JPH10238413A - Controller for exhaust gas recirculation - Google Patents

Controller for exhaust gas recirculation

Info

Publication number
JPH10238413A
JPH10238413A JP9040854A JP4085497A JPH10238413A JP H10238413 A JPH10238413 A JP H10238413A JP 9040854 A JP9040854 A JP 9040854A JP 4085497 A JP4085497 A JP 4085497A JP H10238413 A JPH10238413 A JP H10238413A
Authority
JP
Japan
Prior art keywords
egr
egr gas
gas temperature
temperature
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9040854A
Other languages
Japanese (ja)
Inventor
Masahiko Nakano
雅彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP9040854A priority Critical patent/JPH10238413A/en
Publication of JPH10238413A publication Critical patent/JPH10238413A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate an adverse influence due to the response delay of EGR gas temperature during transition of an engine by providing a correcting means for correcting the opening degree of an EGR valve through a control means according to the temperature of EGR gas recirculated in an inlet system and cancelling the correction by the correcting means during the transition of the engine. SOLUTION: A controller 6 is provided with a control means 11 for controlling the opening degree of an EGR valve 5 depending on the operating state of an engine, a correcting means 12 and a cancel means 13 and desired EGR gas temperature is obtained by the control means 11 so that the concentration of NOx in exhaust gas reaches a desired value based on engine rotating speed Ne and load L and a desired EGR valve opening degree is obtained based on the desired EGR gas temperature. Further, the correcting means 12 corrects the desired EGR valve opening degree so that the temperature of EGR gas recirculated in an inlet pipe 3 corresponds to actual temperature based on it. Further, the cancel means 13 detects whether the engine 1 is in a transition state or not and cancels the correction by the correcting means 12 only at the time of the transition state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガスの一部を
吸気系に還流する排気還流制御装置に関する。
The present invention relates to an exhaust gas recirculation control device for recirculating a part of exhaust gas to an intake system.

【0002】[0002]

【従来の技術】従来より、図1に示すようにエンジン1
の排気管2と吸気管3とを連通するEGR管4にEGR
弁5を設け、そのEGR弁5の開度をエンジン1の運転
状態(負荷L、回転数Ne等)に応じて制御することに
より、排気ガス中のNOx濃度を目標NOx濃度にする
ようにした排気還流制御装置が知られている。この装置
は、図5(a) に示すように、エンジン1の負荷L、回転
数Neに応じてコントローラ6が目標NOx濃度を設定
すると共に、EGR弁5の開度をその目標NOx濃度相
当に操作するものである。
2. Description of the Related Art Conventionally, as shown in FIG.
EGR pipe 4 that connects exhaust pipe 2 and intake pipe 3
The valve 5 is provided, and the degree of opening of the EGR valve 5 is controlled according to the operating state of the engine 1 (load L, rotation speed Ne, etc.), so that the NOx concentration in the exhaust gas is set to the target NOx concentration. An exhaust gas recirculation control device is known. In this device, as shown in FIG. 5A, the controller 6 sets the target NOx concentration according to the load L and the rotation speed Ne of the engine 1, and sets the opening of the EGR valve 5 to the target NOx concentration. To operate.

【0003】しかし、上述の排気還流制御装置では、近
年ますます厳しくなる排気ガス規制に十分対応できな
い。そのため、本出願人は、排気ガス中の実際のNOx
濃度を求め、その実NOx濃度が目標NOx濃度に一致
するようにEGR弁5の開度を補正するフィードバック
制御システムを開発した(特願平8-254849号)。このシ
ステムにおいては、上記EGR弁5の近傍に設けられた
温度センサ7によってそこを通過するガス温度を検出
し、そのEGRガス温度Tに基づいて排気ガス中の実N
Ox濃度を求めている。
However, the above-described exhaust gas recirculation control device cannot sufficiently cope with the increasingly strict exhaust gas regulations in recent years. Therefore, the present applicant has determined that the actual NOx
A feedback control system for obtaining the concentration and correcting the opening degree of the EGR valve 5 so that the actual NOx concentration matches the target NOx concentration has been developed (Japanese Patent Application No. 8-254849). In this system, the temperature of a gas passing therethrough is detected by a temperature sensor 7 provided in the vicinity of the EGR valve 5, and based on the EGR gas temperature T, the actual N
The Ox concentration is determined.

