JPH10213614A - Method and device for measuring electromagnetic wave - Google Patents

Method and device for measuring electromagnetic wave

Info

Publication number
JPH10213614A
JPH10213614A JP1351497A JP1351497A JPH10213614A JP H10213614 A JPH10213614 A JP H10213614A JP 1351497 A JP1351497 A JP 1351497A JP 1351497 A JP1351497 A JP 1351497A JP H10213614 A JPH10213614 A JP H10213614A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
waveform
intensity
antenna
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1351497A
Other languages
Japanese (ja)
Inventor
Akio Takami
秋夫 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1351497A priority Critical patent/JPH10213614A/en
Publication of JPH10213614A publication Critical patent/JPH10213614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure an intensity of an electromagnetic wave emitted from an object to be measured by removing influence of an electromagnetic wave emitted from an object which is not to be measured. SOLUTION: Each of electromagnetic waves emitted from a device-under-test 10 and a device 11 which is not used in testing is received by antennas 5, 7 to be transmitted to antenna connection terminals 2, 3 via electric wires 4, 6, respectively. A waveshape synthesizing section 1 shifts a phase angle of one of the electromagnetic wave signals inputted to the antenna connection terminals 2, 3 by 180 degree, and synthesizes both of the signals, then the intensity of the target wave is measured in accordance with the amplitude of the wave.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯電話,トラン
シーバ等の携帯通信端末又は一般の電子機器から放射さ
れる電磁波の強度を測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the intensity of electromagnetic waves radiated from portable communication terminals such as portable telephones and transceivers or general electronic equipment.

【0002】[0002]

【従来の技術】測定対象物から放射される電磁波の強度
を屋内で測定する場合は、測定対象ではない物体が放射
する電磁波が壁面を透過しないように、しかも測定対象
物が放射する電磁波が壁面で反射しないように作られた
電波暗室内にて測定される。この場合、電波暗室を設置
するために多くの経費が必要になる。さらに、電波暗室
に持ち込むことができない測定対象物から放射される電
磁波は測定できない。
2. Description of the Related Art When measuring the intensity of an electromagnetic wave radiated from an object to be measured indoors, it is necessary to prevent the electromagnetic wave radiated by an object which is not the object to be transmitted from passing through the wall surface and to make the electromagnetic wave radiated from the object to be measured be measured on the wall surface. It is measured in an anechoic chamber made so that it does not reflect at In this case, much expense is required to install the anechoic chamber. Furthermore, an electromagnetic wave radiated from a measurement object that cannot be brought into an anechoic chamber cannot be measured.

【0003】一方、屋外で電磁波の強度を測定する場合
は、電波暗室内にて測定する場合のような測定対象物に
起因する不具合はないが、測定対象物から放射される電
磁波のみを受信すべき空中線が、測定対象ではない物体
から放射される電磁波、例えば放送局のアンテナから放
射される放送波を受信して、正確な測定が行えない虞が
ある。従って、屋外で測定する場合は、放送波のような
測定対象ではない物体から放射される電磁波が飛行して
いないか、または強度が充分に小さいことを確認してお
かなければならない。
On the other hand, when measuring the intensity of electromagnetic waves outdoors, there is no problem caused by the measurement object as in the case of measurement in an anechoic chamber, but only the electromagnetic waves radiated from the measurement object are received. There is a possibility that an accurate antenna cannot be measured by receiving an electromagnetic wave radiated from an object that is not a measurement target, for example, a broadcast wave radiated from an antenna of a broadcasting station. Therefore, when measuring outdoors, it is necessary to confirm that electromagnetic waves radiated from an object that is not a measurement target, such as broadcast waves, are not flying or that the intensity is sufficiently small.

【0004】図6は従来の電磁波強度測定装置の構成を
示すブロック図である。図において9は電磁波の波形を
表示し、また電磁波信号の振幅からその強度を測定する
電磁波強度測定部であり、例えば受信周波数が選択可能
な電界強度測定器及びスペクトラムアナライザ等を用い
てなる。電磁波強度測定部9は空中線を接続する空中線
接続端子2を具備する。空中線接続端子2には給電線4
を介して空中線5が接続されている。空中線5により受
信された電磁波は給電線4を介して空中線接続端子2に
与えられる。電磁波強度測定部9は空中線接続端子2に
与えられた電磁波信号の波形の振幅からその強度を測定
する。
FIG. 6 is a block diagram showing a configuration of a conventional electromagnetic wave intensity measuring device. In the figure, reference numeral 9 denotes an electromagnetic wave intensity measuring section which displays the waveform of an electromagnetic wave and measures the intensity of the electromagnetic wave signal from the amplitude thereof, for example, using an electric field intensity measuring instrument and a spectrum analyzer capable of selecting a reception frequency. The electromagnetic wave intensity measuring unit 9 includes an antenna connection terminal 2 for connecting an antenna. The feeder line 4 is connected to the antenna connection terminal 2.
The antenna 5 is connected via the. The electromagnetic wave received by the antenna 5 is provided to the antenna connection terminal 2 via the feed line 4. The electromagnetic wave intensity measuring section 9 measures the intensity of the electromagnetic wave signal applied to the antenna connection terminal 2 from the amplitude of the waveform.

