JPH10208741A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH10208741A
JPH10208741A JP9009169A JP916997A JPH10208741A JP H10208741 A JPH10208741 A JP H10208741A JP 9009169 A JP9009169 A JP 9009169A JP 916997 A JP916997 A JP 916997A JP H10208741 A JPH10208741 A JP H10208741A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
active material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9009169A
Other languages
Japanese (ja)
Inventor
Hidetoshi Honbou
英利 本棒
Takeo Yamagata
武夫 山形
Tadashi Muranaka
村中  廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9009169A priority Critical patent/JPH10208741A/en
Publication of JPH10208741A publication Critical patent/JPH10208741A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery of high energy density applicable to driving power sources and power sources for power storage, etc., of portable equipment such as a portable telephone and a notebook type personal computer and an electric car by using a compound made of silicon and plural kinds of elements selected among group III a of the periodic table as an active material of a negative electrode. SOLUTION: As an active material of a negative electrode, a compound whose chemical composition is shown by SiAlx My (M is either one of P, Co, Ni, Mn and Fe; 0.001<=x<=1; 0.001<=y<=3) is used. The electric conductivity of the active material of this negative electrode is 0.1Ω<-1> cm<-1> or more and is excellent in charge/discharge cycle characteristics. In a battery, a positive electrode 20 is made of Li, CoO2 , graphite powder of conductive auxiliary and polyvinylidene fluoride of binder and a negative electrode 22 is made of SiAl0.5 Co0.5 , graphite powder and polyvinylidene. The positive electrode 20, a separator 21 and the negative electrode 22 are laminated in this order, and a battery cover 24 and a battery can 25 are calked via a gasket 23 and are tightly closed and sealed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯電話やノート
型パソコン等のポータブル機器,電気自動車の駆動電
源,電力貯蔵用電源に用いうるに好適な高エネルギ密度
のリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-energy-density lithium secondary battery suitable for use in portable equipment such as portable telephones and notebook personal computers, as a driving power supply for electric vehicles, and as a power storage power supply.

【0002】[0002]

【従来の技術】高エネルギ密度が実現できるリチウム二
次電池は、従来の鉛蓄電池あるいはニッケルカドミニウ
ム電池の代替電池として、最近盛んに研究開発が進めら
れている。リチウム二次電池の負極材料としては、リチ
ウム金属が最もエネルギ密度が高いとされているが、充
放電を繰り返し行った場合、負極上に樹枝状(デンドラ
イト)のリチウムが析出し、このデンドライト状のリチ
ウムが正極に伸び、内部短絡が生じてしまい安全性の面
で重大な問題があった。また、リチウム合金によってリ
チウムのデンドライト析出を抑制することが試みられて
いる。しかし、リチウム合金ではサイクル寿命が悪いこ
とが問題であった。
2. Description of the Related Art A lithium secondary battery capable of realizing a high energy density has been actively researched and developed recently as an alternative battery to a conventional lead storage battery or nickel cadmium battery. As a negative electrode material of a lithium secondary battery, lithium metal is considered to have the highest energy density. However, when charge and discharge are repeated, dendritic lithium is deposited on the negative electrode, and the dendritic lithium is deposited. Lithium was extended to the positive electrode, causing an internal short circuit, and there was a serious problem in terms of safety. Also, attempts have been made to suppress dendrite precipitation of lithium by using a lithium alloy. However, lithium alloy has a problem that cycle life is poor.

【0003】これに対し近年、リチウムイオンを吸蔵放
出できる炭素材料を負極活物質に用いることが検討され
ている。充放電時の負極反応が炭素層間へのリチウムイ
オンの吸蔵,放出反応であるため、負極上でのリチウム
イオンの金属状の析出が起こりにくく、サイクル特性が
向上して上述の問題は本質的に回避されつつある。
On the other hand, in recent years, it has been studied to use a carbon material capable of inserting and extracting lithium ions as a negative electrode active material. Since the negative electrode reaction during charging and discharging is a reaction of inserting and extracting lithium ions between carbon layers, it is difficult for lithium ions to precipitate on the negative electrode in the form of metal, and the cycle characteristics are improved. Being avoided.

【0004】[0004]

【発明が解決しようとする課題】炭素材料を負極活物質
とし、これに結着剤を加えて作製した負極の充放電の容
量は、体積当たり300から400Ah/l程度であ
り、この負極を用いた電池では、体積当たり240から
280Wh/lの範囲でのエネルギ密度の実現がなされ
ている。
The charge / discharge capacity of a negative electrode prepared by using a carbon material as a negative electrode active material and adding a binder thereto is about 300 to 400 Ah / l per volume. In such batteries, energy densities in the range of 240 to 280 Wh / l per volume have been achieved.

【0005】しかし、近年のポータブル機器の小型化軽
量化はめざましいため、リチウム二次電池を上回る高エ
ネルギ密度の二次電池の開発が期待されている。
However, since portable devices have been remarkably reduced in size and weight, development of secondary batteries having higher energy density than lithium secondary batteries is expected.

【0006】本発明の目的は、携帯電話やノート型パソ
コン等のポータブル機器や、電気自動車の駆動電源,電
力貯蔵用電源に用いうるに好適な高エネルギのリチウム
二次電池を提供することにある。
An object of the present invention is to provide a high-energy lithium secondary battery suitable for use as a portable power source such as a portable telephone or a notebook personal computer, a driving power source of an electric vehicle, and a power storage power source. .