【0004】具体的には、一定回転・一定負荷のとき、
EGRガス温度Tが高ければ、EGR弁5の開度が大き
く、実NOx濃度が低くなり、EGRガス温度Tが低け
れば、EGR弁5の開度が小さく、実NOx濃度が高く
なる。よって、この相関関係を用いてEGRガス温度T
から実NOx濃度を求めるのである。そして、図5(a)
に示すようにこうして求めた実NOx濃度が上記目標N
Ox濃度に一致するように、負荷Lと回転数Neとによ
って決定された上記EGR弁5の開度を補正操作する。
Specifically, at a constant rotation and a constant load,
If the EGR gas temperature T is high, the opening of the EGR valve 5 is large and the actual NOx concentration is low. If the EGR gas temperature T is low, the opening of the EGR valve 5 is small and the actual NOx concentration is high. Therefore, using this correlation, the EGR gas temperature T
From the actual NOx concentration. Then, FIG.
As shown in the figure, the actual NOx concentration obtained in this way is
The opening degree of the EGR valve 5 determined by the load L and the rotation speed Ne is corrected so as to match the Ox concentration.

【0005】かかるシステムでは、EGRガス温度Tに
基づいて排気ガス中の実NOx濃度を求めているので、
図5(b) に示すように目標値をEGRガス温度とし、E
GRガス温度を制御しても同様の結果が得られる。すな
わち、エンジンの運転状態(負荷L、回転数Ne等)に
応じて目標EGRガス温度を設定し、EGR弁5の開度
をその目標EGRガス温度相当に操作すると共に、温度
センサ7によって実EGRガス温度Tを求め、その実E
GRガス温度Tが目標EGRガス温度に一致するよう
に、上記EGR弁5の開度を補正操作する。
In such a system, the actual NOx concentration in the exhaust gas is obtained based on the EGR gas temperature T.
As shown in FIG. 5 (b), the target value is the EGR gas temperature,
Similar results can be obtained by controlling the GR gas temperature. That is, the target EGR gas temperature is set according to the operating state of the engine (load L, rotation speed Ne, etc.), the opening degree of the EGR valve 5 is controlled to correspond to the target EGR gas temperature, and the actual EGR gas is detected by the temperature sensor 7. Find the gas temperature T, and find the actual E
The opening degree of the EGR valve 5 is corrected so that the GR gas temperature T matches the target EGR gas temperature.

【0006】具体的には、エンジン1の負荷L、回転数
Neに応じて図2(b) に示すような目標EGRガス温度
のマップM1を作成し(マップM1はあくまで一例であ
る)、その目標EGRガス温度マップM1に対応させて
そのときのEGR弁5の開度を決める図2(a) に示すよ
うな仮想の目標EGR弁開度マップM2を作成する。そ
して、エンジン1の負荷L、回転数Neに応じて目標E
GRガス温度マップM1により目標EGRガス温度を求
め、目標EGR弁開度マップM2によりその目標EGR
ガス温度相当となるEGR弁5の開度を設定する。これ
と同時に、温度センサ7によりその時の実際のEGRガ
ス温度Tを検出して、目標EGRガス温度マップM1に
基づきその実EGRガス温度Tが目標EGRガス温度に
一致するように、EGR弁5の開度を補正操作する。
More specifically, a map M1 of the target EGR gas temperature as shown in FIG. 2B is created according to the load L and the rotation speed Ne of the engine 1 (the map M1 is merely an example). A virtual target EGR valve opening map M2 as shown in FIG. 2 (a) for determining the opening of the EGR valve 5 at that time corresponding to the target EGR gas temperature map M1 is created. Then, the target E is set according to the load L of the engine 1 and the rotation speed Ne.
A target EGR gas temperature is obtained from a GR gas temperature map M1, and the target EGR gas is obtained from a target EGR valve opening map M2.
The opening degree of the EGR valve 5 corresponding to the gas temperature is set. At the same time, the actual EGR gas temperature T at that time is detected by the temperature sensor 7, and the opening of the EGR valve 5 is adjusted so that the actual EGR gas temperature T matches the target EGR gas temperature based on the target EGR gas temperature map M1. Correct the degree.

【0007】[0007]

【発明が解決しようとする課題】ところで、この場合、
目標EGRガス温度マップM1の負荷Lと回転数Neに
対する傾きと、目標EGR弁開度マップM2の負荷Lと
回転数Neに対する傾きの方向は、必ずしも一致しな
い。すなわち、図2(a),(b) において、低回転低負荷で
あるA点から中回転中負荷であるB点に運転状態が変化
するとき、目標EGR弁開度マップM2では弁開度が絞
られていくのに対し、目標EGRガス温度マップM1で
は低温から高温(EGR弁開度では開く方向)に変化す
る。
However, in this case,
The direction of the inclination of the target EGR gas temperature map M1 with respect to the load L and the rotation speed Ne does not necessarily match the direction of the inclination of the target EGR valve opening map M2 with respect to the load L and the rotation speed Ne. That is, in FIGS. 2 (a) and 2 (b), when the operation state changes from point A, which is a low rotation and low load, to point B, which is a medium rotation medium load, the target EGR valve opening degree map M2 shows that the valve opening degree While the throttle is narrowed, the target EGR gas temperature map M1 changes from a low temperature to a high temperature (in the direction in which the EGR valve opens, it opens).

