JPH10211292A - Charged particle irradiator - Google Patents

Charged particle irradiator

Info

Publication number
JPH10211292A
JPH10211292A JP1818697A JP1818697A JPH10211292A JP H10211292 A JPH10211292 A JP H10211292A JP 1818697 A JP1818697 A JP 1818697A JP 1818697 A JP1818697 A JP 1818697A JP H10211292 A JPH10211292 A JP H10211292A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
deflection
scatterer
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1818697A
Other languages
Japanese (ja)
Inventor
Hiroshi Akiyama
秋山  浩
Koji Matsuda
浩二 松田
Kazuo Hiramoto
和夫 平本
Hiroyuki Suzuki
啓之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1818697A priority Critical patent/JPH10211292A/en
Publication of JPH10211292A publication Critical patent/JPH10211292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress semi-shadowed and improve accuracy of the shape of a target by installing a scatterer in an average value position of the distances from an irradiation position to the deflection focuses of respective deflection magnets. SOLUTION: A scatterer 3 is disposed in an average distance position of the distance of the deflection focus 8 of a first deflection magnet and the distance of the deflection focus 7 of a second deflection magnet 2, namely, the central position 10 between both focuses 8, 7. Such disposition of the scatterer 3 can suppress both of the semi-shadowed blur caused by the first deflection magnet 1 and the semi-shadowed blur caused by the second deflection magnet 2 so as to minimize the semi-shadowed blur of the irradiation point 5. On the contrary, when the scatterer 3 is disposed in the upper stream of the first deflection magnet 1, the semi-shadowed blur caused by the first deflection magnet can be suppressed, however, the distance between the deflection focus 8 of the second deflection magnet 2 and the scatterer 3 is enlarged so that the semi- shadowed blur caused by the second deflection magnet 2 is enlarged. The disposition of the scatterer in the center of the focuses of both deflection magnets 1, 2 can suppress the semi-shadowed blur, as being shown in this case.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は癌の治療,食品の殺
菌,植物の品種改良,機械構造物の非破壊検査などのた
めに、それぞれの照射対象に荷電粒子を照射する荷電粒
子照射装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle irradiation apparatus for irradiating charged particles to respective irradiation targets for the treatment of cancer, sterilization of food, improvement of plant varieties, non-destructive inspection of mechanical structures, and the like. Things.

【0002】[0002]

【従来の技術】加速器等で発生した高エネルギーの荷電
粒子ビームを癌の治療等に用いる場合、広い照射領域を
得るために荷電粒子ビームを拡大し、拡大されて線量分
布が一様になった荷電粒子ビームをコリメータでターゲ
ットである患部の形状に成形して、患部への照射を行
う。例えば、癌を陽子・重粒子等により治療するために
は、陽子の場合、最大で230MeV程度のエネルギー
のビームを直径20cm程度まで広げる必要がある。そし
て、コリメータにより荷電粒子ビームをターゲット形状
に成形して患部に照射する。
2. Description of the Related Art When a high-energy charged particle beam generated by an accelerator or the like is used for treating cancer or the like, the charged particle beam is expanded to obtain a wide irradiation area, and the dose distribution is expanded to be uniform. The charged particle beam is formed into a shape of a target diseased part by a collimator, and the target part is irradiated. For example, in order to treat cancer with protons, heavy particles, and the like, in the case of protons, it is necessary to expand a beam having an energy of at most about 230 MeV to a diameter of about 20 cm. Then, the charged particle beam is shaped into a target shape by a collimator and irradiated to the affected part.

【0003】荷電粒子ビームを広げる従来技術として、
実開平1−58200 号公報に、2台の偏向磁石で荷電粒子
ビームを走査するウォブラー法を用い、2台の偏向磁石
の上流又は下流に散乱体をおいて、散乱体を通過した荷
電粒子ビームを拡大することが記載されている。
[0003] As a conventional technique for expanding a charged particle beam,
Japanese Unexamined Utility Model Publication No. 1-58200 discloses a charged particle beam passing through a scatterer, using a wobbler method of scanning a charged particle beam with two deflecting magnets, placing a scatterer upstream or downstream of the two deflecting magnets. It is described to enlarge.

【0004】[0004]

【発明が解決しようとする課題】ところで、患部に照射
される荷電粒子ビームの発生源、すなわち、拡大された
荷電粒子ビームの光源は、点光源ではなく、有限の広が
りを持っている。このため、コリメータでターゲット形
状に切り取られた荷電粒子ビームの辺縁部において半影
ぼけが生じる。従って、極めて精密な照射領域を形成す
るためにはこの半影ぼけを極力小さくしなければならな
い。
The source of the charged particle beam irradiated to the affected part, that is, the light source of the expanded charged particle beam is not a point light source but has a finite spread. For this reason, penumbra occurs at the periphery of the charged particle beam cut into the target shape by the collimator. Therefore, in order to form an extremely precise irradiation area, this penumbra must be minimized.

【0005】上記従来技術では、散乱体から遠い位置に
ある偏向磁石が走査する方向についての半影ぼけが生じ
る。
[0005] In the above-mentioned prior art, penumbra occurs in the scanning direction of the deflecting magnet located far from the scatterer.

