JPH10221418A - Device and method for judging deterioration of battery - Google Patents

Device and method for judging deterioration of battery

Info

Publication number
JPH10221418A
JPH10221418A JP9038443A JP3844397A JPH10221418A JP H10221418 A JPH10221418 A JP H10221418A JP 9038443 A JP9038443 A JP 9038443A JP 3844397 A JP3844397 A JP 3844397A JP H10221418 A JPH10221418 A JP H10221418A
Authority
JP
Japan
Prior art keywords
battery
voltage
deterioration
current
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9038443A
Other languages
Japanese (ja)
Inventor
Masaki Oshima
正樹 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP9038443A priority Critical patent/JPH10221418A/en
Publication of JPH10221418A publication Critical patent/JPH10221418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To judge the deterioration of a battery at a high speed by changing a constant current flowing to the battery in a step-like state and measuring the variation of the transient response of the polarization voltage of the battery and, when the variation becomes larger than a specific value, judging that the battery is deteriorated. SOLUTION: The variation of the transient response of the polarization voltage of a battery is measured while a constant current flowing to the battery is changed in a step-like state. When the variation becomes larger than a prefixed specific value, it is judged that the battery is deteriorated. The period of time during which the constant current is made to flow before the current is changed in the step-like state is made, for example, 10 times longer than the measuring time after changing the current. When, for example, a discharge current pulse is set at 0A after the constant current is made to flow for a fixed period of time, the voltage of the battery becomes a waveform (a). The voltage of the battery immediately after the pulse is set at 0A instantaneously changes by a voltage change (r.I) caused by a pure DC resistance and, thereafter, a voltage change (rη.I) caused by polarization appears. The variation ΔV1 of the polarization voltage which occurs t1 seconds after the discharge current becomes 0A is measured and, when the measured value is larger than the specific value, it is judged that the battery is deteriorated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄電池の劣化判定
を高速度で行う装置及びこれを用いて劣化判定を行う方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for judging deterioration of a storage battery at a high speed and a method for judging deterioration using the apparatus.

【0002】 (2)(2)

【従来の技術】従来、蓄電池の劣化判定を例えば1秒程
度の高速で行う方法は、主に直流の定電流放電パルスを
印加してその時の電池電圧の低下を見る方法(図1
(b))と、交流信号を印加して電池の交流インピーダ
ンスを測定する方法(図1(a))の2通りがある。
2. Description of the Related Art Conventionally, a method of judging the deterioration of a storage battery at a high speed of, for example, about 1 second is mainly a method of applying a DC constant current discharge pulse and observing a drop in the battery voltage at that time (FIG.
(B)) and a method of measuring the AC impedance of the battery by applying an AC signal (FIG. 1 (a)).

【0003】前者の直流の定電流で放電させる場合、電
池の放電回路中に存在する配線抵抗や接触抵抗が誤差と
して入る可能性がある。
[0003] In the former case of discharging with a constant DC current, there is a possibility that wiring resistance and contact resistance existing in the discharge circuit of the battery are included as errors.

【0004】後者の交流信号を使う場合は、新たに交流
信号発生源と交流信号測定器を用意しなければならない
という問題点がある。
When using the latter AC signal, there is a problem that an AC signal source and an AC signal measuring device must be newly provided.

【0005】原理的に言えば、図1の方で測定し図2の
等価回路のL、R、C、Zfのトータルのインピーダン
スをみて、これがある値以上になった時に劣化したと判
定していた。
[0005] In principle, the total impedance of L, R, C, and Zf of the equivalent circuit of Fig. 2 is measured by measuring Fig. 1 and it is determined that the impedance has deteriorated when the total impedance exceeds a certain value. Was.

【0006】尚図2において、Eは電池の超電力、Lは
蓄電池の通電部の形状などで定まるインダクタンス、R
は極板や電解液などの抵抗、Cは電極の活物質と電解液
との界面の空間電荷による電気二重層の容量、Zfは界
面での電荷や物質の移動によって生じる分極で、ファラ
デーインピーダンと呼ばれるものであり、抵抗成分と容
量成分とからなっている。
In FIG. 2, E is the superpower of the battery, L is the inductance determined by the shape of the current-carrying part of the storage battery, and R is
Is the resistance of the electrode plate or the electrolyte, C is the capacitance of the electric double layer due to the space charge at the interface between the active material of the electrode and the electrolyte, and Zf is the polarization generated by the movement of the charge or the material at the interface. This is called a resistance component and a capacitance component.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上に述べた
従来技術の問題点を解決して、蓄電池の劣化判定を高速
で行う装置と方法を提供するものである。すなわち、電
池に直列に入る直流抵抗による誤差の影響を除き、交流
信号源や測定器を使わないで、低コストで蓄電池の劣化
判定を行うものである。 (3)
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and provides an apparatus and a method for determining the deterioration of a storage battery at a high speed. That is, except for the influence of an error due to DC resistance in series with the battery, the deterioration of the storage battery is determined at low cost without using an AC signal source or a measuring instrument. (3)

【0008】[0008]