【0008】このため、A点からB点への過渡時(加速
時)に温度センサ7で実EGRガス温度Tを検出しそれ
を目標EGRガス温度と比較してEGR弁5の開度を補
正操作すると、EGRガス温度Tの応答遅れ(排気ガス
がEGR管4を通過して温度センサ7に至るまでのタイ
ムラグ)や温度センサTの応答遅れがあるため、EGR
弁5の開度は最終的には目標EGR弁開度マップM2に
基づいて閉じられるものの、これらタイムラグの期間だ
け目標EGRガス温度マップM1に基づいて実EGRガ
ス温度Tを上げるべくEGR弁5の開度が一旦開かれ
る。
For this reason, at the time of transition from the point A to the point B (during acceleration), the temperature sensor 7 detects the actual EGR gas temperature T and compares it with the target EGR gas temperature to correct the opening of the EGR valve 5. When operated, there is a response delay of the EGR gas temperature T (time lag from exhaust gas passing through the EGR pipe 4 to the temperature sensor 7) and a response delay of the temperature sensor T.
Although the opening of the valve 5 is finally closed based on the target EGR valve opening map M2, the opening of the EGR valve 5 is increased during these time lags to increase the actual EGR gas temperature T based on the target EGR gas temperature map M1. The opening is once opened.

【0009】これを図示すれば、図4のようになる。す
なわち、エンジン1の運転状態がA点からB点に変化
し、図4(a),(b) に示すようにアクセル開度(または燃
料噴射ポンプのラック位置)が開き、エンジン回転数N
eが上昇すると、図4(c) のように目標EGRガス温度
は上昇(弁開度では開く方向)するのに対し(マップM
1参照)、EGR弁5は排気ガスが高圧・高温になるの
で最終的には閉じる方向に操作される(マップM2参
照)。このため、このとき実EGRガス温度Tを温度セ
ンサ7で検出して上述のフィードバック制御を行うと、
EGRガス温度Tの応答遅れや温度センサ7の応答遅れ
によって、図4(d) に示すようにEGR弁5の開度は最
初はEGRガス温度Tを上げるべく開く方向に補正操作
されてしまう。この結果、EGRガス流量が過大となっ
て燃焼温度が下がり図4(d) に示すようにパティキュレ
ートが増加してしまう。
This is illustrated in FIG. That is, the operating state of the engine 1 changes from the point A to the point B, and the accelerator opening (or the rack position of the fuel injection pump) opens as shown in FIGS.
When e increases, the target EGR gas temperature increases (in the direction of opening with the valve opening degree) as shown in FIG.
1), the EGR valve 5 is finally operated in the closing direction because the exhaust gas becomes high pressure and high temperature (see map M2). Therefore, at this time, if the actual EGR gas temperature T is detected by the temperature sensor 7 and the above-described feedback control is performed,
Due to the response delay of the EGR gas temperature T and the response delay of the temperature sensor 7, the opening of the EGR valve 5 is initially corrected in the opening direction to increase the EGR gas temperature T as shown in FIG. As a result, the flow rate of the EGR gas becomes excessive, the combustion temperature decreases, and the particulates increase as shown in FIG. 4 (d).

【0010】また、図2(a),(b) において、中回転中負
荷であるB点から高回転高負荷であるC点に変化すると
きのように、目標EGRガス温度マップM1の負荷Lと
回転数Neに対する傾きと、目標EGR弁開度マップM
2の負荷Lと回転数Neに対する傾きの方向が同じとき
であっても、B点からC点への過渡時に温度センサ7で
検出したEGRガス温度Tに基づくフィードバック制御
を行うと、EGRガス温度Tの応答遅れや温度センサ7
の応答遅れのために、EGR弁5が過剰に閉じ補正操作
されてしまい、NOxが増加する。逆に、C点からB点
へ変化する場合には、EGR弁5が過剰に開き補正操作
されてしまい、パティキュレートが増加してしまう。
In FIGS. 2 (a) and 2 (b), the load L of the target EGR gas temperature map M1 is changed from the point B which is a medium rotation medium load to the point C which is a high rotation and high load. And the inclination with respect to the rotation speed Ne, and the target EGR valve opening degree map M
Even when the direction of the inclination with respect to the load L and the rotation speed Ne is the same, if the feedback control based on the EGR gas temperature T detected by the temperature sensor 7 is performed during the transition from the point B to the point C, the EGR gas temperature Response delay of T and temperature sensor 7
, The EGR valve 5 is excessively closed and the correction operation is performed, and NOx increases. Conversely, when the point changes from the point C to the point B, the EGR valve 5 is excessively opened and the correction operation is performed, and the particulates increase.