【0005】一方、測定対象の電磁波放射源及び測定対
象ではない電磁波放射源としてそれぞれ供試機器10及
び非供試機器11が存在する。非供試機器11は、空中
線5から見て供試機器10より遠方にあって、しかも比
較的高レベルの電磁波を放射する電磁波放射源、例えば
放送局の送信アンテナである。非供試機器11から放射
される電磁波が飛行している時間帯には、空中線5は供
試機器10及び非供試機器11の両方から放射された電
磁波を受信して、供試機器10から放射される電磁波の
正確な測定が行えない。
On the other hand, there are a test device 10 and a non-test device 11 as an electromagnetic wave radiation source to be measured and an electromagnetic wave radiation source not to be measured, respectively. The non-test equipment 11 is an electromagnetic wave radiation source that is farther from the test equipment 10 when viewed from the antenna 5 and emits a relatively high-level electromagnetic wave, for example, a transmitting antenna of a broadcasting station. During a time period when the electromagnetic wave radiated from the non-test equipment 11 is flying, the antenna 5 receives the electromagnetic waves radiated from both the test equipment 10 and the non-test equipment 11 and Accurate measurement of emitted electromagnetic waves cannot be performed.

【0006】[0006]

【発明が解決しようとする課題】前述の如く、放送波又
は無線通信の通信波が存在する周波数帯においては、そ
れらが空間を飛行している限り、受信しようとする電磁
波に悪影響を及ぼすことから、その正確な測定が行えな
いのである。
As described above, in a frequency band in which a broadcast wave or a communication wave of wireless communication exists, electromagnetic waves to be received are adversely affected as long as they fly in space. The accurate measurement cannot be performed.

【0007】本発明はこのような背景の基になされたも
のであって、測定対象ではない物体から放射される電磁
波の影響を受信波形から除き、測定対象物から放射され
る電磁波の波形を得ることにより、その強度を正確に測
定することができ、しかも屋内又は屋外に使用形態を限
定しない電磁波強度測定方法及びその装置の提供を目的
とする。
The present invention has been made based on such a background, and removes the influence of an electromagnetic wave radiated from an object that is not a measurement target from a received waveform to obtain a waveform of the electromagnetic wave radiated from the measurement target. Accordingly, it is an object of the present invention to provide an electromagnetic wave intensity measuring method and an apparatus capable of accurately measuring the intensity and not restricting the use form indoors or outdoors.

【0008】[0008]

【課題を解決するための手段】第1発明に係る電磁波強
度測定方法は、2本の空中線により同時に電磁波を受信
して、一の空中線により受信した電磁波の位相角を18
0度又は180度の奇数倍移相し、該波形及び他の空中
線により受信した電磁波の波形を合成して、該合成波形
の振幅の大きさから電磁波の強度を測定することを特徴
とする。第2発明に係る電磁波強度測定方法は、電磁波
放射源と一方の空中線との間に電磁波吸収体を設けるこ
とを特徴とする。第3発明に係る電磁波強度測定装置
は、電磁波信号を入力すべき2つの入力端子と、一方の
入力端子に与えられた電磁波信号の位相角を180度又
は180度の奇数倍移相して出力する手段と、該手段の
出力信号及び他方の入力端子に与えられた電磁波信号を
合成して出力する合成手段とを備え、前記合成手段の出
力信号の波形の振幅の大きさから電磁波の強度を測定す
べくなしてあることを特徴とする。第4発明に係る電磁
波強度測定装置は、いずれか一方の入力端子に与えられ
た電磁波信号の位相角を他方の入力端子に与えられた電
磁波信号の位相角と一致させて出力する移相手段を備え
ることを特徴とする。第5発明に係る電磁波強度測定装
置は、いずれか一方の入力端子に与えられた電磁波信号
の振幅を他方の入力端子に与えられた電磁波信号の振幅
と一致させて出力する増幅・減衰手段を備えることを特
徴とする。
According to a first aspect of the present invention, there is provided a method for measuring the intensity of an electromagnetic wave, wherein the electromagnetic wave is received simultaneously by two antennas, and the phase angle of the electromagnetic wave received by one antenna is set to 18
The phase is shifted by an odd number of 0 degrees or 180 degrees, the waveform and the waveform of the electromagnetic wave received by another antenna are combined, and the intensity of the electromagnetic wave is measured from the magnitude of the amplitude of the combined waveform. An electromagnetic wave intensity measuring method according to a second invention is characterized in that an electromagnetic wave absorber is provided between an electromagnetic wave radiation source and one antenna. An electromagnetic wave intensity measuring apparatus according to a third aspect of the present invention outputs two input terminals to which an electromagnetic wave signal is to be input, and shifts the phase angle of the electromagnetic wave signal supplied to one of the input terminals by 180 degrees or an odd multiple of 180 degrees. Means for synthesizing an output signal of the means and an electromagnetic wave signal applied to the other input terminal, and synthesizing and outputting the resultant signal. It is characterized by being measured. An electromagnetic wave intensity measuring apparatus according to a fourth aspect of the present invention includes a phase shifter that outputs a phase angle of an electromagnetic wave signal given to one of the input terminals in accordance with a phase angle of the electromagnetic wave signal given to the other input terminal. It is characterized by having. An electromagnetic wave intensity measuring apparatus according to a fifth aspect of the present invention includes an amplifying / attenuating means for outputting the amplitude of an electromagnetic wave signal given to one of the input terminals in accordance with the amplitude of the electromagnetic wave signal given to the other input terminal. It is characterized by the following.