【課題を解決するための手段】本発明は、電池に流れる
一定電流をスッテプ状に変化させて、電池の分極電圧の
過渡応答変化分を測定して、この値があらかじめ定めた
規定値以上の電圧変動値となったら、電池が劣化したと
判定する事を特徴とする電池の劣化判定方法である。そ
して、スッテプ状に変化させる前の一定電流の時間が、
スッテプ後の測定時間の10倍以上、望ましくは100
倍以上である事を特徴とする。
SUMMARY OF THE INVENTION According to the present invention, a constant current flowing through a battery is changed in steps to measure a change in the transient response of the polarization voltage of the battery, and this value is equal to or greater than a predetermined value. A battery deterioration determination method characterized in that it is determined that a battery has deteriorated when a voltage fluctuation value has been reached. And the time of the constant current before changing it to the step shape is
10 times or more of the measurement time after the step, preferably 100
It is characterized by being more than double.

【0009】また、本発明は上述の電池の劣化判定方法
を実現するための劣化判定装置でもある。すなわち、電
池電流を検出する手段と、電池電圧の時間的変化分を検
出する手段と、これらの2つの手段によって検出された
電池電流と電池電圧の時間的変化分とをデジタル信号に
変換する手段と、分極電圧の電流依存性を数値化してあ
らかじめ記憶し、この数値化された記憶情報とデジタル
信号とを比較して、電池の劣化判定を行うマイコンとか
ら構成されている事を特徴とする電池の劣化判定装置で
ある。
The present invention is also a deterioration judging device for realizing the above-described method for judging deterioration of a battery. That is, a means for detecting a battery current, a means for detecting a temporal change in battery voltage, and a means for converting the battery current and the temporal change in battery voltage detected by these two means into a digital signal. And a microcomputer for digitizing the current dependency of the polarization voltage and storing it in advance, and comparing the digitized stored information with a digital signal to determine the deterioration of the battery. This is a battery deterioration determination device.

【0010】また、上記の劣化判定装置に電池温度を検
出する手段を付加し、一方、マイコンが分極電圧の温度
依存性を数値化してあらかじめ記憶し、この数値化され
た記憶情報と検出した温度情報とを比較して、電池の劣
化判定を行う機能をマイコンに付加してもよい。
In addition, a means for detecting the battery temperature is added to the above-mentioned deterioration judging device. On the other hand, the microcomputer quantifies the temperature dependency of the polarization voltage and stores it in advance, and stores the numerically stored information and the detected temperature. A function of comparing the information with the information to determine the deterioration of the battery may be added to the microcomputer.

【0011】尚、電池電圧の時間的変化分を検出する手
段が差動増幅器であって、この増幅器の入力には、一定
の遅れ時間を有する電池電圧を基準値とし、リアルタイ
ムの電池電圧を検出して基準値と比較して電池の劣化判
定を行ってもよい。
The means for detecting the time change of the battery voltage is a differential amplifier. The input of the amplifier is a battery voltage having a fixed delay time as a reference value, and a real-time battery voltage is detected. Then, the deterioration of the battery may be determined by comparing with a reference value.

【0012】[0012]

【実施の形態】本発明の測定方法によれば、図2の電気
二重層の容量及びZf中の容量成分が (4) 、電池の充電容量に比例するという点を利用する。すな
わち、分極電圧の過渡応答を測定して蓄電池の劣化判定
を行うものである。
The measuring method of the present invention utilizes the fact that the capacity of the electric double layer and the capacity component in Zf of FIG. 2 are (4) proportional to the charge capacity of the battery. That is, the deterioration response of the storage battery is determined by measuring the transient response of the polarization voltage.

【0013】図3に本発明の分極電圧の測定方法を説明
するための波形図を示す。(a)、(b)は放電による
測定方法、(c)、(d)は充電による測定方法を示
す。
FIG. 3 is a waveform chart for explaining the polarization voltage measuring method of the present invention. (A) and (b) show a measuring method by discharging, and (c) and (d) show a measuring method by charging.

【0014】放電電流パルスを流した場合の測定方法に
ついて説明する。(b)のように放電電流パルスを一定
期間、例えば1秒間流した後0Aにすると、(a)のよ
うな電池電圧波形になる。すなわち、0A直後の電池電
圧は、直流純抵抗による電圧変化(r・I)だけ瞬時に
変化し、その後に分極による電圧変化(rμ・I)が表
れる。
A measuring method when a discharge current pulse is applied will be described. When the discharge current pulse is caused to flow for a predetermined period of time, for example, 1 second as shown in FIG. That is, the battery voltage immediately after 0 A instantaneously changes by the voltage change (r · I) due to the DC pure resistance, and thereafter, the voltage change (rμ · I) due to polarization appears.

【0015】このような電池電圧波形を利用して、放電
電流が0Aになった直後のt1秒後の分極電圧の変化分
ΔV1を測定し、この値があらかじめ定めた規定値以上
であれば電池が劣化したと判定する。
Using such a battery voltage waveform, a change ΔV1 in polarization voltage after t1 seconds immediately after the discharge current becomes 0 A is measured. Is determined to have deteriorated.