【0011】以上の事情を考慮して創案された本発明の
目的は、EGRガス温度をフィードバックしてEGR弁
の開度を補正するようにした排気還流制御装置におい
て、エンジンの過渡時におけるEGRガス温度の応答遅
れや温度センサの応答遅れによる悪影響を排除した排気
還流制御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention, which has been made in view of the above circumstances, is to provide an exhaust gas recirculation control device for correcting the opening of an EGR valve by feeding back the EGR gas temperature. An object of the present invention is to provide an exhaust gas recirculation control device that eliminates adverse effects due to a response delay of a temperature and a response delay of a temperature sensor.

【0012】[0012]

【課題を解決するための手段】上記目的を達成すべく本
発明に係る排気還流制御装置は、排気系と吸気系とを連
通するEGR管に設けられたEGR弁の開度をエンジン
の運転状態に応じて制御する制御手段と、上記吸気系に
還流されるEGRガスの温度に応じて上記制御手段によ
るEGR弁の開度に補正を加える補正手段と、エンジン
が過渡状態か否かを検出して過渡状態のときのみ上記補
正手段による補正をキャンセルするキャンセル手段とを
備えている。
In order to achieve the above object, an exhaust gas recirculation control device according to the present invention uses an EGR valve provided in an EGR pipe communicating between an exhaust system and an intake system to determine an opening degree of an engine. Control means for controlling the opening degree of the EGR valve by the control means according to the temperature of the EGR gas recirculated to the intake system, and detecting whether or not the engine is in a transient state. And a canceling means for canceling the correction by the correcting means only in the transient state.

【0013】本発明によれば、エンジンが過渡状態のと
きには、キャンセル手段がEGRガス温度に基づいた補
正をキャンセルするので、EGRガス温度の応答遅れ等
による悪影響を排除できる。また、エンジンが定常状態
のときには、上記キャンセル手段は動作しないので、補
正手段によるEGRガスの温度に基づいた補正が行わ
れ、NOx濃度(EGRガス温度)が精度よく制御され
る。
According to the present invention, when the engine is in a transient state, the canceling means cancels the correction based on the EGR gas temperature, so that an adverse effect due to a response delay of the EGR gas temperature can be eliminated. Further, when the engine is in a steady state, the canceling means does not operate, so that the correction is performed based on the temperature of the EGR gas by the correcting means, and the NOx concentration (EGR gas temperature) is accurately controlled.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the accompanying drawings.

【0015】図1に示すように、エンジン1の排気管2
(排気系)と吸気管3(吸気系)との間には、これらを
連通するEGR管4が介設されている。EGR管4の吸
気管3との接続部近傍には、管内の流路面積を可変とす
べく開度調節されるEGR弁5が設けられている。EG
R弁5の近傍には、EGR管4内を通過するEGRガス
の温度(以下EGRガス温度という)を検出する温度セ
ンサ7が設けられている。
As shown in FIG. 1, an exhaust pipe 2 of an engine 1
Between the (exhaust system) and the intake pipe 3 (intake system), an EGR pipe 4 for communicating these is interposed. An EGR valve 5 is provided in the vicinity of the connection between the EGR pipe 4 and the intake pipe 3, the opening of which is adjusted to make the flow passage area in the pipe variable. EG
In the vicinity of the R valve 5, a temperature sensor 7 for detecting the temperature of the EGR gas passing through the inside of the EGR pipe 4 (hereinafter referred to as EGR gas temperature) is provided.

【0016】温度センサ7とEGR弁5の開度調節部8
(ソレノイド等)とは、コントローラ6に接続されてお
り、EGRガス温度TとEGR弁5の開度とがコントロ
ーラ6に入力されるようになっている。また、コントロ
ーラ6には、エンジン1の回転数センサ9や負荷センサ
10が接続されており、エンジン回転数Neと負荷Lと
が入力される。上記回転数センサ9は例えばクランク軸
の回転数をカウントするものが用いられ、負荷センサ1
0は例えばアクセルの開度センサや燃料噴射ポンプのラ
ック位置センサ等が用いられる。
A temperature sensor 7 and an opening adjustment unit 8 for the EGR valve 5
The (solenoid, etc.) is connected to the controller 6 so that the EGR gas temperature T and the opening of the EGR valve 5 are input to the controller 6. Further, the controller 6 is connected to the engine speed sensor 9 and the load sensor 10 of the engine 1, and receives the engine speed Ne and the load L. The rotation speed sensor 9 is, for example, a sensor that counts the rotation speed of a crankshaft.
For 0, for example, an accelerator opening sensor, a rack position sensor of a fuel injection pump, or the like is used.