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するため、リチウム二次電池は、リチウムイオンを可逆
的に吸蔵放出する正極と負極及び前記リチウムイオンを
含む電解液を具備するリチウム二次電池において、負極
活物質として少なくとも硅素と周期率表IIIa族から選
ばれる複数種類の元素からなる化合物を含み、充電にお
いて負極活物質に吸蔵されたリチウムのNMRシグナル
が塩化リチウム基準に対して5〜40ppm の範囲に生じ
ることを特徴とする。また、前記負極活物質の電気伝導
度は0.1Ω~1cm~1 以上である。
In order to achieve the above object, the present invention provides a lithium secondary battery comprising a positive electrode and a negative electrode which reversibly store and release lithium ions, and a lithium secondary battery comprising an electrolyte containing the lithium ions. In the secondary battery, the negative electrode active material contains at least silicon and a compound consisting of a plurality of elements selected from Group IIIa of the periodic table, and the NMR signal of lithium absorbed in the negative electrode active material during charging is 5% with respect to the lithium chloride standard. It occurs in the range of 範 囲 40 ppm. The electric conductivity of the negative electrode active material is 0.1 Ω to 1 cm to 1 or more.

【0008】さらに、負極活物質として化学組成がSi
Alxy(但しMはP,Co,Ni,Mn,Feの少な
くともいずれかであり、0.001≦x≦1の範囲,0.0
01≦y≦3の範囲)で示される化合物を含むことを特徴
とする。
Further, the negative electrode active material has a chemical composition of Si.
Al x M y (wherein M is at P, Co, Ni, Mn, at least one of Fe, 0.001 ≦ x ≦ 1 in the range of 0.0
01 ≦ y ≦ 3).

【0009】前記正極活物質は、化学式がLiCo
2,LiNiO2,LiCoaNi1-a2,LiMnaNi
1-a2,LiBaNi1-a2,LiAlaNi1-a2,Li
Mn24,LiMnO2(但しaは0.001≦a≦0.5の範
囲)で示される化合物を含むことが望ましい。
The positive electrode active material has a chemical formula of LiCo.
O 2, LiNiO 2, LiCo a Ni 1-a O 2, LiMn a Ni
1-a O 2, LiB a Ni 1-a O 2, LiAl a Ni 1-a O 2, Li
It is desirable to include a compound represented by Mn 2 O 4 or LiMnO 2 (where a is in the range of 0.001 ≦ a ≦ 0.5).

【0010】電解液は、プロピレンカーボネート,エチ
レンカーボネート,プロピレンカーボネート,ジメチル
カーボネート,ジエチルカーボネート,メチルエチルカ
ーボネート,γ−ブチロラクトン,酢酸メチル,酢酸エ
チル,プロピオン酸メチル,プロピオン酸エチル,ジメ
トキシエタンの1種以上を溶媒,LiPF6,LiB
4,LiClO4,LiCF3SO3の1種以上を電解質
として含むことが望ましい。また、ポリエチレンオキサ
イド,ポリアクリロニトリル,ポリメタクリル酸メチ
ル,ポリフッ化ビニリデンの1種以上を含む樹脂が、上
記の電解液を含有してなるゲル状膜を用いることによっ
ても本発明のリチウム二次電池が実現できる。また、上
述の本発明のリチウム二次電池は、高エネルギ密度が実
現可能であり、携帯電話やノート型パソコン等のポータ
ブル機器や、電気自動車の駆動電源,電力貯蔵用電源に
用いうるに最適である。
The electrolytic solution is at least one of propylene carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, and dimethoxyethane. With LiPF 6 , LiB
It is desirable that at least one of F 4 , LiClO 4 , and LiCF 3 SO 3 be contained as an electrolyte. The lithium secondary battery of the present invention can also be obtained by using a gel-like film in which a resin containing at least one of polyethylene oxide, polyacrylonitrile, polymethyl methacrylate, and polyvinylidene fluoride contains the above electrolyte. realizable. Further, the above-described lithium secondary battery of the present invention can realize a high energy density, and is most suitable for use in portable equipment such as a mobile phone and a notebook personal computer, and a drive power supply and a power storage power supply of an electric vehicle. is there.

【0011】このように、炭素材料を負極活物質に用い
たリチウム二次電池の体積エネルギ密度は、240から
280Wh/l程度と小さい。これは、炭素材料は比重
が小さいため負極合剤が嵩高くなり、決められた容積に
充填できる負極量が限られ、高エネルギ密度のリチウム
電池が構成できないためである。また、炭素材料の重量
当りの理論的なエネルギ密度も372mAh/gと限ら
れている。
As described above, the volume energy density of a lithium secondary battery using a carbon material as a negative electrode active material is as small as about 240 to 280 Wh / l. This is because the carbon material has a low specific gravity, so that the negative electrode mixture becomes bulky, the amount of the negative electrode that can be filled in a predetermined volume is limited, and a high energy density lithium battery cannot be formed. Further, the theoretical energy density per weight of the carbon material is limited to 372 mAh / g.