【0006】本発明の目的は、半影ぼけを小さく抑え
て、精密なターゲット形状の荷電粒子ビームを照射でき
る荷電粒子照射装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a charged particle irradiation apparatus capable of irradiating a charged particle beam having a precise target shape while suppressing penumbra.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の特徴は、散乱体が、照射位置から各偏向磁石の偏向
焦点までの平均距離の位置に設置されたことにあり、こ
の特徴によれば、一連の偏向磁石の上流または下流に散
乱体を設置した場合よりも、各偏向磁石の偏向焦点から
散乱体までのそれぞれの距離の差が小さくなり、散乱体
から遠い磁石に起因する半影ぼけを抑えることができる
ので、全体として照射位置の半影ぼけを極めて抑えるこ
とができ、より精密なターゲット形状の荷電粒子ビーム
を照射できる。
A feature of the present invention to achieve the above object is that the scatterer is provided at a position at an average distance from the irradiation position to the deflection focal point of each deflection magnet. According to this, the difference in distance between the deflecting focal point of each deflecting magnet and the scatterer is smaller than in the case where scatterers are installed upstream or downstream of a series of deflecting magnets, and the half caused by a magnet far from the scatterer is reduced. Since the shadow blur can be suppressed, the half shadow blur at the irradiation position can be extremely suppressed as a whole, and a more precise charged particle beam having a target shape can be irradiated.

【0008】本発明の他の特徴は、散乱体が2台の偏向
磁石の間に設置されたことにあり、この特徴によれば、
2台の偏向磁石から散乱体までのそれぞれの距離が短く
なり、2台の偏向磁石の上流または下流に設置した場合
よりも、それぞれの偏向磁石に起因した半影ぼけを抑え
ることができ、精密なターゲット形状の荷電粒子ビーム
を照射できる。特に、照射位置から2台の偏向磁石のう
ち1の偏向磁石の偏向焦点までの距離と、照射位置から
他の偏向磁石の偏向焦点までの距離との平均距離の位置
に散乱体を設置することにより、両方の偏向磁石に起因
する半影ぼけを極めて抑えることができ、より精密なタ
ーゲット形状の荷電粒子ビームを照射できる。
[0008] Another feature of the present invention is that the scatterer is provided between two deflection magnets.
The distance between the two deflecting magnets and the scatterer is shortened, and penumbra caused by the respective deflecting magnets can be suppressed as compared with the case where the deflecting magnets are installed upstream or downstream of the two deflecting magnets. It can irradiate charged particle beams with various target shapes. In particular, the scatterer should be installed at an average distance between the distance from the irradiation position to the deflection focal point of one of the two deflection magnets and the distance from the irradiation position to the deflection focal point of the other deflection magnet. Thereby, the penumbra caused by both the bending magnets can be extremely suppressed, and a more precise charged particle beam having a target shape can be irradiated.

【0009】本発明の他の特徴は少なくとも1台の偏向
磁石は散乱された荷電粒子ビームを走査するものであ
り、散乱されて、走査された荷電粒子ビームを再度散乱
させる他の散乱体を備えることにある。この特徴によれ
ば、2台の偏向磁石に起因した半影ぼけを抑えることが
でき、精密なターゲット形状の荷電粒子ビームを照射で
きるとともに、他の散乱体で線量分布を調整することが
できる。
Another feature of the invention is that the at least one deflection magnet scans the scattered charged particle beam and comprises another scatterer that is scattered and re-scatters the scanned charged particle beam. It is in. According to this feature, penumbra caused by the two deflection magnets can be suppressed, a charged particle beam having a precise target shape can be irradiated, and the dose distribution can be adjusted with another scatterer.

【0010】本発明の他の特徴は、動き検出器がターゲ
ットの動きを検出し、制御装置が検出されたターゲット
の動きに基づいて荷電粒子ビームの荷電粒子照射装置へ
の供給と停止を制御することにある。この特徴によれ
ば、ターゲットが動く場合でも、2台の偏向磁石に起因
した半影ぼけを抑えることができ、精密なターゲット形
状の荷電粒子ビームを、ターゲットの動きにあわせて照
射できる。
Another feature of the present invention is that the motion detector detects the movement of the target, and the control device controls supply and stop of the charged particle beam to the charged particle irradiation device based on the detected movement of the target. It is in. According to this feature, even when the target moves, penumbra blur caused by the two deflection magnets can be suppressed, and a charged particle beam having a precise target shape can be irradiated according to the movement of the target.

【0011】本発明の他の特徴は、ボーラスが荷電粒子
ビームの飛程をターゲットの下部形状に合わせ、飛程調
整装置が荷電粒子ビームのエネルギーを変えて飛程を調
整し、多葉コリメータが荷電粒子ビームを可変に成形す
ることにある。この特徴によれば、ターゲットが複雑な
立体である場合にも、半影ぼけを極めて小さく抑えて、
ターゲットの形状の変化に合わせた精密な形状の荷電粒
子ビームをターゲット全体に照射できる。
Another feature of the present invention is that the bolus adjusts the range of the charged particle beam to the lower shape of the target, the range adjuster changes the energy of the charged particle beam to adjust the range, and the multi-leaf collimator adjusts the range. It is to variably shape a charged particle beam. According to this feature, even when the target is a complex three-dimensional object, penumbra is extremely small,
It is possible to irradiate the entire target with a charged particle beam having a precise shape corresponding to a change in the shape of the target.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)本発明の第1の実施例である荷電粒子照射
装置を図1に示す。本実施例の荷電粒子照射装置は、ビ
ーム輸送系(図示せず)から輸送された荷電粒子ビーム
を進行方向Sに垂直な方向Xに偏向する第一偏向磁石
1,進行方向SおよびX方向に垂直な方向Yに偏向する
第二偏向磁石,第一偏向磁石と第二偏向磁石の間に配置
された散乱体3、および荷電粒子ビームをターゲットの
形状に成形するコリメータ4を備える。散乱体3は、第
一偏向磁石1の偏向焦点8と第二偏向磁石2の偏向焦点
7との中央の位置10に設置されている。
(Embodiment 1) FIG. 1 shows a charged particle irradiation apparatus according to a first embodiment of the present invention. The charged particle irradiation apparatus according to the present embodiment includes a first deflecting magnet 1, which deflects a charged particle beam transported from a beam transport system (not shown) in a direction X perpendicular to the traveling direction S, in the traveling directions S and X directions. It comprises a second deflecting magnet that deflects in the vertical direction Y, a scatterer 3 disposed between the first deflecting magnet and the second deflecting magnet, and a collimator 4 that shapes the charged particle beam into a target shape. The scatterer 3 is provided at a central position 10 between the deflection focal point 8 of the first deflection magnet 1 and the deflection focal point 7 of the second deflection magnet 2.