【0009】第1発明に係る電磁波強度測定方法及び第
3発明に係る電磁波強度測定装置は、以下に説明する電
磁波の強度特性及び電磁波放射源からの距離が互いに異
なる2本の空中線によって同時に受信したそれぞれの受
信波形の振幅の差異に基づいて、測定対象ではない物体
から放射される電磁波の影響を除き、所望の測定対象物
から放射される電磁波の強度を測定する。
The electromagnetic wave intensity measuring method according to the first invention and the electromagnetic wave intensity measuring device according to the third invention are simultaneously received by two antennas having different electromagnetic wave intensity characteristics and different distances from an electromagnetic wave radiation source. Based on the difference between the amplitudes of the received waveforms, the intensity of the electromagnetic wave radiated from the desired measurement target is measured, excluding the influence of the electromagnetic wave radiated from the object that is not the measurement target.

【0010】一般に、地上放送波のように地表面近傍を
伝播する(飛行する)電磁波の強度(エネルギー)は、
電磁波放射源から測定点までの距離の2乗に反比例して
小さくなる。この内、電界成分及び磁界成分は、それぞ
れ距離に反比例して小さくなる。即ちその減少傾向は電
磁波放射源付近では大きく、電磁波放射源から離れるほ
ど小さくなるという特性を有している。図4は電磁波の
強度特性を電界強度に基づいて表すグラフである。図に
おいて横軸及び縦軸はそれぞれ電磁波放射源から測定点
までの距離及び測定される電界強度を表す。図に示すよ
うに点A(距離10m)における特性曲線の勾配と、点
B(距離100m)における特性曲線の勾配とでは後者
の方が緩やかである。
In general, the intensity (energy) of an electromagnetic wave propagating (flying) near the ground surface like a terrestrial broadcast wave is:
It becomes smaller in inverse proportion to the square of the distance from the electromagnetic wave radiation source to the measurement point. Among them, the electric field component and the magnetic field component each become smaller in inverse proportion to the distance. That is, there is a characteristic that the decreasing tendency is large near the electromagnetic wave radiation source and becomes smaller as the distance from the electromagnetic wave radiation source increases. FIG. 4 is a graph showing the intensity characteristics of the electromagnetic wave based on the electric field intensity. In the figure, the horizontal axis and the vertical axis respectively represent the distance from the electromagnetic wave radiation source to the measurement point and the measured electric field strength. As shown in the figure, the gradient of the characteristic curve at point A (distance 10 m) and the gradient of the characteristic curve at point B (distance 100 m) are gentler.

【0011】即ち、電磁波放射源の近辺では測定点の距
離の少しの差が測定される電磁波の強度の大きな差とし
て現れ、また電磁波放射源から充分に遠く離れた所で
は、測定点の多少の距離の差があったとしても、測定さ
れる電磁波の強度の差には殆ど現れない。また、電磁波
放射源から充分に遠く離れた所で測定される電磁波の強
度は、電磁波放射源の近辺におけるそれと比べて無視で
きるほど小さい。
That is, a small difference in the distance between the measurement points near the electromagnetic wave radiation source appears as a large difference in the intensity of the electromagnetic wave to be measured, and at a place sufficiently far from the electromagnetic wave radiation source, some difference between the measurement points is small. Even if there is a difference in the distance, it hardly appears in the difference in the intensity of the measured electromagnetic waves. Also, the intensity of the electromagnetic wave measured sufficiently far away from the electromagnetic radiation source is negligibly small compared to that near the electromagnetic radiation source.

【0012】このような電磁波の強度特性に則り、2本
の空中線をそれぞれ測定対象物の遠近に設け、この一方
の受信波形の振幅から他方の受信波形の振幅を減算す
る、即ち一方の受信波形の位相角を180度又は180
度の奇数倍違えてこれと他方の受信波形とを合成するこ
とによって、測定対象ではない物体から放射される電磁
波の波形相当分を受信波形から取り除き、測定対象物か
ら放射される電磁波の波形を抽出することができるので
ある。
In accordance with the intensity characteristics of the electromagnetic wave, two antennas are provided in the vicinity of the object to be measured, respectively, and the amplitude of one received waveform is subtracted from the amplitude of one received waveform, ie, one received waveform is obtained. 180 degrees or 180 degrees
By combining this with the other received waveform with an odd multiple of the degree, the waveform equivalent to the waveform of the electromagnetic wave radiated from the object not being measured is removed from the received waveform, and the waveform of the electromagnetic wave radiated from the measured object is removed. It can be extracted.

【0013】図5は受信波形の合成過程を説明する説明
図である。電磁波の測定環境は以下のとおりである。測
定対象物の近辺に2本の空中線を接続した電磁波強度測
定装置が設置されている。また充分に遠く離れた所に、
測定対象ではなくしかも電磁波を放射する物体がある。
つまり、2本の空中線は測定対象ではない物体から充分
に遠く離れた所にあるので、それぞれの空中線により受
信される測定対象ではない物体から放射される電磁波の
波形は略一致する。また、2本の空中線はそれぞれ測定
対象物から遠近の位置に設置してある。従って、両者の
受信波形には明らかな差が生じることになる。
FIG. 5 is an explanatory diagram for explaining a process of synthesizing a received waveform. The environment for measuring electromagnetic waves is as follows. An electromagnetic wave intensity measuring device in which two antennas are connected near the object to be measured is installed. Also, far enough away,
There is an object that is not the object of measurement and emits electromagnetic waves.
That is, since the two antennas are sufficiently far away from the object that is not the object to be measured, the waveforms of the electromagnetic waves radiated from the object that is not the object to be measured and received by the respective antennas are substantially the same. In addition, the two antennas are installed at positions far from the object to be measured. Therefore, a clear difference occurs between the received waveforms.