【0016】尚、放電電流が0Aになった直後のt2秒
後の分極電圧の変化分ΔV2も測定すれば、さらに測定
精度を上げることができる。
The measurement accuracy can be further improved by measuring the change ΔV2 in polarization voltage after t2 seconds immediately after the discharge current becomes 0 A.

【0017】充電パルスを用いて測定した場合は図3の
(c),(d)に示すが、原理的には上に述べた放電パ
ルスによる測定方法と同様である。すなわち、この場合
は充電電流が0Aになった直後のt3秒後の分極電圧の
変化分ΔV3を測定し、この値があらかじめ定めた規定
値以上であれば電池が劣化したと判定する。同様に、t
4後の分極電圧の変化分ΔV4を測定して、さらに測定
精度を上げることができる。
FIGS. 3 (c) and 3 (d) show the case where the measurement is performed using the charge pulse, and the principle is the same as the measurement method using the discharge pulse described above. That is, in this case, the change ΔV3 in polarization voltage after t3 seconds immediately after the charging current becomes 0 A is measured, and if this value is equal to or greater than a predetermined value, it is determined that the battery has deteriorated. Similarly, t
By measuring the change ΔV4 in the polarization voltage after 4, the measurement accuracy can be further improved.

【0018】尚、分極電圧の変化分ΔV3、ΔV4は、
(d)の充電電流の波形に強く依存 (5) する。したがって、設定された一定電流の後に測定する
場合、充電電流期間を長くした方が、充電電流をゼロに
したときの電圧応答の誤差が小さくなるので望ましい。
例えば、定電流充電期間1分間に対し、測定時間t3が
0.1秒であれば実用上問題はない。
Note that the polarization voltage changes ΔV3 and ΔV4 are:
It depends strongly on the waveform of the charging current in (d) (5). Therefore, when the measurement is performed after the set constant current, it is desirable to lengthen the charging current period because the error of the voltage response when the charging current is set to zero becomes small.
For example, there is no practical problem if the measurement time t3 is 0.1 second for a constant current charging period of 1 minute.

【0019】また、この直流の充電電流は必ずしも一定
電流である必要はない。1分程度の長い時間で見た場
合、ほぼ同一パターンが繰り返されると見なせる定常電
流充電であればよい。たとえば、商用全波波形とスイッ
チング波形が重畳された波形のようなリップル充電波形
の中で、ほぼ同一の電流波形と見なせる時点で測定比較
してもよい。
The DC charging current does not necessarily have to be a constant current. When viewed in a long time of about 1 minute, it is sufficient that the current is a steady-state current charge that can be regarded as substantially the same pattern being repeated. For example, measurement and comparison may be performed at a point in time when substantially the same current waveform can be considered in a ripple charging waveform such as a waveform in which a commercial full-wave waveform and a switching waveform are superimposed.

【0020】尚、定電流充電期間は測定時間t3,t4
の例えば百倍以上にとれば、殆ど測定誤差は無視できる
値となる。
Note that the constant current charging period is the measurement time t3, t4
For example, if it is 100 times or more, the measurement error is almost negligible.

【0021】図4は、充電パルスを用いた場合の、Ni
Cd電池の分極電圧の過渡応答の一例を示す。横軸は、
充電電流を0Aにした時刻をゼロとして経過時間を対数
目盛りで表している。縦軸は、分極電圧の過渡応答変化
分ΔVを表す。
FIG. 4 is a graph showing the relationship between Ni and Ni when a charging pulse is used.
4 shows an example of a transient response of a polarization voltage of a Cd battery. The horizontal axis is
The elapsed time is represented on a logarithmic scale with the time when the charging current is set to 0 A as zero. The vertical axis represents the transient response change ΔV of the polarization voltage.

【0022】図からわかるように、劣化したNiCd電
池の分極電圧の変化分は、充電容量が小さくなっただけ
過渡電圧変動が大きくなっている。例えば、0.1秒〜
1秒後の電圧変動分を比較すれば電圧変動分の差は著し
いので、NiCd電池の劣化を判定することができる。
一般には、単位時間当たりの分極電圧の変化分がある規
定値以上になったものを劣化した電池と判定すればよ
い。
As can be seen from the figure, the change in the polarization voltage of the deteriorated NiCd battery has a larger transient voltage fluctuation as the charging capacity becomes smaller. For example, from 0.1 seconds
If the voltage fluctuation after one second is compared, the difference in the voltage fluctuation is remarkable, so that the deterioration of the NiCd battery can be determined.
In general, a battery in which the amount of change in the polarization voltage per unit time exceeds a predetermined value may be determined as a deteriorated battery.

【0023】しかし、分極電圧は電流依存性や温度依存
性又は履歴依存性があるので、これらの影響を取り除く
為に同一条件に換算して測定を行う必要がある。例え
ば、同 (6) 一電流や同一温度条件のもとで測定したり、公称電圧の
プラス10%ぐらいの電池電圧で測定を行って測定条件
による測定誤差を取り除くようにする。
However, since the polarization voltage has current dependence, temperature dependence, or history dependence, it is necessary to perform measurement under the same conditions in order to eliminate these effects. For example, (6) the measurement is performed under the condition of one current or the same temperature, or the measurement is performed at a battery voltage of about + 10% of the nominal voltage to remove the measurement error due to the measurement condition.