【0013】荷電粒子ビームは第一偏向磁石1でX方向
に偏向される。第一偏向磁石1を通過した荷電粒子ビー
ムは散乱体3により拡大される。拡大された荷電粒子ビ
ームは第二偏向磁石2でY方向に偏向される。第一偏向
磁石1と第二偏向磁石2には互いに位相が90度ずれた
交番磁界を発生するので、拡大した荷電粒子ビーム9
は、照射位置5(ターゲット6の中央付近で進行方向S
に垂直な面に予め設定しておく)で円形を描くように走
査され、照射位置5で一様な線量分布を形成することが
できる。コリメータ4でターゲット6形状に成形された
荷電粒子ビームはターゲット6に照査される。
The charged particle beam is deflected by the first deflection magnet 1 in the X direction. The charged particle beam that has passed through the first deflecting magnet 1 is expanded by the scatterer 3. The expanded charged particle beam is deflected by the second deflection magnet 2 in the Y direction. Since the first deflecting magnet 1 and the second deflecting magnet 2 generate alternating magnetic fields whose phases are shifted from each other by 90 degrees, the expanded charged particle beam 9
Is the irradiation position 5 (the traveling direction S near the center of the target 6)
(Set in advance on a plane perpendicular to the plane) so as to draw a circle, and a uniform dose distribution can be formed at the irradiation position 5. The charged particle beam shaped into the shape of the target 6 by the collimator 4 is checked against the target 6.

【0014】照射位置5からみると荷電粒子ビームの線
源は点ではなく有限の大きさを持ってみえるため、照射
辺縁部がコリメータ4により成形した目的の形状よりも
外側に照射される。これが半影ぼけである。
When viewed from the irradiation position 5, the source of the charged particle beam is not a point but a finite size, so that the irradiation edge is irradiated outside the target shape formed by the collimator 4. This is penumbra.

【0015】偏向磁石と散乱体を用いる照射装置では、
散乱体の位置と偏向磁石の偏向焦点との距離が小さいほ
ど、その偏向磁石に起因する半影ぼけが小さくなる性質
がある。
In an irradiation apparatus using a deflecting magnet and a scatterer,
As the distance between the position of the scatterer and the deflecting focal point of the deflecting magnet is smaller, there is a property that the penumbra caused by the deflecting magnet is smaller.

【0016】荷電粒子ビームは円運動しながら偏向磁石
中を進み、偏向磁石の出口から照射装置の軸に対して角
度θで出て、ターゲットに向かって直線運動をする。こ
の直線を延長し、偏向磁石内の照射装置の軸と交わる点
を偏向焦点と定義する。偏向磁石の出口から偏向焦点ま
での距離をf,偏向磁石の曲率半径をρ,偏向磁石の長
さをlとすると、次式で与えられる。
The charged particle beam travels through the deflecting magnet in a circular motion, exits from the exit of the deflecting magnet at an angle θ with respect to the axis of the irradiation device, and moves linearly toward the target. This straight line is extended, and a point at which the axis of the irradiation device in the deflection magnet intersects is defined as a deflection focal point. Assuming that the distance from the exit of the deflection magnet to the deflection focal point is f, the radius of curvature of the deflection magnet is ρ, and the length of the deflection magnet is 1, the following equation is given.

【0017】[0017]

【数1】 (Equation 1)

【0018】偏向磁石の偏向量が小さい場合、偏向焦点
はほぼ偏向磁石の中央にある。
When the deflection amount of the deflection magnet is small, the deflection focal point is substantially at the center of the deflection magnet.

【0019】図2,図3,図4は第一偏向磁石,第二偏
向磁石,散乱体のそれぞれの位置関係を変えて数値解析
を行った結果を示す。比較のため照射位置5から照射装
置の最上流までの距離を3mとした場合を例としてい
る。ここで半影ぼけの範囲を照射量がピーク値の80%
から20%まで減少する距離として定義する。
FIG. 2, FIG. 3, and FIG. 4 show the results of numerical analysis performed by changing the positional relationship between the first deflecting magnet, the second deflecting magnet, and the scatterer. For comparison, a case where the distance from the irradiation position 5 to the uppermost stream of the irradiation device is 3 m is taken as an example. Here, the range of penumbra is 80% of the peak dose.
Is defined as the distance decreasing from 20% to 20%.