【0014】図においてW4は2本の空中線の内、測定
対象物により近い空中線(以下空中線An1という)に
より受信した電磁波の波形を表す。またW5は他の空中
線(以下空中線An2という)により受信した電磁波の
波形を表す。W1は波形W4及びW5に含まれる、測定
対象ではない物体から放射される電磁波の波形相当分を
表す。W2及びW3はそれぞれ空中線An1により受信
した波形W4及び空中線An2により受信した波形W5
に含まれる、測定対象物から放射される電磁波の波形相
当分を表す。W2及びW3の違いは、電磁波を受信した
それぞれの空中線と測定対象物との距離の違いにより生
じたものである。
In FIG. 1, W4 represents a waveform of an electromagnetic wave received by an antenna (hereinafter referred to as an antenna An1) which is closer to an object to be measured among two antennas. W5 represents the waveform of an electromagnetic wave received by another antenna (hereinafter referred to as antenna An2). W1 represents the waveform equivalent of the electromagnetic wave radiated from the object that is not the measurement target and is included in the waveforms W4 and W5. W2 and W3 are the waveform W4 received by the antenna An1 and the waveform W5 received by the antenna An2, respectively.
Represents the waveform equivalent of the electromagnetic wave radiated from the measurement object included in the measurement target. The difference between W2 and W3 is caused by the difference in distance between each antenna receiving the electromagnetic wave and the object to be measured.

【0015】波形W5の位相角を180度移相して得ら
れたのが波形W6である。波形W5に含まれていた測定
対象ではない物体から放射される電磁波の波形相当分W
1は波形W6においてその位相角を180度違えた形で
含まれている。波形W6と波形W4とを合成して得られ
たのが波形W7である。この合成処理によって測定対象
ではない物体から放射される電磁波の波形相当分W1が
互いの逆相成分と打ち消し合い、測定対象物から放射さ
れる電磁波の波形相当分W2の振幅から、測定対象物か
ら放射される電磁波の波形相当分W3の振幅を減算した
波形が抽出される。空中線An1及び空中線An2の設
置条件により、測定対象物から放射される電磁波の波形
相当分W3は所定の測定精度においては無視できるの
で、抽出された波形は測定対象物から放射される電磁波
によるものであると見なしてよい。
The waveform W6 is obtained by shifting the phase angle of the waveform W5 by 180 degrees. Equivalent waveform W of the electromagnetic wave radiated from the non-measurement object included in waveform W5
1 is included in the waveform W6 in a form in which the phase angle is different by 180 degrees. The waveform W7 is obtained by synthesizing the waveform W6 and the waveform W4. By this synthesizing process, the waveform W1 equivalent to the waveform of the electromagnetic wave radiated from the non-measurement object cancels out the opposite phase components, and from the amplitude of the waveform W2 equivalent to the waveform of the electromagnetic wave radiated from the measurement object, A waveform obtained by subtracting the amplitude of W3 corresponding to the waveform of the emitted electromagnetic wave is extracted. Depending on the installation conditions of the antenna An1 and the antenna An2, the waveform equivalent W3 of the electromagnetic wave radiated from the object to be measured can be neglected at a predetermined measurement accuracy, so the extracted waveform is due to the electromagnetic wave radiated from the object to be measured. May be considered to be.

【0016】また、第2発明に係る電磁波強度測定方法
は、電磁波放射源と一方の空中線、例えば空中線An2
との間に電磁波吸収体を備えることによって、その当該
空中線に到達する測定対象物から放射された電磁波W3
が遮断され、測定対象ではない物体から放射される電磁
波のみを受信するようになるために、測定精度を高める
ことができる。
Further, the electromagnetic wave intensity measuring method according to the second invention is characterized in that the electromagnetic wave radiation source and one of the antennas, for example, the antenna An2
, The electromagnetic wave W3 radiated from the measurement object reaching the antenna.
Is blocked, and only electromagnetic waves radiated from an object that is not a measurement target are received, so that measurement accuracy can be improved.

【0017】また、第4,第5発明に係る電磁波強度測
定装置は、2本の空中線が受信する測定対象ではない物
体から放射される電磁波の波形が一致するように調節す
ることによって、測定対象ではない物体から放射される
電磁波を正確に打ち消すようになるために、測定精度を
高めることができる。
Further, the electromagnetic wave intensity measuring apparatus according to the fourth and fifth inventions adjusts the waveforms of the electromagnetic waves radiated from the object which is not the object to be measured and which is received by the two antennas, so that the waveforms of the objects to be measured are matched. Since the electromagnetic wave radiated from a non-object is canceled accurately, the measurement accuracy can be improved.