【0017】コントローラ6には、エンジン1の運転状
態すなわちエンジン回転数Neおよび負荷Lに応じて、
EGR弁5の開度を制御する制御手段11が設けられて
いる。制御手段11は、図2(b) に示すようにエンジン
回転数Neおよび負荷Lに応じて排気ガス中のNOx濃
度が目標値となるような目標EGRガス温度が書き込ま
れた目標EGRガス温度マップM1を有すると共に(マ
ップM1はあくまで一例である)、図2(a) に示すよう
にこの目標EGRガス温度マップM1に対応したEGR
弁5の開度が書き込まれた目標EGR弁開度マップM2
を有している。
In accordance with the operating state of the engine 1, that is, the engine speed Ne and the load L, the controller 6
Control means 11 for controlling the opening of the EGR valve 5 is provided. The control means 11 writes a target EGR gas temperature map in which the target EGR gas temperature is written such that the NOx concentration in the exhaust gas becomes a target value in accordance with the engine speed Ne and the load L as shown in FIG. M1 (the map M1 is merely an example) and an EGR corresponding to the target EGR gas temperature map M1 as shown in FIG.
Target EGR valve opening map M2 in which the opening of valve 5 is written
have.

【0018】目標EGRガス温度マップM1は、目標N
Ox濃度の設定の仕方によって決まるが、目標NOx濃
度は排気ガス規制モードやドライバビリティや燃費等に
よって異なるため、一概には決まらない。図2(b) に示
す目標EGRガス温度マップM1は、あくまで一般的な
傾向を示したものであり、中回転中負荷を頂点とした山
状に設定される。これは、パワーが必要となる高回転高
負荷や燃焼温度が低くNOxが問題とならない低回転低
負荷ではEGR量を減らし、通常走行に多用される中回
転中負荷ではNOx対策としてEGR量を増やすためで
ある。なお、温度センサ7で検出されるEGRガス温度
Tが高いということは一定回転・一定負荷のときEGR
弁5の開度が大きくEGR量が多く、EGRガス温度T
が低いということはEGR弁5の開度が小さくEGR量
が少ないことを意味する。
The target EGR gas temperature map M1 has a target N
The target NOx concentration is determined by the manner of setting the Ox concentration, but cannot be determined unconditionally because the target NOx concentration varies depending on the exhaust gas regulation mode, drivability, fuel efficiency, and the like. The target EGR gas temperature map M1 shown in FIG. 2 (b) shows a general tendency to the last, and is set in a mountain shape with the middle load during rotation at the top. This is because the EGR amount is reduced at a high rotation high load where power is required or at a low rotation low load where the combustion temperature is low and NOx is not a problem, and the EGR amount is increased as a measure against NOx at a medium rotation medium load frequently used in normal driving. That's why. The fact that the EGR gas temperature T detected by the temperature sensor 7 is high means that the EGR gas temperature T is constant at a constant rotation and a constant load.
The opening degree of the valve 5 is large, the EGR amount is large, and the EGR gas temperature T
Is low, it means that the opening of the EGR valve 5 is small and the EGR amount is small.

【0019】かかる目標EGRガス温度マップM1をE
GR弁5の開度に直すと、図2(a)に示す目標EGR弁
開度マップM2の傾向となる。ここで、エンジン回転数
Neや負荷LによってEGRガス(排気ガス)温度Tが
変化するので、EGRガス温度Tが高いからといって必
ずしもEGR弁5の開度が大きいとは限らない。また、
目標EGR弁開度は、パティキュレートやスモーク対策
のため、一般に空気過剰率の大きい低回転低負荷では開
く方向に、空気過剰率の小さい高回転高負荷では閉じる
方向になる。
The target EGR gas temperature map M1 is represented by E
When converted to the opening of the GR valve 5, the target EGR valve opening map M2 shown in FIG. Here, since the EGR gas (exhaust gas) temperature T changes depending on the engine speed Ne and the load L, the high degree of the EGR gas temperature T does not necessarily mean that the opening degree of the EGR valve 5 is large. Also,
The target EGR valve opening degree generally opens in a low-rotation low-load condition with a large excess air ratio and closes in a high-rotation high-load condition with a small excess air ratio in order to prevent particulates and smoke.