【0012】これに対し、本発明では、負極として用い
るSiAlxy(但しMはP,Co,Ni,Mn,Fe
の少なくともいずれかであり、0.001≦x≦1 の範
囲,0.001≦y≦3 の範囲)で示され化合物はリチ
ウムイオンを可逆的に吸蔵放出することができ、炭素材
料の比重2.2g/cm3に比べ、負極材料は比重が2.5か
ら7g/cm3 と大きく高密度充填が可能であるため、エ
ネルギ密度の高いリチウム二次電池が実現できる。ま
た、活物質重量当りの容量も500mAh/g以上と炭
素材料に比べ大きいことが特徴である。
[0012] In contrast, in the present invention, SiAl x M y (wherein M is used as the negative electrode P, Co, Ni, Mn, Fe
At least one of 0.001 ≦ x ≦ 1 and 0.001 ≦ y ≦ 3), the compound is capable of reversibly inserting and extracting lithium ions, and has a specific gravity of carbon material of 2 or less. Compared with 0.2 g / cm 3 , the negative electrode material has a large specific gravity of 2.5 to 7 g / cm 3 and can be packed at a high density, so that a lithium secondary battery with a high energy density can be realized. Further, it is characterized in that the capacity per active material weight is 500 mAh / g or more, which is larger than that of the carbon material.

【0013】また、本発明の負極材料は、従来の合金系
負極に比べ充放電のサイクル特性が良いため、充放電反
応について検討した。充電における前記負極活物質中の
リチウムの状態をNMRで分析したところ、塩化リチウ
ム基準に対し5〜40ppm の範囲にシグナルが生じた。
金属状態のリチウムは270ppm 付近にシグナルが生じ
るとされており、このことから、前記負極活物質ではリ
チウムがイオン状態で吸蔵されていると推測される。そ
こで、前記負極活物質の充放電反応が合金化反応による
ものではないと考えられ、充放電サイクル特性が優れる
ことが本発明の最も大きな特徴といえる。
Further, since the negative electrode material of the present invention has better charge / discharge cycle characteristics than the conventional alloy-based negative electrode, the charge / discharge reaction was examined. When the state of lithium in the negative electrode active material during charging was analyzed by NMR, a signal was generated in the range of 5 to 40 ppm based on lithium chloride.
It is considered that a signal is generated in the vicinity of 270 ppm in the lithium in the metal state, which suggests that lithium is occluded in the ionic state in the negative electrode active material. Therefore, it is considered that the charge / discharge reaction of the negative electrode active material is not caused by the alloying reaction, and the most significant feature of the present invention is that the charge / discharge cycle characteristics are excellent.

【0014】また、負極活物質の電気伝導度を調べたと
ころ、0.1Ω~1cm~1 以上と大きく、このことが充放電
サイクル特性が優れる一因であることがわかった。
Further, the electric conductivity of the negative electrode active material was examined. As a result, it was found that the electric conductivity was as large as 0.1 Ω to 1 cm to 1 or more, and this was one of the causes of the excellent charge / discharge cycle characteristics.

【0015】本発明のリチウム二次電池の正極活物質
は、化学式がLiCoO2,LiNiO2,LiCoaNi
1-a2,LiMnaNi1-a2,LiBaNi1-a2
LiAlaNi1-a2,LiMn24,LiMnO2(但
しaは0.001≦a≦0.5 の範囲)で示される化合
物の少なくともいずれかを含むことが、特にエネルギ密
度が高く、サイクル特性も優れ最も望ましい。
The positive electrode active material of the lithium secondary battery of the present invention has a chemical formula of LiCoO 2 , LiNiO 2 , LiCo a Ni.
1-a O 2, LiMn a Ni 1-a O 2, LiB a Ni 1-a O 2,
In particular, high energy density is required to include at least one of the compounds represented by LiAl a Ni 1-a O 2 , LiMn 2 O 4 , and LiMnO 2 (where a is in the range of 0.001 ≦ a ≦ 0.5). Cycle characteristics are also excellent and most desirable.

【0016】一方、本発明によるリチウム二次電池の電
解液は、プロレンカーボネート,エチレンカーボネー
ト,プロピレンカーボネート,ジメチルカーボネート,
ジエチルカーボネート,メチルエチルカーボネート,γ
−ブチロラクトン,酢酸メチル,酢酸エチル,プロピオ
ン酸メチル,プロピオン酸エチル,ジメトキシエタンの
1種以上を溶媒,LiPF6,LiBF4,LiCl
4,LiCF3SO3 を電解質として用いることが望ま
しい。また、ポリエチレンオキサイド,ポリアクリロニ
トリル,ポリメタクリル酸メチル,ポリフッ化ビニリデ
ンの1種以上を含む樹脂が、電解液を含有してなるゲル
状膜を用いることによっても本発明のリチウム二次電池
が実現できる。ゲル状膜を用いた場合、電解液を用いた
場合に比べ耐熱性が増し、安全性が向上することが特徴
として上げられる。
On the other hand, the electrolyte solution of the lithium secondary battery according to the present invention comprises prolene carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate,
Diethyl carbonate, methyl ethyl carbonate, γ
-Butyrolactone, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethoxyethane as a solvent, LiPF 6 , LiBF 4 , LiCl
It is desirable to use O 4 and LiCF 3 SO 3 as the electrolyte. The lithium secondary battery of the present invention can also be realized by using a gel-like film in which a resin containing at least one of polyethylene oxide, polyacrylonitrile, polymethyl methacrylate, and polyvinylidene fluoride contains an electrolytic solution. . When a gel film is used, heat resistance is increased and safety is improved as compared with the case where an electrolytic solution is used.