【0018】[0018]

【発明の実施の形態】図1は本発明に係る電磁波強度測
定装置の構成を示すブロック図である。図において1は
波形合成部である。波形合成部1は第1及び第2の空中
線を接続する空中線接続端子2,3を具備する。空中線
接続端子2には給電線4を介して空中線5が接続されて
いる。また同様に空中線接続端子3には給電線6を介し
て空中線7が接続されている。また波形合成部1は合成
波形信号出力端子8を具備する。この合成波形信号出力
端子8には、合成波形信号の強度を測定する電磁波強度
測定部9が接続されている。電磁波強度測定部9は、例
えば受信周波数が選択可能な電界強度測定器及びスペク
トラムアナライザ等を用いてなる。
FIG. 1 is a block diagram showing the configuration of an electromagnetic wave intensity measuring apparatus according to the present invention. In the figure, reference numeral 1 denotes a waveform synthesizing unit. The waveform synthesizing unit 1 includes antenna connection terminals 2 and 3 for connecting the first and second antennas. An antenna 5 is connected to the antenna connection terminal 2 via a power supply line 4. Similarly, an antenna 7 is connected to the antenna connection terminal 3 via a feeder line 6. The waveform synthesizing unit 1 has a synthesized waveform signal output terminal 8. The composite waveform signal output terminal 8 is connected to an electromagnetic wave intensity measuring section 9 for measuring the composite waveform signal intensity. The electromagnetic wave intensity measuring unit 9 is configured using, for example, an electric field intensity measuring device capable of selecting a reception frequency, a spectrum analyzer, and the like.

【0019】一方、測定対象の電磁波放射源及び測定対
象ではない電磁波放射源としてそれぞれ供試機器10及
び非供試機器11が存在する。非供試機器11は空中線
5,7から見て、供試機器10より充分遠方にある。例
えば、第1の空中線7及び第2の空中線5は、供試機器
10からそれぞれ3m及び30mの所に設置する。ま
た、非供試機器11から第1の空中線7までの距離は非
供試機器11から第2の空中線5までの距離と厳密には
一致しない。つまり、それぞれの受信波形に含まれる非
供試機器11から放射される電磁波成分には振幅及び位
相に微妙な差異を有している。
On the other hand, a device under test 10 and a non-device under test 11 exist as an electromagnetic wave radiation source to be measured and an electromagnetic wave radiation source not to be measured, respectively. The non-test equipment 11 is far enough from the test equipment 10 when viewed from the antennas 5 and 7. For example, the first antenna 7 and the second antenna 5 are installed at 3 m and 30 m from the EUT 10, respectively. Further, the distance from the non-test equipment 11 to the first antenna 7 does not exactly coincide with the distance from the non-test equipment 11 to the second antenna 5. That is, the electromagnetic wave components radiated from the non-test equipment 11 included in the respective received waveforms have slight differences in amplitude and phase.

【0020】供試機器10及び非供試機器11から放射
された電磁波は空中線5及び空中線7により受信され、
給電線4及び給電線6を介してそれぞれ空中線接続端子
2及び空中線接続端子3に与えられる。波形合成部1は
空中線接続端子2及び3に与えられた電磁波信号の一方
の位相角を180度(又は180度の奇数倍)違え、両
者を合成し、合成波形信号出力端子8へ合成結果を出力
する。そして電磁波強度測定部9のスペクトラムアナラ
イザ等によって合成結果の波形の振幅からその強度を測
定する。
Electromagnetic waves radiated from the EUT 10 and the non-EUT 11 are received by the antenna 5 and the antenna 7,
The power is supplied to the antenna connection terminal 2 and the antenna connection terminal 3 via the power supply line 4 and the power supply line 6, respectively. The waveform synthesizing unit 1 changes the phase angle of one of the electromagnetic wave signals supplied to the antenna connection terminals 2 and 3 by 180 degrees (or an odd multiple of 180 degrees), synthesizes the two, and outputs the synthesis result to the synthesized waveform signal output terminal 8. Output. Then, the intensity is measured from the amplitude of the waveform of the synthesized result by a spectrum analyzer or the like of the electromagnetic wave intensity measuring unit 9.

【0021】図2は波形合成部1の構成を示すブロック
図である。図において、21は電磁波信号を増幅又は減
衰させる増幅・減衰回路であって、その入力側端子は空
中線接続端子3と接続している。増幅・減衰回路21は
入力された電磁波信号と空中線接続端子2から入力され
た電磁波信号との微妙な振幅の差異を解消する。増幅・
減衰回路21の出力側端子には増幅・減衰回路21の出
力信号と空中線接続端子3から入力された電磁波信号と
の微妙な位相ずれの調節を行う移相回路23が接続され
ている。また、空中線接続端子2には位相角の180度
移相を行う移相回路22が接続されている。移相回路2
2及び移相回路23の出力側端子は2つの電磁波信号を
合成する加算回路24の入力側端子とそれぞれ接続して
いる。加算回路24の出力側端子は合成波形信号出力端
子8と接続している。
FIG. 2 is a block diagram showing the configuration of the waveform synthesizing unit 1. In the figure, reference numeral 21 denotes an amplification / attenuation circuit for amplifying or attenuating an electromagnetic wave signal, the input side terminal of which is connected to the antenna connection terminal 3. The amplification / attenuation circuit 21 eliminates a slight difference in amplitude between the input electromagnetic wave signal and the electromagnetic wave signal input from the antenna connection terminal 2. amplification·
The output side terminal of the attenuation circuit 21 is connected to a phase shift circuit 23 for finely adjusting the phase shift between the output signal of the amplification / attenuation circuit 21 and the electromagnetic wave signal input from the antenna connection terminal 3. A phase shift circuit 22 for shifting the phase angle by 180 degrees is connected to the antenna connection terminal 2. Phase shift circuit 2
The output side terminals of the phase shifter 2 and the phase shift circuit 23 are respectively connected to the input side terminals of an adder 24 that combines two electromagnetic wave signals. The output side terminal of the adding circuit 24 is connected to the composite waveform signal output terminal 8.