【0024】図5は、NiCd電池について充電電流を
パラメータとした電池温度と分極電圧との関係を示す特
性図である。測定時間t3=1秒の時のものである。こ
の図からわかるように、分極電圧の過渡応答変化分は電
池温度に大きく依存している。
FIG. 5 is a characteristic diagram showing the relationship between the battery temperature and the polarization voltage using the charging current as a parameter for the NiCd battery. The measurement time t3 = 1 second. As can be seen from this figure, the transient response change of the polarization voltage greatly depends on the battery temperature.

【0025】図6はNiCd電池の定電流充電特性であ
る。充電量が35〜85%の領域(A領域)が比較的電
池電圧が安定しているので、この領域では安定した分極
電圧を得ることが出来る。したがって、定電流充電を行
いながら温度と電池電圧を測定して、電池電圧がA領域
に相当する値になった時点で充電電流をゼロにして、分
極電圧の可動応答変化分(ΔV3)を測定すれば、高精
度に電池の劣化判定を行う事が出来る。
FIG. 6 shows the constant current charging characteristics of the NiCd battery. Since the battery voltage is relatively stable in the region (A region) where the charge amount is 35 to 85%, a stable polarization voltage can be obtained in this region. Therefore, the temperature and the battery voltage are measured while performing the constant current charging, and when the battery voltage reaches a value corresponding to the region A, the charging current is set to zero, and the change in the movable response of the polarization voltage (ΔV3) is measured. This makes it possible to determine the deterioration of the battery with high accuracy.

【0026】図7はNiCd電池の定電流放電特性であ
る。放電量が30〜65%の領域(B領域)が比較的電
池電圧が安定しているので、この領域では安定した分極
電圧を得ることが出来る。したがって、定電流放電を行
いながら温度と電池電圧を測定して、電池電圧がB領域
に相当する値になった時点で放電電流をゼロにして、分
極電圧の過渡応答変化分(ΔV1)を測定すれば、高精
度に電池の劣化判定を行う事が出来る。
FIG. 7 shows the constant current discharge characteristics of the NiCd battery. Since the battery voltage is relatively stable in the region where the discharge amount is 30 to 65% (region B), a stable polarization voltage can be obtained in this region. Therefore, the temperature and the battery voltage are measured while performing the constant current discharge, and when the battery voltage reaches a value corresponding to the region B, the discharge current is set to zero and the transient response change (ΔV1) of the polarization voltage is measured. This makes it possible to determine the deterioration of the battery with high accuracy.

【0027】図8は、本発明の劣化判定回路とNiCd
電池の充電器である。マイコンに図3の(c),(d)
の様な波形を測定させ、電池の劣化判定を行う様にプロ
グラムが設定されている。図8において、電池パックは
サーミスタと電池から構成されている。 (7) サーミスタは電池温度を測定するために設けてある。
FIG. 8 shows the deterioration judgment circuit of the present invention and NiCd
It is a battery charger. Fig. 3 (c) and (d)
The program is set to measure the waveform as described above and determine the deterioration of the battery. In FIG. 8, the battery pack includes a thermistor and a battery. (7) The thermistor is provided to measure the battery temperature.

【0028】図8において、Amp1は充電電流測定用
に設けてある。充電電流の瞬時値をマイコンのA/D変
換部を通してマイコンに取り込む。
In FIG. 8, Amp1 is provided for measuring a charging current. The microcomputer captures the instantaneous value of the charging current through the A / D converter of the microcomputer.

【0029】充電電流波形が図3の(d)の様な時、電
池の分極電圧の過渡応答を測定し電池の劣化判定を行
う。あるいは、劣化判定器のマイコンが充電器を制御し
て充電電流をステップ状にして、図3の(d)の様な充
電電流波形を作って電池劣化測定を実行しても良い。
When the charging current waveform is as shown in FIG. 3D, the transient response of the polarization voltage of the battery is measured to determine the deterioration of the battery. Alternatively, the microcomputer of the deterioration judging device may control the charger to make the charging current in a step-like form, form a charging current waveform as shown in FIG. 3D, and execute the battery deterioration measurement.

【0030】電池電圧測定にはAmp2とAm3を使
う。Amp2は基準電圧1.25Vと比較して電池電圧
1.2V〜1.6Vを拡大して0〜5Vとして出力す
る。これをマイコンの8bitのA/D変換部に入れ
る。得られる電池電圧の分解能力は1.5mVとなる
が、最終bitは誤差と考えて3mVがAmp2の測定
精度となる。
For measuring the battery voltage, Amp2 and Am3 are used. Amp2 enlarges the battery voltage from 1.2V to 1.6V as compared with the reference voltage of 1.25V and outputs it as 0 to 5V. This is put into an 8-bit A / D converter of the microcomputer. The resolution of the obtained battery voltage is 1.5 mV, but the final bit is considered as an error, and 3 mV is the measurement accuracy of Amp2.