【0017】[0017]

【発明の実施の形態】本発明による実施例について図面
を参照し説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0018】図1は本発明による負極活物質の容量を検
討したコイン型のモデル電池を示す図である。リチウム
金属10,セパレータ11,試験極12の順で積層し
て、ガスケット13を介して電池蓋14及び電池缶15
でかしめ合わせて密閉,封止している。以下、具体的に
作製したモデル電池の実施例について説明する。
FIG. 1 is a diagram showing a coin-type model battery in which the capacity of a negative electrode active material according to the present invention is examined. The lithium metal 10, the separator 11, and the test electrode 12 are stacked in this order, and the battery lid 14 and the battery can 15
Sealed and sealed by swaging. Hereinafter, an example of a specifically manufactured model battery will be described.

【0019】(実施例1)負極活物質として化学組成が
SiAl0.50.5の化合物、導電助剤として黒鉛粉末、
結着剤としてポリフッ化ビニリデン(PVDF)を用
い、それぞれ重量比80%,15%,5%の割合で配合
して、溶剤としてN−メチル−2−ピロリドン(NM
P)を加え、十分に混合して負極合剤を調製した。この
負極合剤を厚みが20μmのCu箔の片面に塗布して、
NMPを乾燥後、ロールプレスで成形して負極シートを
作製した。この負極シートを直径16mmの大きさに打ち
抜き負極を作製した。
(Example 1) A compound having a chemical composition of SiAl 0.5 P 0.5 as a negative electrode active material, graphite powder as a conductive aid,
Polyvinylidene fluoride (PVDF) was used as a binder, blended at a weight ratio of 80%, 15%, and 5%, respectively, and N-methyl-2-pyrrolidone (NM) was used as a solvent.
P) was added and mixed well to prepare a negative electrode mixture. This negative electrode mixture was applied to one side of a Cu foil having a thickness of 20 μm,
After drying the NMP, it was formed by a roll press to prepare a negative electrode sheet. This negative electrode sheet was punched out to a size of 16 mm in diameter to produce a negative electrode.

【0020】セパレータは厚みが25μm、直径が18
mmのポリエチレン製の微孔膜を用いた。
The separator has a thickness of 25 μm and a diameter of 18
A microporous membrane made of mm mm polyethylene was used.

【0021】電解液は、体積比が1:1のエチレンカー
ボネートとジエチルカーボネートの混合溶媒及びLiP
6の電解質によって調製した濃度が1mol/lの溶液を
用いた。
The electrolyte is a mixed solvent of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 and LiP
Concentration was prepared by electrolyte F 6 was used a solution of 1 mol / l.

【0022】リチウム金属,セパレータ,負極活物質を
用いた試験極の順で積層して電解液を含浸させた後、電
池蓋及び電池缶でかしめ合わせて図1に示すコイン型の
モデル電池を作製した。
A lithium battery, a separator, and a test electrode using a negative electrode active material are stacked in this order and impregnated with an electrolyte, and then caulked with a battery lid and a battery can to produce a coin-type model battery shown in FIG. did.

【0023】このモデル電池を用いて、充放電電流3m
A、リチウム吸蔵放出の終止電圧をそれぞれ0V,2V
に設定してリチウム吸蔵放出を繰り返し行った。
Using this model battery, a charge / discharge current of 3 m
A, the end voltage of lithium storage and release are 0V and 2V, respectively.
And lithium insertion and extraction were repeated.

【0024】図2にリチウム吸蔵放出時の負極活物質を
用いた試験極の電位変化を示す。リチウムの吸蔵放出反
応は電位の平坦領域、すなわち0から1Vの範囲で起き
るため、リチウム二次電池負極材料として応用できるこ
とがわかった。また、この時のリチウムの吸蔵放出量は
活物質重量当り最大で870mAh/gと炭素材料に比
べ大きいことがわかった。
FIG. 2 shows the potential change of the test electrode using the negative electrode active material during insertion and extraction of lithium. Since the occlusion / release reaction of lithium occurs in a flat region of the potential, that is, in the range of 0 to 1 V, it was found that it can be applied as a negative electrode material for a lithium secondary battery. In addition, it was found that the amount of inserted and extracted lithium at this time was 870 mAh / g at maximum per active material weight, which was larger than that of the carbon material.

【0025】さらに、リチウム吸蔵放出のサイクル特性
を検討した結果、図3に示すように良好なサイクル特性
が得られた。そこで、充放電反応を調べるため、負極活
物質中のリチウムの状態をNMRで分析したところ、図
4に示すように、塩化リチウム基準に対し5〜40ppm
の範囲にシグナルが生じた。このことから、負極活物質
ではリチウムがイオン状態で吸蔵されていると推測され
る。そこで、負極活物質の充放電反応が合金化反応によ
るものではないと考えられ、充放電サイクル特性が優れ
ることがわかった。
Further, as a result of examining the cycle characteristics of lithium insertion and extraction, good cycle characteristics were obtained as shown in FIG. Then, in order to investigate the charge / discharge reaction, when the state of lithium in the negative electrode active material was analyzed by NMR, as shown in FIG.
A signal was generated in the range. This suggests that lithium is occluded in the negative electrode active material in an ion state. Therefore, it was considered that the charge / discharge reaction of the negative electrode active material was not due to the alloying reaction, and it was found that the charge / discharge cycle characteristics were excellent.

【0026】また、負極活物質の電気伝導度を調べたと
ころ、10Ω~1cm~1と大きく、このことが充放電サイク
ル特性が優れる一因であることがわかった。
Further, when the electric conductivity of the negative electrode active material was examined, it was found that the electric conductivity was as large as 10 Ω to 1 cm to 1, which was one of the reasons why the charge / discharge cycle characteristics were excellent.