【0022】測定の開始に先立ち、供試機器10の電源
を切断した状態又は供試機器10が放射する電磁波を遮
断若しくは停止した状態、即ち供試機器10から放射さ
れる電磁波が存在しない状態で非供試機器11から放射
される電磁波を受信し、これを測定する。測定者は電磁
波強度測定部9のスペクトラムアナライザ等によりその
レベルを観測して、観測レベルが最小になるように増幅
・減衰回路21及び移相回路23に調節を施す。これに
より増幅・減衰回路21及び移相回路23にそれぞれ空
中線接続端子2及び3に与えられた電磁波信号の振幅を
等しくするための増幅・減衰量及び電磁波信号の位相角
が設定される。
Prior to the start of the measurement, in a state where the power of the EUT 10 is turned off or in a state where the electromagnetic waves radiated by the EUT 10 are cut off or stopped, that is, in a state where the electromagnetic waves radiated from the EUT 10 do not exist. An electromagnetic wave radiated from the non-test equipment 11 is received and measured. The measurer observes the level with a spectrum analyzer or the like of the electromagnetic wave intensity measuring unit 9 and adjusts the amplification / attenuation circuit 21 and the phase shift circuit 23 so that the observed level is minimized. Thereby, the amplification / attenuation amount and the phase angle of the electromagnetic wave signal for equalizing the amplitude of the electromagnetic wave signal given to the antenna connection terminals 2 and 3 are set in the amplification / attenuation circuit 21 and the phase shift circuit 23, respectively.

【0023】供試機器10の電源を投入した後又は供試
機器10からの電磁波の放射が開始された後に空中線接
続端子3に達した電磁波信号は増幅・減衰回路21によ
って適宜の振幅に増幅又は減衰され、続いて移相回路2
3によって適宜に移相される。また空中線接続端子2に
与えられた電磁波信号は移相回路22によって、前述の
移相回路23の出力波形信号と180度(又は180度
の奇数倍)の位相差に移相される。移相回路22及び移
相回路23の出力波形信号は加算回路24によって合成
され、その結果は合成波形信号出力端子8へ与えられ
る。
The electromagnetic wave signal reaching the antenna connection terminal 3 after the power of the EUT 10 is turned on or after the emission of the electromagnetic wave from the EUT 10 is amplified or attenuated to an appropriate amplitude by the amplification / attenuation circuit 21. Attenuated, followed by a phase shift circuit 2
3 as appropriate. The electromagnetic wave signal applied to the antenna connection terminal 2 is shifted by the phase shift circuit 22 to a phase difference of 180 degrees (or an odd multiple of 180 degrees) from the output waveform signal of the phase shift circuit 23 described above. The output waveform signals of the phase shift circuits 22 and 23 are combined by the adder circuit 24, and the result is supplied to the combined waveform signal output terminal 8.

【0024】以上の動作によって、空中線接続端子2に
与えられた電磁波信号の供試機器10から放射される電
磁波成分が合成波形信号出力端子8に取り出され、その
強度を電磁波強度測定部9によって測定することができ
るのである。
With the above operation, the electromagnetic wave component radiated from the test equipment 10 of the electromagnetic wave signal given to the antenna connection terminal 2 is taken out to the composite waveform signal output terminal 8, and the intensity is measured by the electromagnetic wave intensity measuring section 9. You can do it.

【0025】図3は本発明に係る他の電磁波強度測定装
置の構成を示すブロック図である。図において、12は
第2の空中線7と供試機器10との間に設けた電磁波吸
収体である。他の図1と対応する構成要素については同
符号を付して説明を省略する。供試機器10から放射さ
れる電磁波は電磁波吸収体12に吸収されて、空中線7
まで到達しない。従って、空中線7は非供試機器11か
ら放射される電磁波のみを受信するようになるために、
供試機器10から放射される電磁波成分を不要に打ち消
す、または増加させることがなくなり、測定精度が高ま
る。
FIG. 3 is a block diagram showing the configuration of another electromagnetic wave intensity measuring device according to the present invention. In the figure, reference numeral 12 denotes an electromagnetic wave absorber provided between the second antenna 7 and the EUT 10. The other components corresponding to those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. The electromagnetic wave radiated from the EUT 10 is absorbed by the electromagnetic wave absorber 12 and the antenna 7
Do not reach. Therefore, since the antenna 7 receives only the electromagnetic wave radiated from the non-test equipment 11,
Unnecessarily canceling or increasing the electromagnetic wave component radiated from the EUT 10 is eliminated, and the measurement accuracy is improved.

