4, a primary rupture body R1
Has an intermediate portion R13 having a height intermediate between the flat portion R12 and the thick portion R11, and the intermediate portion R13 is located immediately below the protrusion R22 of the secondary rupture body R2. As a result, the flat plate portion R12 of the primary rupture member R1 does not directly contact the lower end of the protrusion R22 of the secondary rupture member R2. When deforming in the direction,
The projection R22 is easily deformed without being hindered by the lower end thereof, so that the primary rupture member R1 is ruptured and the electrical interruption between the two rupture members proceeds smoothly.

【0021】本発明は、上記の実施例に限定されず、種
々の変形実施例をも包含する。例えば、一次ラプチャー
体の弱点部(破裂予定個所)と二次ラプチャー体とを電
気的に導通させておき、一次ラプチャー体の破裂時にそ
の弱点部の飛散などの崩壊により両ラプチャー体の電気
的導通を遮断させてもよい。また上記一次ラプチャー体
の弱点部の裏面に正極リードを溶接し、該弱点部の破裂
と共に溶接を切断する構造などであってもよい。
The present invention is not limited to the above embodiment, but includes various modified embodiments. For example, the weak point portion (scheduled rupture point) of the primary rupture body is electrically connected to the secondary rupture body, and when the primary rupture body ruptures, the weak points are scattered and the electrical rupture of the both rupture bodies is caused. May be blocked. Further, a structure may be employed in which a positive electrode lead is welded to the back surface of the weak point portion of the primary rupture body, and the welding is cut together with the rupture of the weak point portion.

【0022】[0022]

【発明の効果】本発明によれば、一次ラプチャー体の耐
圧力破裂強度にて確実に電池作動を停止させることがで
き、また二次ラプチャー体の耐圧力破裂強度にて確実に
電池内圧力を大気に開放することができる。よって、放
電容量特性や充放電のサイクル特性などには優れている
が、爆発の危険度の高い非水液体電解質系のリチウム二
次電池用の安全構造として特に有用である。
According to the present invention, the battery operation can be reliably stopped by the pressure rupture strength of the primary rupture body, and the pressure inside the battery can be reliably reduced by the pressure rupture strength of the secondary rupture body. Can be open to the atmosphere. Therefore, it has excellent discharge capacity characteristics and charge / discharge cycle characteristics, but is particularly useful as a safety structure for a non-aqueous liquid electrolyte-based lithium secondary battery having a high risk of explosion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の常態における断面図である。FIG. 1 is a sectional view of an embodiment of the present invention in a normal state.

【図2】図1の実施例において一次ラプチャー体が破裂
した状態の断面図である。
FIG. 2 is a cross-sectional view of the embodiment of FIG. 1 in which a primary rupture body has ruptured.

【図3】本発明の他の実施例の部分拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view of another embodiment of the present invention.

【図4】本発明のさらに他の実施例の部分拡大断面図で
ある。
FIG. 4 is a partially enlarged sectional view of still another embodiment of the present invention.

【図5】従来電池の断面図である。FIG. 5 is a cross-sectional view of a conventional battery.

【図6】従来の安全構造の断面図である。FIG. 6 is a sectional view of a conventional safety structure.

【符号の説明】[Explanation of symbols]

R1 一次ラプチャー体 R11 厚肉部 R12 薄肉の平板部 R2 二次ラプチャー体 R22 突起部 S 一次ラプチャー体と二次ラプチャー体と
の間の空間 6 正極蓋
R1 Primary rupture member R11 Thick portion R12 Thin plate portion R2 Secondary rupture member R22 Projection S Space between primary rupture member and secondary rupture member 6 Positive electrode cover