【0027】図5は、本発明による一実施例のコイン型
リチウム二次電池を示す図である。正極20,セパレー
タ21,負極22の順で積層して、ガスケット23を介
して電池蓋24及び電池缶25でかしめ合わせて密閉,
封止している。
FIG. 5 is a view showing a coin-type lithium secondary battery according to one embodiment of the present invention. The positive electrode 20, the separator 21, and the negative electrode 22 are stacked in this order, and are caulked with a battery lid 24 and a battery can 25 via a gasket 23, and hermetically sealed.
It is sealed.

【0028】以下、本発明によって具体的に作製したリ
チウム二次電池の実施例について説明する。
Examples of the lithium secondary battery specifically manufactured according to the present invention will be described below.

【0029】(実施例2)図5に示した実施例のリチウ
ム二次電池を以下のようにして作製した。正極活物質と
してLiCoO2,LiCo0.2Ni0.82,LiMn
0.2Ni0.82 の3種類、導電助剤として黒鉛粉末、結
着剤としてポリフッ化ビニリデン(PVDF)を用い、そ
れぞれ重量比88%,7%,5%の割合で配合して、溶
剤としてN−メチル−2−ピロリドン(NMP)を加
え、十分に混合して正極合剤を調製した。この正極合剤
を厚みが20μmのAl箔の片面に塗布して、NMPを
乾燥後、ロールプレスで成形して正極シートを作製し
た。この正極シートを直径15mmの大きさに打ち抜き正
極を作製した。正極作製と同様に、負極活物質として化
学組成がSiAl0.50.5,SiAl0.5Co0.5,Si
Al0.5Ni0.5,SiAl0.5Mn0.5,SiAl0.5
0.5の5種類の化合物、導電助剤として黒鉛粉末、結
着剤としてポリフッ化ビニリデン(PVDF)を用い、
それぞれ重量比80%,15%,5%の割合で配合し
て、溶剤としてN−メチル−2−ピロリドン(NMP)
を加え、十分に混合して負極合剤を調製した。この負極
合剤を厚みが20μmのCu箔の片面に塗布して、NM
Pを乾燥後、ロールプレスで成形して負極シートを作製
した。この負極シートを直径16mmの大きさに打ち抜き
負極を作製した。
Example 2 The lithium secondary battery of the example shown in FIG. 5 was manufactured as follows. LiCoO 2 , LiCo 0.2 Ni 0.8 O 2 , LiMn as positive electrode active material
Three types of 0.2 Ni 0.8 O 2 , graphite powder as a conductive aid and polyvinylidene fluoride (PVDF) as a binder were blended at a weight ratio of 88%, 7% and 5%, respectively, and N was used as a solvent. -Methyl-2-pyrrolidone (NMP) was added and mixed well to prepare a positive electrode mixture. This positive electrode mixture was applied to one side of an Al foil having a thickness of 20 μm, and NMP was dried and then formed by a roll press to prepare a positive electrode sheet. This positive electrode sheet was punched out to a size of 15 mm in diameter to produce a positive electrode. As in the preparation of the positive electrode, the chemical composition of the negative electrode active material is SiAl 0.5 P 0.5 , SiAl 0.5 Co 0.5 , Si
Al 0.5 Ni 0.5 , SiAl 0.5 Mn 0.5 , SiAl 0.5 F
e Five kinds of compounds of 0.5 , graphite powder as a conductive aid, polyvinylidene fluoride (PVDF) as a binder,
80%, 15%, and 5% by weight, respectively, and N-methyl-2-pyrrolidone (NMP) is used as a solvent.
Was added and mixed well to prepare a negative electrode mixture. This negative electrode mixture was applied to one surface of a Cu foil having a thickness of 20 μm, and NM
After drying P, it was formed by a roll press to prepare a negative electrode sheet. This negative electrode sheet was punched out to a size of 16 mm in diameter to produce a negative electrode.

【0030】セパレータは厚みが25μm、直径が18
mmのポリエチレン製の微孔膜を用いた。
The separator has a thickness of 25 μm and a diameter of 18
A microporous membrane made of mm mm polyethylene was used.

【0031】電解液は、体積比が1:1のエチレンカー
ボネートとジエチルカーボネートの混合溶媒及びLiP
6の電解質によって調製した濃度が1mol/lの溶液を
用いた。
The electrolytic solution is a mixed solvent of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 and LiP
Concentration was prepared by electrolyte F 6 was used a solution of 1 mol / l.

【0032】正極,セパレータ,負極の順で積層して電
解液を含浸させた後、電池蓋及び電池缶でかしめ合わせ
て図5に示すリチウム電池を作製した。
After the positive electrode, the separator, and the negative electrode were laminated in this order and impregnated with the electrolytic solution, they were caulked with a battery lid and a battery can to produce a lithium battery shown in FIG.

【0033】このリチウム二次電池を用いて、充放電電
流3mA、充電終止電圧を4.2V、放電終止電圧を1.
5Vに設定して充放電を行った。
Using this lithium secondary battery, the charge / discharge current is 3 mA, the charge end voltage is 4.2 V, and the discharge end voltage is 1.0.
The charging and discharging were performed at 5 V.