【0026】なお、移相回路23を移相回路22と空中
線接続端子2との間に設けて、空中線接続端子2に与え
られた電磁波信号の位相ずれを調節すべく構成しても良
い。また、移相回路22と加算回路24との間に設け
て、移相回路22の出力波形信号の位相ずれを調節すべ
く構成しても良い。また、増幅・減衰回路21と空中線
接続端子3との間に設けて、空中線接続端子3に与えら
れた電磁波信号の位相ずれを調節すべく構成しても良
い。
The phase shift circuit 23 may be provided between the phase shift circuit 22 and the antenna connection terminal 2 so as to adjust the phase shift of the electromagnetic wave signal given to the antenna connection terminal 2. Further, a configuration may be provided between the phase shift circuit 22 and the adder circuit 24 to adjust the phase shift of the output waveform signal of the phase shift circuit 22. Further, it may be provided between the amplification / attenuation circuit 21 and the antenna connection terminal 3 so as to adjust the phase shift of the electromagnetic wave signal given to the antenna connection terminal 3.

【0027】[0027]

【発明の効果】以上の如き第1,第2,第3,第4,第
5発明においては 測定対象ではない物体から放射され
る電磁波の影響を受信波形から所定の測定精度に影響が
ない程度に除き、測定対象物から放射される電磁波の波
形を得ることにより、測定対象物から放射される電磁波
の強度を正確に測定することができる。しかも屋内だけ
でなく、屋外においても同等の効果を得ることができ
る。
According to the first, second, third, fourth and fifth aspects of the present invention, the influence of the electromagnetic wave radiated from the object which is not the object to be measured is determined so that the received waveform does not affect the predetermined measurement accuracy. By obtaining the waveform of the electromagnetic wave radiated from the measurement object, the intensity of the electromagnetic wave radiated from the measurement object can be accurately measured. Moreover, the same effect can be obtained not only indoors but also outdoors.

【0028】また、第2発明においては、測定対象物と
一の空中線又は他の空中線のいずれかとの間に電磁波吸
収体を設けて、その当該空中線から測定対象ではない物
体から放射される電磁波のみを受信し、この波形でその
他の空中線により受信した電磁波の波形を打ち消すこと
により、測定対象物から放射された電磁波成分を打ち消
す、または増加させることを抑えて、測定精度を高める
ことができる。
In the second invention, an electromagnetic wave absorber is provided between the object to be measured and one of the antennas or the other antenna, and only electromagnetic waves radiated from an object which is not the object to be measured from the antenna are provided. Is received, and the waveform of the electromagnetic wave received by the other antenna is canceled with this waveform, so that the cancellation or increase of the electromagnetic wave component radiated from the measurement object can be suppressed, and the measurement accuracy can be improved.

【0029】また、第4,第5発明においては、一の空
中線及び他の空中線による受信波形のそれぞれに含まれ
る測定対象ではない物体から放射される電磁波の波形を
極力一致させることによって、それらの波形を所定の測
定精度に影響がない程度に打ち消し、測定精度を高める
ことができる。
In the fourth and fifth aspects of the present invention, the waveforms of electromagnetic waves radiated from non-measurement objects included in the reception waveforms of one antenna and the other antennas, respectively, are made to match as much as possible, so The waveform can be canceled to the extent that the predetermined measurement accuracy is not affected, and the measurement accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電磁波強度測定装置の構成を示す
ブロック図である。
FIG. 1 is a block diagram showing a configuration of an electromagnetic wave intensity measuring device according to the present invention.

【図2】波形合成部の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a waveform synthesis unit.

【図3】本発明に係る他の電磁波強度測定装置の構成を
示すブロック図である。
FIG. 3 is a block diagram showing a configuration of another electromagnetic wave intensity measuring device according to the present invention.

【図4】電磁波の強度特性を表すグラフである。FIG. 4 is a graph showing intensity characteristics of an electromagnetic wave.

【図5】受信波形の合成過程を説明する説明図である。FIG. 5 is an explanatory diagram illustrating a synthesis process of a received waveform.

【図6】従来の電磁波強度測定装置の構成を示すブロッ
ク図である。
FIG. 6 is a block diagram showing a configuration of a conventional electromagnetic wave intensity measuring device.

【符号の説明】[Explanation of symbols]