【0020】本実施例のように第一偏向磁石1の偏向焦
点7と第二偏向磁石2の偏向焦点8との中央の位置10
に散乱体3を配置した場合、図2に示すように、第一偏
向磁石1に起因する半影ぼけと、第二偏向磁石2に起因
する半影ぼけの両方を抑えることができ、照射位置5に
おける半影ぼけを最小にすることができる。
As in the present embodiment, the central position 10 between the deflection focal point 7 of the first deflection magnet 1 and the deflection focal point 8 of the second deflection magnet 2
When the scatterer 3 is disposed at both sides, as shown in FIG. 2, both the penumbra blur caused by the first deflecting magnet 1 and the penumbra blur caused by the second deflecting magnet 2 can be suppressed, and the irradiation position can be reduced. 5 can be minimized.

【0021】散乱体3を第一偏向磁石1の上流に配置し
た場合、図3に示すように、第一偏向磁石1に起因する
半影ぼけ41は抑制されるが、第二偏向磁石2の偏向焦
点8と散乱体3との距離が大きくなるために第二偏向磁
石2に起因する半影ぼけ42は大きくなる。
When the scatterer 3 is arranged upstream of the first deflecting magnet 1, as shown in FIG. 3, penumbra 41 caused by the first deflecting magnet 1 is suppressed, Since the distance between the deflecting focal point 8 and the scatterer 3 increases, the penumbra 42 caused by the second deflecting magnet 2 increases.

【0022】散乱体3を第二偏向磁石2の下流に配置し
た場合、図4に示すように、第二偏向磁石2に起因する
半影ぼけ42は抑制されるが、第一偏向磁石1の偏向焦
点7と散乱体3との距離が大きくなるために第一偏向磁
石1に起因する半影ぼけ41は大きくなる。
When the scatterer 3 is arranged downstream of the second deflecting magnet 2, as shown in FIG. Since the distance between the deflecting focal point 7 and the scatterer 3 increases, the penumbra 41 caused by the first deflecting magnet 1 increases.

【0023】したがって、本実施例の荷電粒子照射装置
によれば、半影ぼけを極めて小さく抑えて、精密なター
ゲット形状の荷電粒子ビームを照射できる。
Therefore, according to the charged particle irradiation apparatus of the present embodiment, it is possible to irradiate a charged particle beam having a precise target shape while suppressing penumbra blur extremely small.

【0024】また、本実施例では荷電粒子ビームを偏向
させるために電磁石を用いているが、永久磁石を回転さ
せて回転磁界を作ってもよい。
In this embodiment, an electromagnet is used to deflect the charged particle beam. However, a rotating magnetic field may be generated by rotating a permanent magnet.

【0025】また、偏向磁石の偏向焦点が偏向磁石の中
央でなく上下に偏って存在する場合、および偏向磁石が
3台以上の場合には、照射位置から各偏向磁石の偏向焦
点までのそれぞれの距離の平均の位置に散乱体を設置す
ることによって、それぞれの磁石に起因する半影ぼけを
抑えることができる。
When the deflecting focus of the deflecting magnet is not at the center of the deflecting magnet but is deviated upward and downward, or when there are three or more deflecting magnets, each of the deflecting magnets from the irradiation position to the deflecting focus of each deflecting magnet is different. By disposing the scatterer at the average position of the distance, penumbra blur caused by each magnet can be suppressed.

【0026】(実施例2)本発明の第2の実施例である
ガン治療に用いる荷電粒子照射装置を図5に示す。本実
施例では、第1の実施例の荷電粒子照射装置と、患者の
呼吸を検出する呼吸センサー21と、検出された患者の
呼吸に基づいて呼吸パターンを求め、荷電粒子ビームの
荷電粒子照射装置への供給と停止を制御する制御装置2
2を用いる。
(Embodiment 2) FIG. 5 shows a charged particle irradiation apparatus used for cancer treatment according to a second embodiment of the present invention. In the present embodiment, the charged particle irradiation apparatus of the first embodiment, a respiration sensor 21 for detecting respiration of a patient, and a respiration pattern are obtained based on the detected respiration of the patient. Control device 2 to control supply and stop
2 is used.

【0027】患者が呼吸すると、患部であるターゲット
6は呼吸に合わせて動く。本実施例の荷電粒子照射装置
は、制御装置22の制御によって、患者が吸気し終えた
時または吐気し終えた時の、ターゲット6が静止してい
るときに照射を行う。したがって、呼吸に合わせターゲ
ット6が動く場合でも、半影ぼけを極めて小さく抑え、
ターゲット6に精密なターゲット形状の荷電粒子ビーム
を照射できる。
When the patient breathes, the target 6, which is the affected part, moves in accordance with the breathing. The charged particle irradiation apparatus according to the present embodiment performs irradiation under the control of the control device 22 when the target 6 is at rest when the patient has finished inhaling or exhaling. Therefore, even when the target 6 moves in accordance with the breathing, the penumbra is suppressed to a very small value.
The target 6 can be irradiated with a charged particle beam having a precise target shape.

【0028】本実施例では、患者の呼吸に同期して荷電
粒子ビームを照射する場合を説明したが、呼吸以外にも
脈拍に同期することが可能である。ターゲットが動く場
合に、その動きを検出する手段を用いれば、動きに応じ
て照射のON,OFFを制御できる。
In this embodiment, the case where the charged particle beam is irradiated in synchronization with the patient's breathing has been described. However, it is possible to synchronize with the pulse other than the breathing. When the target moves, if the means for detecting the movement is used, ON / OFF of the irradiation can be controlled according to the movement.