【0034】(実施例3)実施例2でLiCo0.2Ni
0.82 を用いて作製した正極及び負極活物質としてS
iAl0.50.001,SiAl0.50.1,SiAl
0.5P,SiAl0.53 を用い実施例2と同様に作製し
た負極を用いて図5に示すリチウム電池を作製した。
(Example 3) LiCo 0.2 Ni in Example 2
0.8 O 2 was used as a positive electrode and a negative electrode active material.
iAl 0.5 P 0.001 , SiAl 0.5 P 0.1 , SiAl
A lithium battery shown in FIG. 5 was produced using the negative electrode produced in the same manner as in Example 2 using 0.5 P and SiAl 0.5 P 3 .

【0035】このリチウム二次電池を用いて、充放電電
流3mA、充電終止電圧を4.2V、放電終止電圧を1.
5Vに設定して充放電を行った。
Using this lithium secondary battery, the charge / discharge current was 3 mA, the charge end voltage was 4.2 V, and the discharge end voltage was 1.0.
The charging and discharging were performed at 5 V.

【0036】(実施例4)実施例2でLiCo0.2Ni
0.82 を用いて作製した正極及び負極活物質としてS
iAl0.0010.5,SiAl0.10.5,SiAl
0.5,SiAl30.5 を用い実施例2と同様に作製し
た負極を用いて図5に示すリチウム電池を作製した。
(Example 4) In Example 2, LiCo 0.2 Ni
0.8 O 2 was used as a positive electrode and a negative electrode active material.
iAl 0.001 P 0.5 , SiAl 0.1 P 0.5 , SiAl
A lithium battery shown in FIG. 5 was produced using the negative electrode produced in the same manner as in Example 2 using P 0.5 and SiAl 3 P 0.5 .

【0037】このリチウム二次電池を用いて、充放電電
流3mA、充電終止電圧を4.2V、放電終止電圧を1.
5Vに設定して充放電を行った。
Using this lithium secondary battery, the charge / discharge current was 3 mA, the charge end voltage was 4.2 V, and the discharge end voltage was 1.
The charging and discharging were performed at 5 V.

【0038】(比較例1)正極活物質としてLiCoO
2 を用い、実施例2と同様に正極を作製した。一方、負
極活物質として黒鉛粉末、結着剤としてポリフッ化ビニ
リデン(PVDF)を用い、それぞれ重量比それぞれ90
%,10%の割合で配合して、溶剤としてN−メチル−
2−ピロリドン(NMP)を加え、十分に混合して負極
合剤を調製した。その後、実施例2と同様に負極を作製
し、図5に示すリチウム二次電池を作製した。
Comparative Example 1 LiCoO as a positive electrode active material
With 2 to prepare a positive electrode in the same manner as in Example 2. On the other hand, graphite powder was used as the negative electrode active material, and polyvinylidene fluoride (PVDF) was used as the binder.
%, 10%, and N-methyl-
2-Pyrrolidone (NMP) was added and mixed well to prepare a negative electrode mixture. Thereafter, a negative electrode was produced in the same manner as in Example 2, and a lithium secondary battery shown in FIG. 5 was produced.

【0039】このリチウム二次電池を用いて、充放電電
流3mA、充電終止電圧を4.2V、放電終止電圧を2.
8Vに設定し充放電を行った。
Using this lithium secondary battery, the charge / discharge current was 3 mA, the charge end voltage was 4.2 V, and the discharge end voltage was 2.2.
Charge and discharge were performed at 8 V.

【0040】(比較例2)実施例2においてLiCo
0.2Ni0.82 を用いて作製した正極及び負極活物質と
してSiP0.5,SiAl40.5,SiAl0.5,SiA
0.54を用い、実施例2と同様に作製した負極を用い
て図5に示すリチウム電池を作製した。
(Comparative Example 2)
As positive and negative electrode active materials prepared using 0.2 Ni 0.8 O 2 , SiP 0.5 , SiAl 4 P 0.5 , SiAl 0.5 , and SiA
A lithium battery shown in FIG. 5 was produced using l 0.5 P 4 and a negative electrode produced in the same manner as in Example 2.

【0041】このリチウム二次電池を用いて、充放電電
流3mA、充電終止電圧を4.2V、放電終止電圧を1.
5Vに設定して充放電を行った。
Using this lithium secondary battery, the charge / discharge current was 3 mA, the charge end voltage was 4.2 V, and the discharge end voltage was 1.0.
The charging and discharging were performed at 5 V.

【0042】以下、本発明によって作製したリチウム二
次電池を具体的に充放電した実施例2から4及び比較例
1から2との比較検討を示す。表1に実施例2から4及
び比較例1から2のリチウム二次電池の最大放電容量及
び最大容量に対し容量が70%まで低下した時のサイク
ル数をまとめた。
The following is a comparison study between Examples 2 to 4 and Comparative Examples 1 and 2 in which the lithium secondary battery manufactured according to the present invention was specifically charged and discharged. Table 1 summarizes the maximum discharge capacity of the lithium secondary batteries of Examples 2 to 4 and Comparative Examples 1 and 2, and the number of cycles when the capacity is reduced to 70% of the maximum capacity.

【0043】[0043]

【表1】 [Table 1]

【0044】表1に示したように本発明のリチウム二次
電池は比較例のリチウム二次電池に比べ放電容量が大き
く、したがって、高エネルギ密度化が可能であることが
わかった。また、充放電サイクル特性も従来のリチウム
二次電池と比較して遜色がないことがわかった。
As shown in Table 1, it has been found that the lithium secondary battery of the present invention has a larger discharge capacity than the lithium secondary battery of the comparative example, and therefore can have a high energy density. It was also found that the charge / discharge cycle characteristics were comparable to those of the conventional lithium secondary battery.