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電池内の圧力を直接受圧する一次ラプチ
ャー体とその上に空間を介して設置され且つ一次ラプチ
ャー体より大きな耐圧力破裂強度を有する二次ラプチャ
ー体とが部分的接触により電気的に導通されており、且
つ一次ラプチャー体を破裂させ得る電池内圧は一次ラプ
チャー体の破裂により二次ラプチャー体に作用し、且つ
一次ラプチャー体の破裂に基づき上記の電気的導通が遮
断されるようにしたことを特徴とする密閉型電池の安全
構造。
1. A primary rupture body for directly receiving pressure in a battery and a secondary rupture body disposed above the primary rupture body through a space and having a pressure rupture strength greater than that of the primary rupture body by partial contact, and So that the internal pressure of the battery that can be ruptured and that can rupture the primary rupture body acts on the secondary rupture body due to the rupture of the primary rupture body, and the above-described electrical conduction is interrupted based on the rupture of the primary rupture body. A safety structure for a sealed battery.
【請求項2】 一次ラプチャー体と二次ラプチャー体と
の電気的導通が、互いの部分的な接触によりなされてお
り、一次ラプチャー体の破裂による両ラプチャー体間の
該空間の圧力の急上昇により二次ラプチャー体が変形し
て該接触が外れるようにした請求項1記載の密閉型電池
の安全構造。
2. The electrical conduction between the primary rupture body and the secondary rupture body is established by partial contact with each other, and the primary rupture body ruptures due to a sudden increase in pressure in the space between the two rupture bodies. 2. The safety structure for a sealed battery according to claim 1, wherein the secondary rupture body is deformed so that the contact is released.
【請求項3】 一次ラプチャー体と二次ラプチャー体と
の電気的導通が、一次ラプチャー体の表面上に設けた突
起部の側壁と二次ラプチャー体の裏面上に設けた突起の
側壁との接触によりなされている請求項2記載の密閉型
電池の安全構造。
3. The electrical connection between the primary rupture body and the secondary rupture body is caused by the contact between the side wall of the protrusion provided on the surface of the primary rupture body and the side wall of the protrusion provided on the back surface of the secondary rupture body. The safety structure for a sealed battery according to claim 2, wherein the safety structure comprises:
【請求項4】 一次ラプチャー体と二次ラプチャー体と
の電気的導通が、一次ラプチャー体の表面上に設けた突
起部の側壁斜面と二次ラプチャー体の裏面上に設けた突
起の側壁斜面との接触によりなされている請求項3記載
の密閉型電池の安全構造。
4. The electrical conduction between the primary rupture body and the secondary rupture body is determined by a sidewall slope of a projection provided on a surface of the primary rupture body and a sidewall slope of a projection provided on a back surface of the secondary rupture body. The safety structure for a sealed battery according to claim 3, wherein the safety structure is made by contact of the battery.
JP9039505A 1997-02-24 1997-02-24 Safety structure of sealed battery Pending JPH10241652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9039505A JPH10241652A (en) 1997-02-24 1997-02-24 Safety structure of sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9039505A JPH10241652A (en) 1997-02-24 1997-02-24 Safety structure of sealed battery

Publications (1)

Publication Number Publication Date
JPH10241652A true JPH10241652A (en) 1998-09-11

Family

ID=12554912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9039505A Pending JPH10241652A (en) 1997-02-24 1997-02-24 Safety structure of sealed battery

Country Status (1)

Country Link
JP (1) JPH10241652A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056445A (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Valve structure, housing body having it, and power storage device with valve structure
JP2020055587A (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Valve structure, storage body with the same and power storage device with valve structure
US11047508B2 (en) 2017-03-30 2021-06-29 Donaldson Company, Inc. Vent with relief valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047508B2 (en) 2017-03-30 2021-06-29 Donaldson Company, Inc. Vent with relief valve
US11692644B2 (en) 2017-03-30 2023-07-04 Donaldson Company, Inc. Vent with relief valve
JP2020056445A (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Valve structure, housing body having it, and power storage device with valve structure
JP2020055587A (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Valve structure, storage body with the same and power storage device with valve structure

Similar Documents

Publication Publication Date Title
US7601455B2 (en) Lithium rechargeable battery
JP4464483B2 (en) Secondary battery cap assembly and secondary battery current interrupter
JP4213846B2 (en) Sealed battery
EP2284932B1 (en) Rechargeable battery
EP2626925B1 (en) Cap assembly and second battery using same
JPH1064499A (en) Lithium ion electrochemical battery with safety valve and electric circuit breaker
JP2000504479A (en) Sealed electrochemical cell with circuit break terminal
JPH05343043A (en) Sealed battery
JPH06196150A (en) Battery and manufacture of battery
JP2001519965A (en) Rechargeable battery
JP2002124236A (en) Sealed battery
US4690879A (en) Cell circuit interrupter
JPH06333548A (en) Explosion-proof battery
JPH09134715A (en) Battery with explosion proof function
JP4121130B2 (en) Sealed battery
JP3891657B2 (en) Battery safety device
JPH10241652A (en) Safety structure of sealed battery
JP2000323114A (en) Sealed battery
JPH10247483A (en) Safety structure of sealed battery
JP2008262744A (en) Sealed battery
KR20010045030A (en) Sealed battery
JPH02288063A (en) Safety device of battery
KR100948971B1 (en) Prismatic Secondary Battery Including Safety Device
JP3983050B2 (en) Sealed battery safety device and sealed battery using the same
KR19980702192A (en) Thin battery