【0020】また、上記コントローラ6には、吸気管3
に還流される上記EGRガス温度Tに応じて、上記制御
手段11の目標EGR弁開度マップM2によるEGR弁
5の開度に補正を加える補正手段12が設けられてい
る。すなわち、補正手段12は、温度センサ7で検出さ
れた実EGRガス温度Tと、目標EGRガス温度マップ
M1から求めた目標EGRガス温度とを比較し、実EG
Rガス温度Tが目標EGRガス温度に一致するように、
目標EGR弁開度マップM2で決定されたEGR弁5の
開度を補正する。
The controller 6 includes an intake pipe 3
Correction means 12 is provided for correcting the opening of the EGR valve 5 based on the target EGR valve opening map M2 of the control means 11 in accordance with the temperature T of the EGR gas which is recirculated. That is, the correction unit 12 compares the actual EGR gas temperature T detected by the temperature sensor 7 with the target EGR gas temperature obtained from the target EGR gas temperature map M1, and
In order that the R gas temperature T matches the target EGR gas temperature,
The opening of the EGR valve 5 determined by the target EGR valve opening map M2 is corrected.

【0021】また、上記コントローラ6には、エンジン
1が過渡状態か否かを検出して過渡状態のときのみ上記
補正手段12による補正をキャンセルし、定常状態のと
きには上記補正手段12による補正をそのままとするキ
ャンセル手段13が設けられている。キャンセル手段1
3は、エンジン回転数Neと負荷Lの微分値を計算し、
それらの微分値が予め定められた敷居値を超えた場合に
は過渡状態と判断し、敷居値以下の場合には定常状態と
判断する。
Further, the controller 6 detects whether or not the engine 1 is in a transient state and cancels the correction by the correcting means 12 only in the transient state. Is provided. Cancellation means 1
3 calculates the differential value of the engine speed Ne and the load L,
If the differential value exceeds a predetermined threshold value, it is determined to be in a transient state, and if it is less than the threshold value, it is determined to be in a steady state.

【0022】詳しくは、定常状態から過渡状態へと変化
する場合には、エンジン回転数Neと負荷Lの微分値が
敷居値を超えた場合直ちに過渡状態と判定し、過渡状態
から定常状態へと変化する場合には、前述したEGRガ
ス温度Tの応答性や温度センサ7の応答性のタイムラグ
を考慮して一定時間を設け、エンジン回転数Neと負荷
Lの微分値が敷居値以下となってからその一定時間経過
後に定常状態と判定する。ただし、EGRガス温度Tの
応答性や温度センサ7の応答性が十分速いときには、上
記一定時間を設けなくてもよい。
More specifically, when the steady state changes to the transient state, the transient state is immediately determined when the differential value of the engine speed Ne and the load L exceeds the threshold value, and the transient state is changed to the steady state. In the case of a change, a predetermined time is provided in consideration of the responsiveness of the EGR gas temperature T and the responsiveness of the temperature sensor 7 described above, and the differential value of the engine speed Ne and the load L becomes equal to or less than the threshold value. Is determined to be in a steady state after a certain period of time has passed. However, when the responsiveness of the EGR gas temperature T and the responsiveness of the temperature sensor 7 are sufficiently fast, it is not necessary to provide the fixed time.

【0023】本実施形態の作用を図3に基づいて述べ
る。
The operation of this embodiment will be described with reference to FIG.

【0024】図3に示すように、まずエンジン1の運転
状態を検出する(st1) 。具体的には、エンジン回転数セ
ンサ9によりエンジン回転数Neを検出し、負荷センサ
10により負荷Lを検出する。そして、それらエンジン
回転数Neと負荷Lに基づいて、図2(a) の目標EGR
弁開度マップM2により目標EGR弁開度が読み込まれ
る(st2) 。そして、実際のEGR弁5の開度が、EGR
弁5の開度調節部8により読み込まれる(st3) 。
As shown in FIG. 3, first, the operating state of the engine 1 is detected (st1). Specifically, the engine speed Ne is detected by the engine speed sensor 9, and the load L is detected by the load sensor 10. Then, based on the engine speed Ne and the load L, the target EGR in FIG.
The target EGR valve opening is read from the valve opening map M2 (st2). Then, the actual opening of the EGR valve 5 is
It is read by the opening adjustment section 8 of the valve 5 (st3).