【0045】[0045]

【発明の効果】負極が高容量かつ高密度充填できるため
高エネルギ密度のリチウム二次電池が実現できる。
As described above, since the negative electrode can be filled with high capacity and high density, a lithium secondary battery having high energy density can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例のモデル次電池を示す断
面図。
FIG. 1 is a cross-sectional view showing a model secondary battery according to an embodiment of the present invention.

【図2】本発明による一実施例の負極活物質を用いた試
験極の電位変化を示す特性図。
FIG. 2 is a characteristic diagram showing a potential change of a test electrode using a negative electrode active material of one example according to the present invention.

【図3】本発明による一実施例の負極活物質を用いた試
験極のリチウム吸蔵放出のサイクル特性図。
FIG. 3 is a cycle characteristic diagram of lithium occlusion and release of a test electrode using a negative electrode active material of one example according to the present invention.

【図4】本発明による一実施例の負極活物質を用いた試
験極の7Li NMRシグナルを示す特性図。
FIG. 4 is a characteristic diagram showing a 7 Li NMR signal of a test electrode using the negative electrode active material of one example according to the present invention.

【図5】本発明による一実施例のリチウム二次電池を示
す断面図。
FIG. 5 is a sectional view showing a lithium secondary battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20…正極、21…セパレータ、22…負極、23…ガ
スケット、24…電池蓋、25…電池缶。
20 ... Positive electrode, 21 ... Separator, 22 ... Negative electrode, 23 ... Gasket, 24 ... Battery lid, 25 ... Battery can.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】リチウムを可逆的に吸蔵放出する正極と負
極及びリチウムイオンを含む電解液を具備するリチウム
二次電池において、前記負極の活物質として硅素と周期
率表IIIa 族から選ばれる複数種類の元素からなる化合
物とを含み、前記負極の活物質に吸蔵されたリチウムの
核磁気共鳴シグナルが塩化リチウム基準に対して5〜4
0ppm の範囲に生じることを特徴とするリチウム二次電
池。
1. A lithium secondary battery comprising a positive electrode capable of reversibly occluding and releasing lithium, a negative electrode, and an electrolyte containing lithium ions, wherein a plurality of types of silicon selected from the group consisting of silicon and Group IIIa of the periodic table are used as the active material of the negative electrode. And a nuclear magnetic resonance signal of lithium occluded in the active material of the negative electrode is 5 to 4 with respect to lithium chloride.
A lithium secondary battery produced in the range of 0 ppm.
【請求項2】前記負極の活物質の電気伝導度が0.1Ω~
1cm~1 以上である請求項1に記載のリチウム二次電池。
2. The negative electrode active material has an electric conductivity of 0.1 Ω or more.
2. The lithium secondary battery according to claim 1, which is 1 cm to 1 or more.
【請求項3】前記負極の活物質が、化学組成がSiAl
xy(但しMはP,Co,Ni,Mn,Feのいずれか
であり、0.001≦x≦1の範囲,0.001≦y≦3
の範囲)で示される化合物を含む請求項1または2に記
載のリチウム二次電池。
3. The negative electrode active material has a chemical composition of SiAl.
x M y (wherein M is either P, Co, Ni, Mn, of Fe, a range of 0.001 ≦ x ≦ 1, 0.001 ≦ y ≦ 3
The lithium secondary battery according to claim 1, comprising a compound represented by the following formula:
【請求項4】前記正極の活物質の化学式がLiCo
2,LiNiO2,LiCoaNi1-a2,LiMnaNi
1-a2,LiBaNi1-a2,LiAlaNi1-a2,Li
Mn24,LiMnO2(但しaは0.001≦a≦0.5
の範囲)で示される化合物のいずれかである請求項1,
2または3に記載のリチウム二次電池。
4. The chemical formula of the active material of the positive electrode is LiCo.
O 2, LiNiO 2, LiCo a Ni 1-a O 2, LiMn a Ni
1-a O 2, LiB a Ni 1-a O 2, LiAl a Ni 1-a O 2, Li
Mn 2 O 4 , LiMnO 2 (where a is 0.001 ≦ a ≦ 0.5
A compound represented by the formula (1):
4. The lithium secondary battery according to 2 or 3.
【請求項5】前記電解液が、プロピレンカーボネート,
エチレンカーボネート,プロピレンカーボネート,ジメ
チルカーボネート,ジエチルカーボネート,メチルエチ
ルカーボネート,γ−ブチロラクトン,酢酸メチル,酢
酸エチル,プロピオン酸メチル,プロピオン酸エチル,
ジメトキシエタンの中の1種類以上を溶媒,LiP
6,LiBF4,LiClO4,LiCF3SO3の1種
以上を電解質として、それぞれ、含む請求項1,2,3
または4に記載のリチウム二次電池。
5. The method according to claim 1, wherein the electrolyte is propylene carbonate,
Ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate,
One or more of dimethoxyethane as a solvent, LiP
4. An electrolyte comprising at least one of F 6 , LiBF 4 , LiClO 4 and LiCF 3 SO 3 as an electrolyte.
Or the lithium secondary battery according to 4.
【請求項6】前記電解液が、ポリエチレンオキサイド,
ポリアクリロニトリル,ポリメタクリル酸メチル,ポリ
フッ化ビニリデンの1種以上を含む樹脂が、請求項5に
記載の前記電解液を含有してなるゲル状膜である請求項
1,2,3または4に記載のリチウム二次電池。
6. The method according to claim 1, wherein the electrolyte is polyethylene oxide,
The resin containing at least one of polyacrylonitrile, polymethyl methacrylate, and polyvinylidene fluoride is a gel film containing the electrolytic solution according to claim 5. Lithium secondary battery.
【請求項7】携帯電話,携帯情報端末機器,パーソナル
コンピュータ及び携帯音響機器の駆動電源に用いる請求
項1,2,3,4,5または6に記載のリチウム二次電
池。
7. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is used as a drive power source for a portable telephone, a portable information terminal device, a personal computer, and a portable audio device.
JP9009169A 1997-01-22 1997-01-22 Lithium secondary battery Pending JPH10208741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9009169A JPH10208741A (en) 1997-01-22 1997-01-22 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9009169A JPH10208741A (en) 1997-01-22 1997-01-22 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH10208741A true JPH10208741A (en) 1998-08-07