【0031】本実施例では、Amp3を使いさらに検出
精度を10進法で2桁向上させている。Amp3の基準
電圧は8bitD/Aコンバータから成る。D/Aコン
バータ出力は高精度、かつ高速度に電池電圧に追随す
る。
In the present embodiment, the detection accuracy is further improved by two digits in decimal notation using Amp3. The reference voltage of Amp3 consists of an 8-bit D / A converter. The D / A converter output follows the battery voltage with high accuracy and high speed.

【0032】Amp3により80μV単位までの電池電
圧測定が可能となる。これにより、分極電圧の過渡応答
がリアルタイムに高精度に検出可能となる。分極電圧の
単位時間あたりの応答値が規定値以上になったら劣化を
判定する。
The Amp3 makes it possible to measure the battery voltage up to a unit of 80 μV. This makes it possible to detect the transient response of the polarization voltage with high accuracy in real time. When the response value of the polarization voltage per unit time becomes equal to or greater than a specified value, the deterioration is determined.

【0033】又、本発明の劣化判定回路を負荷側の電池
管理用マイコンの中に入れる事も出 (8) 来る。その時の過渡応答は図3の(a),(b)が適用
できる。
It is also possible to incorporate the deterioration judgment circuit of the present invention into a microcomputer for battery management on the load side (8). 3 (a) and 3 (b) can be applied to the transient response at that time.

【0034】本願の説明をNiCd電池について行なっ
たが、ニッケル水素(NiMH)電池やLiイオン電池
やシール鉛電池についても本願の方法が適用できる。ま
た組電池(特に直列の多セル電池)において本法は有効
である。
Although the present invention has been described with reference to a NiCd battery, the method of the present invention can be applied to a nickel hydride (NiMH) battery, a Li ion battery, and a sealed lead battery. In addition, the present method is effective for assembled batteries (particularly, series multi-cell batteries).

【0035】さらに電池電流ステップが直流の一定値で
ある必要はない。分極電圧の過渡応答の設定値を前もっ
て測ってあれば、安定化されたひずみ波電流であっても
良い。例えば充電中であれば、定常のリップル充電状態
と充電停止状態との間での分極電圧の過渡応答であって
も良い。
Further, the battery current step need not be a constant value of DC. If the set value of the transient response of the polarization voltage is measured in advance, a stabilized strain wave current may be used. For example, during charging, a transient response of the polarization voltage between the steady ripple charging state and the charging stop state may be used.

【0036】本劣化判定回路は充電電流Iが流れている
時から0Aに切り替わる時のみについて説明したが、必
ずしもこれだけである必要はない。安定化された動作で
あれば、0Aから定電流充電に切り替わる時や、大きい
定電流から小さい定電流に切り替わる時でも劣化判定可
能である。
Although the present deterioration determination circuit has been described only when the charging current I is switched to 0 A from when the charging current I is flowing, this is not necessarily the case. If the operation is stabilized, deterioration can be determined even when switching from 0A to constant current charging or when switching from large constant current to small constant current.

【0037】電池電圧の過渡応答条件が安定化してあれ
ば、充電定電流から放電定電流に切り替わる時や、この
逆の変化でも劣化判定可能である。
If the transient response condition of the battery voltage is stabilized, it is possible to judge the deterioration at the time of switching from the constant charge current to the constant discharge current or the reverse change.

【0038】[0038]

【発明の効果】本願の方法を使えば、蓄電池の劣化判定
が安価に行える。RFV法を使った充電器なら簡単に劣
化判定機能を附加する事が可能である。また電池に情報
処理機能のついたスマートバッテリーでは、電池電圧と
電池電流を覧視し、電池温度も測定できれば蓄電池の劣
化を短時間で動作中にチェックする機能を付け加える事
ができる。
According to the method of the present invention, the deterioration of the storage battery can be determined at low cost. A charger using the RFV method can easily add a deterioration determination function. In addition, in the case of a smart battery with an information processing function, the battery voltage and battery current can be viewed, and if the battery temperature can be measured, a function to check the deterioration of the storage battery during operation in a short time can be added.

【図面の簡単な説明】[Brief description of the drawings]

(9) (9)

【図1】従来技術の電池の劣化判定回路、(a)は放電
パルスを印加してその時の電池電圧の低下を見る方法、
(b)は交流信号を印加して電池の交流インピーダンス
を測定する方法。
FIG. 1 is a prior art battery deterioration determination circuit, (a) is a method of applying a discharge pulse and observing a decrease in battery voltage at that time;
(B) is a method of measuring an AC impedance of a battery by applying an AC signal.

【図2】電池の劣化判定回路の等価回路。FIG. 2 is an equivalent circuit of a battery deterioration determination circuit.

【図3】本発明の分極電圧の測定方法を説明する為の波
形図、(a),(b)は放電による測定方法、(c),
(d)は充電による測定方法を示す。
FIGS. 3A and 3B are waveform diagrams for explaining a method of measuring a polarization voltage according to the present invention, wherein FIGS.
(D) shows a measuring method by charging.