【0029】(実施例3)本発明の第3の実施例である
ガン治療に用いる荷電粒子照射装置を図6に示す。本実
施例では、第1の実施例の荷電粒子照射装置と、患部で
あるターゲット6の下部形状に合わせて荷電粒子ビーム
9の飛程を調整する患者ボーラス32、および、荷電粒
子ビーム9のエネルギーと飛程を変化させる飛程調整装
置33を用いる。また、第1の実施例で用いたコリメー
タの代わりに、荷電粒子ビーム9を切り取る形状を変え
ることができる多葉コリメータ31を用いる。患部であ
るターゲット6は立体であり、深さによって形状が異な
るので、荷電粒子ビーム9を深さ方向に走査するとき
に、形状の変化に合わせて多葉コリメータ31が荷電粒
子ビーム9を切り取る形状を変える。従って、複雑な立
体であるターゲット6にも、多葉コリメータ31の形状
を変えて、半影ぼけを極めて小さく抑えて、ターゲット
6全体に精密なターゲット形状の荷電粒子ビームを照射
できる。
(Embodiment 3) FIG. 6 shows a charged particle irradiation apparatus used for cancer treatment according to a third embodiment of the present invention. In the present embodiment, the charged particle irradiation apparatus of the first embodiment, a patient bolus 32 for adjusting the range of the charged particle beam 9 according to the lower shape of the target 6 which is an affected part, and the energy of the charged particle beam 9 And a range adjusting device 33 for changing the range. Further, instead of the collimator used in the first embodiment, a multi-leaf collimator 31 capable of changing a shape for cutting the charged particle beam 9 is used. Since the target 6, which is an affected part, is three-dimensional and has a different shape depending on the depth, when the charged particle beam 9 is scanned in the depth direction, the shape of the multi-leaf collimator 31 cutting off the charged particle beam 9 according to the change in shape. change. Therefore, the shape of the multi-leaf collimator 31 can be changed to the target 6 which is a complicated three-dimensional object, the penumbra can be kept extremely small, and the entire target 6 can be irradiated with the charged particle beam having the precise target shape.

【0030】また、本実施例では飛程調整装置33に、
2枚のくさび型の荷電粒子ビーム9のエネルギーおよび
飛程を変化させる物質を重ねて用い、重ね合わせた厚さ
を変化させて荷電粒子ビーム9のエネルギーおよび飛程
を変化させたが、複数枚の薄板を重ね、枚数を変化させ
てもよい。
In this embodiment, the range adjusting device 33 includes:
The energy and range of the charged particle beam 9 were changed by changing the superposed thickness of the two wedge-shaped charged particle beams 9 to change the energy and range. And the number of sheets may be changed.

【0031】(実施例4)本発明の第1の実施例である
荷電粒子照射装置を図7に示す。本実施例の荷電粒子照
射装置では、第1の実施例の荷電粒子照射装置の第二偏
向磁石の下流にさらに線量分布を調整するための散乱体
43を配置した。
(Embodiment 4) FIG. 7 shows a charged particle irradiation apparatus according to a first embodiment of the present invention. In the charged particle irradiation apparatus of the present embodiment, a scatterer 43 for further adjusting the dose distribution is arranged downstream of the second deflecting magnet of the charged particle irradiation apparatus of the first embodiment.

【0032】荷電粒子ビームは第一偏向磁石1でX方向
に偏向される。第一偏向磁石1を通過した荷電粒子ビー
ムは散乱体3により拡大される。拡大された荷電粒子ビ
ームは第二偏向磁石2でY方向に偏向される。第一偏向
磁石1と第二偏向磁石2には互いに位相が90度ずれた
交番磁界を発生するので、拡大した荷電粒子ビーム9は
散乱体43に円形を描くように走査され、散乱体43を
透過した荷電粒子ビーム9はさらに拡大される。照射位
置5では、さらに拡大された荷電粒子ビーム9が円形を
描くように走査され、一様な線量分布を形成することが
できる。散乱体43を拡大率が異なるものに交換すれ
ば、照射位置5で任意の線量分布を得ることができる。
The charged particle beam is deflected by the first deflection magnet 1 in the X direction. The charged particle beam that has passed through the first deflecting magnet 1 is expanded by the scatterer 3. The expanded charged particle beam is deflected by the second deflection magnet 2 in the Y direction. Since the first deflecting magnet 1 and the second deflecting magnet 2 generate an alternating magnetic field having a phase shifted by 90 degrees from each other, the expanded charged particle beam 9 is scanned on the scatterer 43 so as to draw a circle, and the scatterer 43 is scanned. The transmitted charged particle beam 9 is further expanded. At the irradiation position 5, the charged particle beam 9 further expanded is scanned in a circular shape, and a uniform dose distribution can be formed. If the scatterer 43 is replaced with one having a different magnification, an arbitrary dose distribution can be obtained at the irradiation position 5.

【0033】散乱体43は、散乱体3により拡大された
荷電粒子ビームをさらに拡大するものである。散乱体4
3は第二偏向磁石の下流に設置されているので、この散
乱体43に起因した半影ぼけが生じ、実施例1の荷電粒
子照射装置の場合よりも、照射位置5での半影ぼけは大
きい。そこで、散乱体3で標準となる一様な線量分布を
形成するものを用い、散乱体43に散乱体3よりも拡大
率が小さい調整用を用いるようにすれば、散乱体43と
2台の偏向磁石1,2に起因する半影ぼけを小さくでき
る。
The scatterer 43 further expands the charged particle beam expanded by the scatterer 3. Scatterer 4
3 is installed downstream of the second deflecting magnet, penumbra due to the scatterer 43 occurs, and the penumbra at the irradiation position 5 is smaller than in the case of the charged particle irradiation apparatus of the first embodiment. large. Therefore, if a scatterer 3 that forms a standard uniform dose distribution is used and the scatterer 43 is used for adjustment with a smaller magnification than the scatterer 3, the scatterer 43 and the two scatterers are used. Penguin blur caused by the deflection magnets 1 and 2 can be reduced.