Family

ID=11713100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9009169A Pending JPH10208741A (en) 1997-01-22 1997-01-22 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH10208741A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051196A1 (en) * 1999-02-22 2000-08-31 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell and material for negative plate used therefor
WO2000063986A1 (en) 1999-04-20 2000-10-26 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
JP2003520398A (en) * 2000-01-13 2003-07-02 スリーエム イノベイティブ プロパティズ カンパニー Amorphous electrode composition
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US7732095B2 (en) 2005-12-01 2010-06-08 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
US7767349B2 (en) 2005-07-25 2010-08-03 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7851085B2 (en) 2005-07-25 2010-12-14 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7871727B2 (en) 2005-07-25 2011-01-18 3M Innovative Properties Company Alloy composition for lithium ion batteries
WO2012070306A1 (en) * 2010-11-26 2012-05-31 日産自動車株式会社 Si alloy-containing negative electrode active material for electrical devices
CN110980672A (en) * 2019-12-20 2020-04-10 广东工业大学 Lithium ion battery negative electrode active material, preparation method thereof and lithium ion battery
CN111129491A (en) * 2019-12-20 2020-05-08 广东工业大学 Lithium ion battery negative electrode active material, preparation method thereof and lithium ion battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
WO2000051196A1 (en) * 1999-02-22 2000-08-31 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell and material for negative plate used therefor
WO2000063986A1 (en) 1999-04-20 2000-10-26 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
JP2003520398A (en) * 2000-01-13 2003-07-02 スリーエム イノベイティブ プロパティズ カンパニー Amorphous electrode composition
US7851085B2 (en) 2005-07-25 2010-12-14 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7767349B2 (en) 2005-07-25 2010-08-03 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7871727B2 (en) 2005-07-25 2011-01-18 3M Innovative Properties Company Alloy composition for lithium ion batteries
US7732095B2 (en) 2005-12-01 2010-06-08 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
US7972727B2 (en) * 2005-12-01 2011-07-05 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
WO2012070306A1 (en) * 2010-11-26 2012-05-31 日産自動車株式会社 Si alloy-containing negative electrode active material for electrical devices
JP2012114043A (en) * 2010-11-26 2012-06-14 Nissan Motor Co Ltd Si ALLOY NEGATIVE ELECTRODE ACTIVE MATERIAL FOR ELECTRIC DEVICE
US9093706B2 (en) 2010-11-26 2015-07-28 Nissan Motor Co., Ltd. Si alloy-containing negative electrode active material for electrical devices
CN110980672A (en) * 2019-12-20 2020-04-10 广东工业大学 Lithium ion battery negative electrode active material, preparation method thereof and lithium ion battery
CN111129491A (en) * 2019-12-20 2020-05-08 广东工业大学 Lithium ion battery negative electrode active material, preparation method thereof and lithium ion battery
CN110980672B (en) * 2019-12-20 2022-02-15 广东工业大学 Lithium ion battery negative electrode active material, preparation method thereof and lithium ion battery

Similar Documents

Publication Publication Date Title
JP4085986B2 (en) battery
US7063916B2 (en) Battery
JP2001110418A (en) Positive electrode for lithium secondary battery and the lithium secondary battery
JP2004063432A (en) Battery
JP2004047180A (en) Nonaqueous electrolytic solution battery
US11430975B2 (en) Lithium secondary battery
JPH10208741A (en) Lithium secondary battery
JP2006216451A (en) Method of manufacturing battery
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
JP3819663B2 (en) Lithium secondary battery charge / discharge method and lithium secondary battery
JP2003123767A (en) Collector, electrode, and battery
JPH0422066A (en) Nonaqueous secondary battery
KR20220015222A (en) Anode for lithium secondary battery and lithium secondary battery including the same
JP2005347222A (en) Electrolyte liquid and battery
JP4192635B2 (en) Lithium ion secondary battery electrolyte and lithium ion secondary battery using the same
JP3060077B2 (en) Non-aqueous electrolyte secondary battery and method for producing active material thereof
JPH0696759A (en) Nonaqueous electrolytic secondary battery and manufacture of active material used therefor
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
JPH10199527A (en) Lithium secondary battery
JPH11102693A (en) Lithium secondary battery
JPH113698A (en) Lithium ion secondary battery
JP2003187871A (en) Cell and its manufacturing method
JP3209319B2 (en) Secondary battery with non-aqueous solvent electrolyte
JP2004227931A (en) Nonaqueous electrolyte rechargeable battery