【図4】充電パルスを用いた場合の、NiCd電池の分
極電圧の過渡応答の一例。
FIG. 4 is an example of a transient response of a polarization voltage of a NiCd battery when a charging pulse is used.

【図5】NiCd電池について充電電流をパラメータと
した電池温度と分極電圧との関係を示す特性図。
FIG. 5 is a characteristic diagram showing a relationship between a battery temperature and a polarization voltage using a charging current as a parameter for a NiCd battery.

【図6】NiCd電池の定電流充電特性。FIG. 6 shows a constant current charging characteristic of a NiCd battery.

【図7】NiCd電池の定電流放電特性。FIG. 7 shows constant current discharge characteristics of a NiCd battery.

【図8】本発明の劣化判定回路とNiCd電池の充電
器。
FIG. 8 shows a deterioration determination circuit and a NiCd battery charger of the present invention.

【符号の説明】[Explanation of symbols]

E 電池の起電力 L 電池のインダクタンス R 極板や電解液の抵抗 C 電気二重層の容量 Zf ファラデーインピーダンス Amp1 充電電流測定用アンプ (9) Amp2 電池電圧測定用アンプ Amp3 電池電圧用測定アンプ E Electromotive force of battery L Inductance of battery R Resistance of electrode plate and electrolyte C Capacity of electric double layer Zf Faraday impedance Amp1 Charge current measurement amplifier (9) Amp2 Battery voltage measurement amplifier Amp3 Battery voltage measurement amplifier

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年3月26日[Submission date] March 26, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】尚、図2において、Eは電池の起電力、L
は蓄電地の通電部の形状などで定まるインダクタンス、
Rは極板や電解液などの対抗、Cは電極の活物質と電解
液との界面の空間電荷による電気二重層の容量、Zfは
界面での電荷や物質の移動によって生じる分極で、ファ
ラデーインピーダンと呼ばれるものであり、抵抗成分
と容量成分とからなっている。
In FIG. 2, E is the electromotive force of the battery, L
Is the inductance determined by the shape of the energized part of the storage area,
R is the opposition of the electrode plate or the electrolyte, C is the capacity of the electric double layer due to the space charge at the interface between the active material of the electrode and the electrolyte, Zf is the polarization generated by the movement of the charge or the material at the interface, and the Faraday impedance. It is what is called a scan, which is a resistor component and a capacitance component.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】放電電流パルスを流した場合の測定方法に
ついて説明する。(b)のように放電電流パルスを一定
期間、例えば1秒間流した後0Aにすると、(a)のよ
うな電池電圧波形になる。すなわち、0A直後の電池電
圧は、直流純抵抗による電圧変化(r・I)だけ瞬時に
変化し、その後に分極による電圧変化(rη・I)が現
れる。
A measuring method when a discharge current pulse is applied will be described. When the discharge current pulse is caused to flow for a predetermined period of time, for example, 1 second as shown in FIG. That is, the battery voltage immediately after 0 A changes instantaneously by the voltage change (r · I) due to the DC pure resistance, and thereafter, the voltage change (r η · I) due to polarization appears.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Correction target item name] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0030】電池電圧測定にはAmp2とAm3を使
う。Amp2の基準電圧1.25Vと比較して電池電圧
1.2〜1.6Vを拡大して0〜5Vとして出力する。
これをマイコンの8bitのA/D変換部に入れる。得
られた電池電圧の分解能力は1.5mVとなるが、最終
bitは誤差と考えて3mVがAmp2の測定精度とな
る。 ─────────────────────────────────────────────────────
[0030] The battery voltage measurement using the Amp2 and Am p 3. The battery voltage 1.2 to 1.6 V is enlarged as compared with the reference voltage 1.25 V of Amp 2 and output as 0 to 5 V.
This is put into an 8-bit A / D converter of the microcomputer. Although the resolution of the obtained battery voltage is 1.5 mV, the final bit is considered to be an error, and 3 mV is the measurement accuracy of Amp2. ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年3月26日[Submission date] March 26, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 電池の劣化判定装置及び劣化判定方
Patent application title: Battery Deterioration Determining Apparatus and Deterioration Determining Method