【0034】したがって、本実施例の荷電粒子照射装置
によれば、半影ぼけを小さく抑えて精密なターゲット形
状の荷電粒子ビームを照射でき、かつ線量分布を調整で
きる。
Therefore, according to the charged particle irradiation apparatus of the present embodiment, it is possible to irradiate a charged particle beam having a precise target shape while suppressing penumbra and to adjust the dose distribution.

【0035】また、本実施例では、第二偏向磁石の下流
に散乱体43を設置したが、第一偏向磁石の上流に設置
しても良い。ただし、この場合も、第1の実施例の荷電
粒子照射装置の場合よりも、照射位置5での半影ぼけは
大きい。
In this embodiment, the scatterer 43 is provided downstream of the second deflecting magnet, but may be provided upstream of the first deflecting magnet. However, also in this case, penumbra at the irradiation position 5 is larger than in the case of the charged particle irradiation apparatus of the first embodiment.

【0036】[0036]

【発明の効果】本発明によれば、散乱体が照射位置から
各偏向磁石の偏向焦点までの平均距離の位置に設置され
たことにより、一連の偏向磁石の上流または下流に設置
した場合よりも、全体として照射位置の半影ぼけを極め
て抑えることができ、より精密なターゲット形状の荷電
粒子ビームをターゲットに照射できる。
According to the present invention, the scatterer is installed at the position of the average distance from the irradiation position to the deflection focal point of each deflecting magnet, so that the scatterer is installed upstream or downstream of a series of deflecting magnets. As a whole, penumbra at the irradiation position can be extremely suppressed, and the target can be irradiated with a charged particle beam having a more precise target shape.

【0037】また、散乱体が2台の偏向磁石の間に設置
されたことにより、2台の偏向磁石の上流または下流に
設置した場合よりも、それぞれの偏向磁石に起因した半
影ぼけを抑えることができ、精密なターゲット形状の荷
電粒子ビームを照射できる。特に、照射位置から2台の
偏向磁石のうち1の偏向磁石の偏向焦点までの距離と、
照射位置から他の偏向磁石の偏向焦点までの距離との平
均距離の位置に散乱体を設置することにより、両方の偏
向磁石に起因する半影ぼけを極めて抑えることができ、
より精密なターゲット形状の荷電粒子ビームをターゲッ
トに照射できる。
Further, since the scatterer is provided between the two deflection magnets, penumbra caused by each of the deflection magnets is suppressed as compared with the case where the scatterer is installed upstream or downstream of the two deflection magnets. And can irradiate a charged particle beam with a precise target shape. In particular, the distance from the irradiation position to the deflection focal point of one of the two deflection magnets,
By installing the scatterer at the position of the average distance from the irradiation position to the deflection focal point of the other deflection magnet, penumbra caused by both deflection magnets can be extremely suppressed,
The target can be irradiated with a charged particle beam having a more precise target shape.

【0038】また、少なくとも1台の偏向磁石は散乱さ
れた荷電粒子ビームを走査するものであり、散乱され
て、走査された荷電粒子ビームを再度散乱させる他の散
乱体を備えることにより、2台の偏向磁石に起因した半
影ぼけを抑えることができ、精密なターゲット形状の荷
電粒子ビームを照射できるとともに、他の散乱体で線量
分布を調整することができる。
The at least one deflecting magnet scans the scattered charged particle beam, and is provided with another scatterer that scatters and scatters the scanned charged particle beam again. Can be suppressed, and a charged particle beam having a precise target shape can be irradiated, and the dose distribution can be adjusted by other scatterers.

【0039】また、動き検出器がターゲットの動きを検
出し、制御装置が検出されたターゲットの動きに基づい
て荷電粒子ビームの荷電粒子照射装置への供給と停止を
制御することにより、ターゲットが動く場合でも、2台
の偏向磁石に起因した半影ぼけを抑えることができ、精
密なターゲット形状の荷電粒子ビームを、ターゲットの
動きにあわせて照射できる。
Further, the motion detector detects the movement of the target, and the control device controls the supply and stop of the charged particle beam to the charged particle irradiation device based on the detected movement of the target, so that the target moves. Even in this case, penumbra caused by the two deflection magnets can be suppressed, and a charged particle beam having a precise target shape can be irradiated according to the movement of the target.

【0040】また、ボーラスが荷電粒子ビームの飛程を
ターゲットの下部形状に合わせ、飛程調整装置が荷電粒
子ビームのエネルギーを変えて飛程を調整し、多葉コリ
メータが荷電粒子ビームを可変に成形することにより、
ターゲットが複雑な立体である場合にも、半影ぼけを極
めて小さく抑えて、ターゲットの形状の変化に合わせた
精密な形状の荷電粒子ビームをターゲット全体に照射で
きる。
The bolus adjusts the range of the charged particle beam to the shape below the target, the range adjuster changes the energy of the charged particle beam to adjust the range, and the multi-leaf collimator variably changes the charged particle beam. By molding
Even when the target is a complicated three-dimensional object, penumbra can be kept extremely small, and the entire target can be irradiated with a charged particle beam having a precise shape corresponding to a change in the shape of the target.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の荷電粒子照射装置を示す図であ
る。
FIG. 1 is a diagram illustrating a charged particle irradiation apparatus according to a first embodiment.