【0025】そして、前述したエンジン回転数Neと負
荷Lの微分値と敷居値との大小関係により、エンジン1
が過渡状態か否かを判断する(st4) 。そして、過渡状態
でなければ即ち定常状態であれば、上記エンジン回転数
Neと負荷Lに基づいて、図2(b) の目標EGRガス温
度マップM1により目標EGRガス温度が読み込まれる
(st6) 。そして、温度センサ7により検出した実EGR
ガス温度Tと目標EGRガス温度とを比較し、これらが
ズレていれば実EGRガス温度Tを目標EGRガス温度
に合致させるにはEGR弁5の開度をどの程度補正すれ
ばよいかについての温度補正量の計算を行う(st7) 。
Then, based on the magnitude relationship between the engine speed Ne, the differential value of the load L, and the threshold value, the engine 1
It is determined whether or not is in a transient state (st4). If it is not a transient state, that is, if it is a steady state, the target EGR gas temperature is read from the target EGR gas temperature map M1 in FIG. 2B based on the engine speed Ne and the load L.
(st6). Then, the actual EGR detected by the temperature sensor 7
A comparison is made between the gas temperature T and the target EGR gas temperature, and if there is a deviation, how much the opening degree of the EGR valve 5 should be corrected to make the actual EGR gas temperature T match the target EGR gas temperature. The temperature correction amount is calculated (st7).

【0026】そして、上記温度補正量計算に基づいて、
EGR弁5の実際の操作量の計算を行う(st8) そして、
その操作量をEGR弁5の開度調節部8に出力する(st
9) 。このように、エンジン1が定常状態のときには、
補正手段12による実EGRガス温度Tをフィードバッ
ク量とした補正が行われるので、EGR弁5の開度が目
標EGRガス温度(すなわち目標NOx濃度)となるよ
うに精度よく制御される。
Then, based on the above temperature correction amount calculation,
The actual operation amount of the EGR valve 5 is calculated (st8).
The manipulated variable is output to the opening adjustment unit 8 of the EGR valve 5 (st
9). Thus, when the engine 1 is in the steady state,
Since the correction using the actual EGR gas temperature T as the feedback amount is performed by the correction means 12, the opening degree of the EGR valve 5 is accurately controlled so as to become the target EGR gas temperature (that is, the target NOx concentration).

【0027】また、st4 において、エンジン1が過渡状
態であると判断されたときには、st5 〜st7 の温度補正
は行わない(st10)。このように、エンジン1が過渡状態
のときには、実EGRガス温度Tに基づいたフィードバ
ック補正をキャンセルするので、従来問題となっていた
過渡時におけるEGRガス温度Tの応答遅れや温度セン
サ7の応答遅れによるEGR弁5の開度の過剰な開閉
(図4(d) 参照)を回避でき、その悪影響(図4(e) 参
照)を防止できる。
If it is determined in st4 that the engine 1 is in the transient state, the temperature correction in st5 to st7 is not performed (st10). As described above, when the engine 1 is in the transient state, the feedback correction based on the actual EGR gas temperature T is cancelled. Excessive opening / closing of the opening of the EGR valve 5 (see FIG. 4D) can be avoided, and its adverse effect (see FIG. 4E) can be prevented.

【0028】[0028]

【発明の効果】以上説明したように本発明に係る排気還
流制御装置によれば、エンジンが定常状態ではEGRガ
ス温度でEGR弁開度を補正することでNOx濃度を精
度よく制御でき、過渡状態ではかかる温度制御をキャン
セルすることでEGRガス温度の応答遅れや温度センサ
の応答遅れによるEGR弁開度の過剰な開閉を回避でき
る。よって、NOxおよびパティキュレートの増加を防
ぐことができる。
As described above, according to the exhaust gas recirculation control device of the present invention, when the engine is in a steady state, the NOx concentration can be accurately controlled by correcting the EGR valve opening with the EGR gas temperature, and the transient state can be controlled. By canceling the temperature control, it is possible to avoid an excessive opening / closing of the EGR valve opening due to a response delay of the EGR gas temperature or a response delay of the temperature sensor. Thus, an increase in NOx and particulates can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す排気還流制御装置の
説明図である。
FIG. 1 is an explanatory diagram of an exhaust gas recirculation control device according to an embodiment of the present invention.

【図2】制御手段に設けられた目標EGR弁開度マップ
および目標EGRガス温度マップを示す図である。
FIG. 2 is a diagram showing a target EGR valve opening map and a target EGR gas temperature map provided in a control means.

【図3】上記排気還流制御装置の制御フローを示す流れ
図である。
FIG. 3 is a flowchart showing a control flow of the exhaust gas recirculation control device.