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電池に流れる一定電流をステップ状に変
化させ、前記電池の分極電圧の過渡応答変化分を測定
し、あらかじめ定めた規定値以上の電圧変動値となった
ら、前記電池が劣化したと判定する電池の劣化判定方
法。
1. A method according to claim 1, wherein a constant current flowing through the battery is changed in a stepwise manner, and a transient response change of the polarization voltage of the battery is measured. Battery deterioration determination method for determining
【請求項2】 請求項1記載の電池の劣化判定方法にお
いて、 ステップ状に変化させる前の一定電流の時間が、ステッ
プ後の測定時間の10倍以上である事を特徴とする電池
の劣化判定方法。
2. The method for determining deterioration of a battery according to claim 1, wherein the time of the constant current before the stepwise change is 10 times or more of the measurement time after the step. Method.
【請求項3】 電池電流を検出する手段と、電池電圧の
時間的変化分を検出する手段と、これらの手段によって
検出された電池電流と電池電圧の時間的変化分をデジタ
ル信号に変換する手段と、分極電圧の電流依存性を数値
化してあらかじめ記憶し、前記数値化された記憶情報と
前記デジタル信号とを比較して、電池の劣化判定を行う
マイコンとからなる事を特徴とする電池の劣化判定装
置。
3. A means for detecting a battery current, a means for detecting a temporal change in a battery voltage, and a means for converting a temporal change in a battery current and a battery voltage detected by these means into a digital signal. And a microcomputer that digitizes and stores in advance the current dependency of the polarization voltage, compares the digitized storage information with the digital signal, and determines deterioration of the battery. Deterioration determination device.
【請求項4】 請求項3記載の電池の劣化判定装置にお
いて、 電池温度を検出する手段をそなえ、分極電圧の温度依存
性を数値化してあらかじめ記憶し、前記数値化された記
憶情報と前記温度情報とを比較して、電池の劣化判定を
行うマイコンとからなる事を特徴とする電池の劣化判定
装置。
4. The battery deterioration judging device according to claim 3, further comprising means for detecting a battery temperature, digitizing the temperature dependency of the polarization voltage and storing the numerical value in advance, and storing the digitized storage information and the temperature. A battery deterioration judging device, comprising: a microcomputer for comparing the information with the microcomputer to judge the deterioration of the battery.
【請求項5】 請求項3記載の電池の劣化判定装置にお
いて、電池電圧の時間的変化分を検出する手段が差動増
幅器であって、前記差動増幅器が、一定の遅れ時間を有
する電池電圧を基準値とし、リアルタイムの電池電圧を
検出比較して、電池の劣化判定を行う事を特徴とする電
池の劣化判定装置。
5. The battery deterioration judging device according to claim 3, wherein the means for detecting a temporal change in the battery voltage is a differential amplifier, wherein the differential amplifier has a constant delay time. A battery deterioration determination device characterized in that a battery deterioration determination is performed by detecting and comparing a real-time battery voltage with reference to a reference value.
JP9038443A 1997-02-06 1997-02-06 Device and method for judging deterioration of battery Pending JPH10221418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9038443A JPH10221418A (en) 1997-02-06 1997-02-06 Device and method for judging deterioration of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9038443A JPH10221418A (en) 1997-02-06 1997-02-06 Device and method for judging deterioration of battery

Publications (1)

Publication Number Publication Date
JPH10221418A true JPH10221418A (en) 1998-08-21

Family

ID=12525448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9038443A Pending JPH10221418A (en) 1997-02-06 1997-02-06 Device and method for judging deterioration of battery

Country Status (1)

Country Link
JP (1) JPH10221418A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051993A1 (en) * 1998-04-02 1999-10-14 Btech, Inc. Battery parameter measurement
JP2002101700A (en) * 2000-09-26 2002-04-05 Toyota Motor Corp Controller of electric equipment and control method
JP2005106615A (en) * 2003-09-30 2005-04-21 Honda Motor Co Ltd Open-circuit voltage detector for charge accumulating device, and residual amount detector
US6924623B2 (en) 1998-08-10 2005-08-02 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
JP2006343165A (en) * 2005-06-08 2006-12-21 Hioki Ee Corp Apparatus for measuring resistance of battery
WO2007125906A1 (en) * 2006-04-25 2007-11-08 Nippon Telegraph And Telephone Corporation Device and method for determining replacement of storage battery
JP2009044902A (en) * 2007-08-10 2009-02-26 Origin Electric Co Ltd Characteristic measuring device for storage battery, dc power supply system, and characteristic measuring method for storage battery
JP2013148452A (en) * 2012-01-19 2013-08-01 Toyota Industries Corp Soh estimation device
JP2013181852A (en) * 2012-03-02 2013-09-12 Railway Technical Research Institute Method and device for estimating capacity deterioration of secondary battery
JP2014193040A (en) * 2013-03-27 2014-10-06 Toshiba Corp Charge/discharge device and charge/discharge method for power storage system
KR101460248B1 (en) * 2013-05-21 2014-11-10 주식회사 라스텔 Apparatus and method for measuring degradation of battery and equipment for reproducing battery
JP2015532584A (en) * 2012-10-19 2015-11-09 トライコピアン・エルエルシー System and method for providing a rechargeable battery
WO2017002953A1 (en) * 2015-07-02 2017-01-05 学校法人同志社 Data extracting device, data extracting method, and data extracting program
JP2017016991A (en) * 2015-07-02 2017-01-19 学校法人同志社 Data extraction device, data extraction method and data extraction program
US9870670B2 (en) 2012-03-20 2018-01-16 Tricopian, Llc Two-way exchange vending
US10529973B2 (en) 2013-08-22 2020-01-07 Tricopian, Llc Standardized rechargeable battery cell
WO2022078379A1 (en) * 2020-10-13 2022-04-21 东华大学 Method and apparatus for measuring battery impedance value
CN116593895A (en) * 2023-06-16 2023-08-15 中国科学技术大学 Strain-based lithium ion battery pack current detection method and system