【図2】第1の実施例の荷電粒子照射装置による照射装
置の半影ぼけを計算した結果を示す図である。
FIG. 2 is a diagram showing a result of calculating penumbra of an irradiation apparatus by the charged particle irradiation apparatus of the first embodiment.

【図3】第一偏向磁石と第二偏向磁石の上流に散乱体を
配置した場合の半影ぼけを計算した結果を示す図であ
る。
FIG. 3 is a diagram illustrating a result of calculating penumbra when a scatterer is arranged upstream of a first deflection magnet and a second deflection magnet.

【図4】第一偏向磁石と第二偏向磁石の下流に散乱体を
配置した場合の半影ぼけを計算した結果を示す図であ
る。
FIG. 4 is a diagram illustrating a result of calculating penumbra blur when a scatterer is arranged downstream of a first deflecting magnet and a second deflecting magnet.

【図5】第2の実施例の荷電粒子照射装置を示す図であ
る。
FIG. 5 is a diagram illustrating a charged particle irradiation apparatus according to a second embodiment.

【図6】第3の実施例の荷電粒子照射装置を示す図であ
る。
FIG. 6 is a diagram illustrating a charged particle irradiation apparatus according to a third embodiment.

【図7】第4の実施例の荷電粒子照射装置を示す図であ
る。
FIG. 7 is a diagram illustrating a charged particle irradiation apparatus according to a fourth embodiment.

【符号の説明】[Explanation of symbols]

1…第一偏向磁石、2…第二偏向磁石、3,43…散乱
体、4…コリメータ、5…照射位置、6…ターゲット、
7…第一偏向磁石の偏向焦点、8…第二偏向磁石の偏向
焦点、9…荷電粒子ビーム、10…中央の位置、21…
呼吸センサー、22…制御装置、23…荷電粒子ビーム
制御信号、31…多葉コリメータ、32…患者ボーラ
ス、33…飛程調整装置、41…第一偏向磁石に起因す
る半影ぼけ、42…第二偏向磁石に起因する半影ぼけ。
DESCRIPTION OF SYMBOLS 1 ... First deflection magnet, 2 ... Second deflection magnet, 3, 43 ... Scattering body, 4 ... Collimator, 5 ... Irradiation position, 6 ... Target,
7: deflection focus of the first deflection magnet, 8: deflection focus of the second deflection magnet, 9: charged particle beam, 10: center position, 21 ...
Respiratory sensor, 22: control device, 23: charged particle beam control signal, 31: multi-leaf collimator, 32: patient bolus, 33: range adjustment device, 41: penumbra caused by the first deflecting magnet, 42 ... Penguin blur caused by two bending magnets.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 啓之 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroyuki Suzuki 3-1-1, Sakaimachi, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Hitachi Plant

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】荷電粒子ビームを走査する複数の偏向磁
石、前記荷電粒子ビームを散乱する散乱体、および、散
乱された荷電粒子ビームをターゲットの形状に形成する
コリメータを備える荷電粒子照射装置において、 前記散乱体は、前記ターゲットが配置される照射位置か
ら各前記偏向磁石の偏向焦点までの平均距離の位置に設
置されたことを特徴とする荷電粒子照射装置。
1. A charged particle irradiation apparatus comprising: a plurality of deflection magnets for scanning a charged particle beam; a scatterer for scattering the charged particle beam; and a collimator for forming the scattered charged particle beam into a target shape. The charged particle irradiation apparatus, wherein the scatterer is provided at a position of an average distance from an irradiation position where the target is arranged to a deflection focal point of each of the deflection magnets.
【請求項2】荷電粒子ビームを走査する2台の偏向磁
石、前記荷電粒子ビームを散乱する散乱体、および、散
乱された荷電粒子ビームをターゲットの形状に形成する
コリメータを備える荷電粒子照射装置において、 前記散乱体は前記2台の偏向磁石の間に設置されたこと
を特徴とする荷電粒子照射装置。
2. A charged particle irradiation apparatus comprising: two deflecting magnets for scanning a charged particle beam; a scatterer for scattering the charged particle beam; and a collimator for forming the scattered charged particle beam into a target shape. The charged particle irradiation apparatus, wherein the scatterer is provided between the two deflection magnets.
【請求項3】前記散乱体は、前記ターゲットが配置され
る照射位置から前記2台の偏向磁石のうち1の偏向磁石
の偏向焦点までの距離と、前記照射位置から他の偏向磁
石の偏向焦点までの距離との平均距離に設置されたこと
を特徴とする請求項2の荷電粒子照射装置。
3. The scatterer includes a distance from an irradiation position where the target is arranged to a deflection focal point of one of the two deflection magnets, and a deflection focal point of another deflection magnet from the irradiation position. The charged particle irradiation device according to claim 2, wherein the charged particle irradiation device is installed at an average distance from the distance to the charged particle irradiation device.
【請求項4】荷電粒子ビームを走査する2台の偏向磁
石、前記荷電粒子ビームを散乱する散乱体、および、散
乱された荷電粒子ビームをターゲットの形状に形成する
コリメータを備える荷電粒子照射装置において、 少なくとも1台の前記偏向磁石は散乱された前記荷電粒
子ビームを走査するものであり、散乱されて、走査され
た前記荷電粒子ビームを再度散乱させる他の散乱体を備
えることを特徴とする荷電粒子照射装置。
4. A charged particle irradiation apparatus comprising two deflection magnets for scanning a charged particle beam, a scatterer for scattering the charged particle beam, and a collimator for forming the scattered charged particle beam into a target shape. The at least one deflecting magnet scans the scattered charged particle beam and comprises another scatterer that is scattered and scatters the scanned charged particle beam again. Particle irradiation device.
【請求項5】前記ターゲットの動きを検出する動き検出
器と、検出された前記ターゲットの動きに基づいて前記
荷電粒子ビームの荷電粒子照射装置への供給と停止を制
御する制御装置とを備えることを特徴とする請求項1の
荷電粒子照射装置。
5. A movement detector for detecting movement of the target, and a control device for controlling supply and stop of the charged particle beam to the charged particle irradiation device based on the detected movement of the target. The charged particle irradiation apparatus according to claim 1, wherein:
【請求項6】前記荷電粒子ビームの飛程をターゲットの
下部形状に合わせるボーラスと、荷電粒子ビームのエネ
ルギーを変えて前記荷電粒子ビームの飛程を調整する飛
程調整装置とを備え、前記コリメータは、前記荷電粒子
ビームを可変に成形する多葉コリメータであることを特
徴とする請求項1の荷電粒子照射装置。
6. A collimator comprising: a bolus for adjusting a range of the charged particle beam to a shape below a target; and a range adjusting device for adjusting a range of the charged particle beam by changing energy of the charged particle beam. 2. The charged particle irradiation apparatus according to claim 1, wherein the device is a multi-leaf collimator that variably shapes the charged particle beam.
JP1818697A 1997-01-31 1997-01-31 Charged particle irradiator Pending JPH10211292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1818697A JPH10211292A (en) 1997-01-31 1997-01-31 Charged particle irradiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1818697A JPH10211292A (en) 1997-01-31 1997-01-31 Charged particle irradiator