【図4】定常状態から過渡状態へ変化するときのアクセ
ル開度、エンジン回転数、目標EGRガス温度、EGR
弁操作量、パティキュレートを示す図である。
FIG. 4 shows the accelerator opening, engine speed, target EGR gas temperature, and EGR when changing from a steady state to a transient state.
It is a figure which shows a valve operation amount and a particulate.

【図5】本出願人が先に提案したEGR弁の開度を決定
するための手順を示す説明図である。
FIG. 5 is an explanatory diagram showing a procedure for determining the opening degree of an EGR valve previously proposed by the present applicant.

【符号の説明】[Explanation of symbols]

1 エンジン 2 排気系 3 吸気系 4 EGR管 5 EGR弁 11 制御手段 12 補正手段 13 キャンセル手段 T EGRガスの温度 Ne,L 運転状態を表すパラメータ DESCRIPTION OF SYMBOLS 1 Engine 2 Exhaust system 3 Intake system 4 EGR pipe 5 EGR valve 11 Control means 12 Correction means 13 Canceling means T Temperature of EGR gas Ne, L Parameter indicating operation state

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 45/00 360 F02D 45/00 360C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 45/00 360 F02D 45/00 360C

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 排気系と吸気系とを連通するEGR管に
設けられたEGR弁の開度をエンジンの運転状態に応じ
て制御する制御手段と、上記吸気系に還流されるEGR
ガスの温度に応じて上記制御手段によるEGR弁の開度
に補正を加える補正手段と、エンジンが過渡状態か否か
を検出して過渡状態のときのみ上記補正手段による補正
をキャンセルするキャンセル手段とを備えたことを特徴
とする排気還流制御装置。
A control means for controlling an opening degree of an EGR valve provided in an EGR pipe communicating between an exhaust system and an intake system in accordance with an operation state of an engine, and an EGR recirculated to the intake system.
Correction means for correcting the degree of opening of the EGR valve by the control means in accordance with the temperature of the gas, and cancellation means for detecting whether or not the engine is in a transient state and canceling the correction by the correction means only in the transient state. An exhaust gas recirculation control device comprising:
JP9040854A 1997-02-25 1997-02-25 Controller for exhaust gas recirculation Pending JPH10238413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9040854A JPH10238413A (en) 1997-02-25 1997-02-25 Controller for exhaust gas recirculation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9040854A JPH10238413A (en) 1997-02-25 1997-02-25 Controller for exhaust gas recirculation

Publications (1)

Publication Number Publication Date
JPH10238413A true JPH10238413A (en) 1998-09-08

Family

ID=12592157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9040854A Pending JPH10238413A (en) 1997-02-25 1997-02-25 Controller for exhaust gas recirculation

Country Status (1)

Country Link
JP (1) JPH10238413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056802A (en) * 2014-09-10 2016-04-21 日産自動車株式会社 EGR control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056802A (en) * 2014-09-10 2016-04-21 日産自動車株式会社 EGR control device

Similar Documents

Publication Publication Date Title
JP4534514B2 (en) Diesel engine control device
US6952640B2 (en) Method and arrangement for operating an internal combustion engine
US7000393B1 (en) System and method for relieving engine back-pressure by selectively bypassing a stage of a two-stage turbocharger during non-use of EGR
RU2414618C2 (en) Air supercharging control method and device in internal combustion engine
US20050056012A1 (en) Method and device for operating at least one turbocharger on an internal combustion engine
US10309298B2 (en) Control device of an engine
EP1178192B1 (en) Apparatus for controlling supercharging pressure in internal combustion engine
KR20020068349A (en) Control of supercharger
KR20020068348A (en) Control of turbocharger
US4530333A (en) Automobile fuel control system
KR20020068347A (en) Control of supercharger
EP1245818B1 (en) Air-fuel ratio control apparatus and method for internal combustion engine
US7628061B2 (en) Method for detecting the ambient pressure in an internal combustion engine
EP1081353B1 (en) Control system for supercharged engine
JP4228953B2 (en) Control device for internal combustion engine
JPH04191445A (en) Fuel supplying control device of internal combustion engine with super charger
US11098640B2 (en) Method for determining a basic boost pressure of a gas conducting system of an internal combustion engine, and engine controller for carrying out a method of this type
JPH10238413A (en) Controller for exhaust gas recirculation
US10767604B2 (en) Control device for internal combustion engine
EP1081352A1 (en) Control system for supercharged engine
JPH08210195A (en) Exhaust rotary flow control device of diesel engine
US7128065B2 (en) Method and device for controlling an internal combustion engine
JP3277304B2 (en) Fuel supply device for internal combustion engine
JPH08218946A (en) Exhaust gas recirculation controller for diesel engine
JPS618444A (en) Air-fuel ratio control device