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051993A1 (en) * 1998-04-02 1999-10-14 Btech, Inc. Battery parameter measurement
US7235326B2 (en) 1998-08-10 2007-06-26 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US6924623B2 (en) 1998-08-10 2005-08-02 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7030618B2 (en) 1998-08-10 2006-04-18 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7075305B2 (en) 1998-08-10 2006-07-11 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7180298B2 (en) 1998-08-10 2007-02-20 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
JP2002101700A (en) * 2000-09-26 2002-04-05 Toyota Motor Corp Controller of electric equipment and control method
JP2005106615A (en) * 2003-09-30 2005-04-21 Honda Motor Co Ltd Open-circuit voltage detector for charge accumulating device, and residual amount detector
JP2006343165A (en) * 2005-06-08 2006-12-21 Hioki Ee Corp Apparatus for measuring resistance of battery
WO2007125906A1 (en) * 2006-04-25 2007-11-08 Nippon Telegraph And Telephone Corporation Device and method for determining replacement of storage battery
US8148994B2 (en) 2006-04-25 2012-04-03 Nippon Telegraph And Telephone Corporation Device and method for determining replacement of storage battery
JP2009044902A (en) * 2007-08-10 2009-02-26 Origin Electric Co Ltd Characteristic measuring device for storage battery, dc power supply system, and characteristic measuring method for storage battery
JP2013148452A (en) * 2012-01-19 2013-08-01 Toyota Industries Corp Soh estimation device
JP2013181852A (en) * 2012-03-02 2013-09-12 Railway Technical Research Institute Method and device for estimating capacity deterioration of secondary battery
US10460547B2 (en) 2012-03-20 2019-10-29 Tricopian, Llc Two-way exchange vending
US11087579B2 (en) 2012-03-20 2021-08-10 Tricopian, Llc Two-way exchange vending
US9870670B2 (en) 2012-03-20 2018-01-16 Tricopian, Llc Two-way exchange vending
JP2015532584A (en) * 2012-10-19 2015-11-09 トライコピアン・エルエルシー System and method for providing a rechargeable battery
US9985451B2 (en) 2012-10-19 2018-05-29 Tricopian, Llc System and method for providing rechargeable batteries
JP2014193040A (en) * 2013-03-27 2014-10-06 Toshiba Corp Charge/discharge device and charge/discharge method for power storage system
KR101460248B1 (en) * 2013-05-21 2014-11-10 주식회사 라스텔 Apparatus and method for measuring degradation of battery and equipment for reproducing battery
US11600892B2 (en) 2013-08-22 2023-03-07 Tricopian, Llc Connection portion for connecting removable power unit to an electric device
US10529973B2 (en) 2013-08-22 2020-01-07 Tricopian, Llc Standardized rechargeable battery cell
JP2017016991A (en) * 2015-07-02 2017-01-19 学校法人同志社 Data extraction device, data extraction method and data extraction program
WO2017002953A1 (en) * 2015-07-02 2017-01-05 学校法人同志社 Data extracting device, data extracting method, and data extracting program
WO2022078379A1 (en) * 2020-10-13 2022-04-21 东华大学 Method and apparatus for measuring battery impedance value
CN116593895A (en) * 2023-06-16 2023-08-15 中国科学技术大学 Strain-based lithium ion battery pack current detection method and system
CN116593895B (en) * 2023-06-16 2024-02-23 中国科学技术大学 Strain-based lithium ion battery pack current detection method and system

Similar Documents

Publication Publication Date Title
JPH10221418A (en) Device and method for judging deterioration of battery
US6359441B1 (en) Electronic battery tester
US8447544B2 (en) Method and apparatus for detecting state of charge of battery
US6930485B2 (en) Electronic battery tester with battery failure temperature determination
US5672951A (en) Determination and control of battery state
JP3873623B2 (en) Battery charge state estimation means and battery deterioration state estimation method
US5557189A (en) Method and apparatus including a current detector and a power source control circuit for charging a number of batteries
KR940701546A (en) Method and device for charging and testing the battery
JP2001231179A (en) Method and apparatus for detecting battery capacity and battery pack
JP2002017045A (en) Secondary battery device
US10024924B2 (en) Remaining battery life prediction device and battery pack
US8823326B2 (en) Method for determining the state of charge of a battery in charging or discharging phase
JP2001186684A (en) Lithium ion battery charger
Hossain et al. A parameter extraction method for the Thevenin equivalent circuit model of Li-ion batteries
US6909261B2 (en) Method for predicting the loading capability of an electrochemical element
US6060862A (en) Rechargeable electronic apparatus
US20230198035A1 (en) Measurement apparatus, and measurement method
JP2937796B2 (en) Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device
US5530361A (en) Method and apparatus for measuring the state of charge of an electrochemical cell pulse producing a high discharge current
JP2001242204A (en) Direct current resistance measuring method of capacitor and its device
TW201819946A (en) Methods and apparatus for calculating a route resistance of a battery system
EP1864148B1 (en) Method for determining capacity of lead-acid batteries of various specific gravities
JPH0779535A (en) Residual capacity detection system for battery
JP4802414B2 (en) Battery remaining capacity meter
JPH0850931A (en) Charging state measurement device of electrochemical type battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050719