Publications (1)

Publication Number Publication Date
JPH10211292A true JPH10211292A (en) 1998-08-11

Family

ID=11964592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1818697A Pending JPH10211292A (en) 1997-01-31 1997-01-31 Charged particle irradiator

Country Status (1)

Country Link
JP (1) JPH10211292A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777700B2 (en) 2002-06-12 2004-08-17 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
US7154107B2 (en) 2003-12-10 2006-12-26 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation field forming apparatus
JP2010082229A (en) * 2008-09-30 2010-04-15 Hitachi Ltd Particle beam treatment system, and energy checking method for charged particle beam in particle beam treatment system
US8263954B2 (en) 2010-11-16 2012-09-11 Mitsubishi Electric Corporation Bolus, bolus manufacturing method, particle beam therapy system, and treatment planning apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777700B2 (en) 2002-06-12 2004-08-17 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
US7026636B2 (en) 2002-06-12 2006-04-11 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
US7071479B2 (en) 2002-06-12 2006-07-04 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
US7297967B2 (en) 2002-06-12 2007-11-20 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
US7154107B2 (en) 2003-12-10 2006-12-26 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation field forming apparatus
JP2010082229A (en) * 2008-09-30 2010-04-15 Hitachi Ltd Particle beam treatment system, and energy checking method for charged particle beam in particle beam treatment system
US8263954B2 (en) 2010-11-16 2012-09-11 Mitsubishi Electric Corporation Bolus, bolus manufacturing method, particle beam therapy system, and treatment planning apparatus

Similar Documents

Publication Publication Date Title
JP3178381B2 (en) Charged particle irradiation device
US8901519B2 (en) Quick regulation of the range of high-energy ion beams for precision irradiation of moving target volumes
EP2579265B1 (en) Particle beam irradiation system
JP4880123B2 (en) Ion beam scanning system
EP2438961B1 (en) Particle beam irradiation device
US9486649B2 (en) Method and irradiation installation for irradiating a target volume
EP2239011A1 (en) Charged particle irradiation system and irradiation planning equipment
US20140014851A1 (en) Charged particle beam irradiation apparatus
JP2007534391A (en) Proton release therapy system
JPH11142600A (en) Charged particle beam irradiation device and irradiation method
CN113577580A (en) Radiation therapy system and method
JP2011523169A (en) Charged particle beam extraction method and apparatus for use with a charged particle cancer treatment system
JP2004321408A (en) Radiation irradiation device and radiation irradiation method
JP2004321830A (en) Adjusting method of particle beam irradiation apparatus and irradiation field forming device
EP3508253B1 (en) Methods and systems for determining the shape of a radiotherapy beam
TWI569848B (en) Beam transport system and particle beam therapy system
JP5944940B2 (en) Apparatus and method for extracting a positively charged particle beam
EP3765152B1 (en) Particle beam guiding system and method and related radiotherapy system
EP2685462A1 (en) Particle beam radiation device and particle beam therapy device
JPH10211292A (en) Charged particle irradiator
JP4322419B2 (en) Three-dimensional particle beam irradiation apparatus and operation method thereof
JP2007175540A (en) Particle beam radiation system and method of controlling radiation apparatus
JP7160716B2 (en) Particle beam therapy system and its operating method
JP4177528B2 (en) Particle beam irradiation equipment
JP4362569B2 (en) Pencil type ion beam forming method for high precision 3D irradiation