1 波形合成部 2,3 空中線接続端子 4,6 給電線 5,7 空中線 12 電磁波吸収体 21 増幅・減衰回路 22,23 移相回路 24 加算回路 DESCRIPTION OF SYMBOLS 1 Waveform synthesis part 2, 3 Antenna connection terminal 4, 6 Feeder line 5, 7 Antenna 12 Electromagnetic wave absorber 21 Amplification / attenuation circuit 22, 23 Phase shift circuit 24 Addition circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 空中線により受信した電磁波の波形の振
幅の大きさから電磁波放射源が放射する電磁波の強度を
測定する電磁波強度測定方法において、 2本の空中線により同時に電磁波を受信して、一の空中
線により受信した電磁波の位相角を180度又は180
度の奇数倍移相し、該波形及び他の空中線により受信し
た電磁波の波形を合成して、該合成波形の振幅の大きさ
から電磁波の強度を測定することを特徴とする電磁波強
度測定方法。
1. An electromagnetic wave intensity measuring method for measuring the intensity of an electromagnetic wave emitted from an electromagnetic wave radiation source from the amplitude of the waveform of an electromagnetic wave received by an antenna, wherein the electromagnetic waves are received simultaneously by two antennas, and The phase angle of the electromagnetic wave received by the antenna is 180 degrees or 180 degrees.
An electromagnetic wave intensity measuring method comprising: synthesizing the waveform and an electromagnetic wave received by another antenna with a phase shift of an odd number of degrees, and measuring the intensity of the electromagnetic wave from the magnitude of the amplitude of the synthesized waveform.
【請求項2】 電磁波放射源と一方の空中線との間に電
磁波吸収体を設けることを特徴とする請求項1に記載の
電磁波強度測定方法。
2. The method according to claim 1, wherein an electromagnetic wave absorber is provided between the electromagnetic wave radiation source and one of the antennas.
【請求項3】 電磁波の波形の振幅の大きさから電磁波
放射源が放射する電磁波の強度を測定する電磁波強度測
定装置において、 電磁波信号を入力すべき2つの入力端子と、 一方の入力端子に与えられた電磁波信号の位相角を18
0度又は奇数倍移相して出力する手段と、 該手段の出力信号及び他方の入力端子に与えられた電磁
波信号を合成して出力する合成手段とを備え、前記合成
手段の出力信号の波形の振幅の大きさから電磁波の強度
を測定すべくなしてあることを特徴とする電磁波強度測
定装置。
3. An electromagnetic wave intensity measuring device for measuring the intensity of an electromagnetic wave radiated by an electromagnetic wave radiation source from the magnitude of the amplitude of the electromagnetic wave waveform. The phase angle of the obtained electromagnetic wave signal is 18
Means for outputting a phase shifted by 0 degrees or an odd number, and synthesizing means for synthesizing an output signal of the means and an electromagnetic wave signal applied to the other input terminal, and outputting the synthesized signal, An electromagnetic wave intensity measuring device for measuring the intensity of the electromagnetic wave from the magnitude of the amplitude of the electromagnetic wave.
【請求項4】 いずれか一方の入力端子に与えられた電
磁波信号の位相角を他方の入力端子に与えられた電磁波
信号の位相角と一致させて出力する移相手段を備えるこ
とを特徴とする請求項3に記載の電磁波強度測定装置。
4. A phase shifter which outputs a phase angle of an electromagnetic wave signal supplied to one of the input terminals in accordance with a phase angle of the electromagnetic wave signal supplied to the other input terminal. The electromagnetic wave intensity measuring device according to claim 3.
【請求項5】 いずれか一方の入力端子に与えられた電
磁波信号の振幅を他方の入力端子に与えられた電磁波信
号の振幅と一致させて出力する増幅・減衰手段を備える
ことを特徴とする請求項3に記載の電磁波強度測定装
置。
5. An amplifying / attenuating means for outputting the amplitude of an electromagnetic wave signal applied to one of the input terminals in accordance with the amplitude of the electromagnetic wave signal applied to the other input terminal. Item 4. An electromagnetic wave intensity measuring device according to Item 3.
JP1351497A 1997-01-28 1997-01-28 Method and device for measuring electromagnetic wave Pending JPH10213614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1351497A JPH10213614A (en) 1997-01-28 1997-01-28 Method and device for measuring electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1351497A JPH10213614A (en) 1997-01-28 1997-01-28 Method and device for measuring electromagnetic wave

Publications (1)

Publication Number Publication Date
JPH10213614A true JPH10213614A (en) 1998-08-11

Family

ID=11835268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1351497A Pending JPH10213614A (en) 1997-01-28 1997-01-28 Method and device for measuring electromagnetic wave

Country Status (1)

Country Link
JP (1) JPH10213614A (en)

Similar Documents

Publication Publication Date Title
US11362741B2 (en) Distributed system for radio frequency environment simulation
ES2314923T3 (en) TECHNIQUE FOR COMPENSATION OF THE TRANSMISSION LEAK IN A RADAR RECEIVER.
US7327802B2 (en) Method and apparatus for canceling the transmitted signal in a homodyne duplex transceiver
US10237765B1 (en) Passive intermodulation (PIM) measuring instrument and method of measuring PIM
US9210598B1 (en) Systems and methods for measuring passive intermodulation (PIM) and return loss
US9325433B2 (en) High dynamic range transceiver
US7224941B2 (en) System and method for multi-path simulation
JP2010530539A (en) Signal measurement system and method for testing RF components
EP1204874B1 (en) Automated frequency stepping noise measurement test system
KR100996708B1 (en) Apparatus and Method for measuring antenna gain using the sun
JP2004056315A (en) Path difference measuring method, program for making computer to execute the method, and wireless repeater
CN111175712B (en) Phased array radar damage assessment and restoration verification system
CN116449311A (en) Simulation system for generating random polarization target and interference signal and implementation method
JPH10213614A (en) Method and device for measuring electromagnetic wave
RU2731875C1 (en) Adaptive antenna array for bistatic radar system
JPWO2012108124A1 (en) Reception sensitivity measurement method
JP4009419B2 (en) Radiated disturbance measuring device
KR101324172B1 (en) Method and device for toa calibration of multi-channel digital receiver
KR100345451B1 (en) Method and apparatus for dectecing a generating position of an intermodulation distortion signal in a high friquency components for communicating
JP2947326B2 (en) Interference prevention device
KR101498153B1 (en) Electromagnetic measurement system with positioning part
KR100765418B1 (en) Apparatus for testing broad casting receiving device
US10078130B1 (en) Method for transmitting and receiving radar signals while blocking reception of self generated signals
CN117706211A (en) Method and system for testing shielding effectiveness of radio frequency cable in automobile environment
Yemini et al. Compact RCS Test Range Feed Carousel and Baffle House Design