JPH10208647A - Plasma display panel - Google Patents

Plasma display panel

Info

Publication number
JPH10208647A
JPH10208647A JP9014888A JP1488897A JPH10208647A JP H10208647 A JPH10208647 A JP H10208647A JP 9014888 A JP9014888 A JP 9014888A JP 1488897 A JP1488897 A JP 1488897A JP H10208647 A JPH10208647 A JP H10208647A
Authority
JP
Japan
Prior art keywords
phosphor
light emitting
emitting phosphor
ultraviolet light
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9014888A
Other languages
Japanese (ja)
Inventor
Masato Hayashi
正人 林
Yasutaka Kawashima
康貴 川島
Yoshinori Hirai
佳紀 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP9014888A priority Critical patent/JPH10208647A/en
Publication of JPH10208647A publication Critical patent/JPH10208647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high efficiency PDP as a result of illumination from not only the phosphor surface but also from its inside by providing a phosphor film formed by mixing a visible region luminescent phosphor for emitting visible rays by means of vacuum ultraviolet rays with an ultraviolet region luminescent phosphor for emitting ultraviolet rays. SOLUTION: A visible region luminescent phosphor to be used as a base is excited by intrinsic vacuum ultraviolet rays to radiate visible rays and also the vacuum ultraviolet rays converted to ultraviolet rays by means of an ultraviolet ray radiating phosphor, and the ultraviolet rays generate visual rays by exciting the visible region phosphor. Accordingly, since the surface of the phosphor radiates principally vacuum ultraviolet rays and the inside of the phosphor radiates principally ultraviolet rays, the luminescent brightness is improved for prescribed input to improve the luminous efficiency, so as to realize a PDP of high efficiency. A visible region luminescent phosphor may be such one as being used for normal PDP. Also, an ultraviolet region luminescent phosphor may be such one as being able to convert vacuum ultraviolet rays to ultraviolet rays of wavelengths shorter than 400nm by rays having wavelengths longer than that.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気体放電により放
射される真空紫外線によって背面電極に塗布された蛍光
体を励起し、発光させることにより文字、画像などを表
示するプラズマディスプレイパネル(以下PDPと称す
る)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma display panel (hereinafter referred to as a PDP) which displays characters, images, and the like by exciting and emitting light from a phosphor applied to a back electrode by vacuum ultraviolet rays radiated by gas discharge. ).

【0002】[0002]

【従来の技術】近年、フラットパネルディスプレイの開
発が盛んに行われている。その中でもAC型PDPは、
表示容量や表示画質の優位性、応答速度、階調表示など
に優れている。
2. Description of the Related Art In recent years, flat panel displays have been actively developed. Among them, AC type PDP is
Excellent in display capacity and display quality, response speed, gradation display, etc.

【0003】PDPの一例としてAC型PDPについて
図5を用いて説明する。図5はAC面放電型PDP1の
構造を示す斜視図であり、前面ガラス基板2にペアで形
成された表示電極3と背面ガラス基板4に形成されたア
ドレス電極5を構成する2種類の電極からなり、前記2
枚のガラス板上にマトリクス配置して各交点からなる個
々の表示ドットを形成している。前面ガラス側の表示電
極3は、蒸着したITOなどの透明導電膜をストライプ
状にエッチングして形成し、背面ガラス側のアドレス電
極5は、蒸着したアルミ膜をストライプ状にエッチング
して形成している。また、表示電極3の上にコンデンサ
として機能する誘電体層6が形成され、さらにその上に
MgOからなる保護層7が形成されている。一方、アド
レス電極とアドレス電極との間には、厚膜印刷によって
ストライプ状の隔壁8を設け、各表示ドットを分離独立
させている。また、蛍光膜9はアドレス電極上に形成さ
れた誘電体層10の上と隔壁8の側面に塗布されてお
り、隔壁と前面ガラス基板とで囲まれた放電空間の内部
にはXeを含む不活性ガスの混合ガスが封入されてい
る。
An AC type PDP will be described as an example of a PDP with reference to FIG. FIG. 5 is a perspective view showing the structure of the AC surface discharge type PDP 1, which includes two types of electrodes constituting a display electrode 3 formed in pairs on a front glass substrate 2 and an address electrode 5 formed on a rear glass substrate 4. And said 2
Individual display dots consisting of respective intersections are formed in a matrix on a single glass plate. The display electrode 3 on the front glass side is formed by etching a vapor-deposited transparent conductive film such as ITO in a stripe shape, and the address electrode 5 on the rear glass side is formed by etching a vapor-deposited aluminum film in a stripe shape. I have. A dielectric layer 6 functioning as a capacitor is formed on the display electrode 3, and a protective layer 7 made of MgO is further formed thereon. On the other hand, between the address electrode and the address electrode, a stripe-shaped partition wall 8 is provided by thick film printing, and each display dot is separated and independent. Further, the fluorescent film 9 is applied on the dielectric layer 10 formed on the address electrode and on the side surface of the partition 8, and the inside of the discharge space surrounded by the partition and the front glass substrate does not contain Xe. A mixed gas of an active gas is sealed.

【0004】表示はペアになっている表示電極間にAC
電圧を印加することによって行い、表示するセルの選択
は任意のアドレス電極と表示電極との間に電圧を印加
し、これらの電極の交点に発生する放電により行う。そ
の際、Xeのグロー放電により放射される波長147n
mの真空紫外線により蛍光体9を励起し、発光させてい
る。
[0004] The display is performed by using AC between the pair of display electrodes.
A cell to be displayed is selected by applying a voltage between an arbitrary address electrode and a display electrode, and by a discharge generated at an intersection of these electrodes. At this time, the wavelength 147n emitted by the Xe glow discharge
The phosphor 9 is excited by vacuum ultraviolet light of m to emit light.

【0005】[0005]

【発明が解決しようとする課題】カラーPDP用蛍光体
は、例えば赤色用として(Y,Gd)BO3 :Euが、
緑色用としてZn2 SiO4 :Mnが、青色用としてB
aMgAl1017:Euが実用化されているが、現在、
ディスプレイとして広く利用されている陰極線管(CR
T)に比べると低効率であるという問題がある。特に、
青色用蛍光体が低効率である。
The phosphor for a color PDP is, for example, (Y, Gd) BO 3 : Eu for red.
Zn 2 SiO 4 : Mn for green and B for blue
aMgAl 10 O 17 : Eu has been put into practical use.
A cathode ray tube (CR) widely used as a display
There is a problem that the efficiency is lower than that of T). Especially,
The blue phosphor has low efficiency.

【0006】また、波長147nmの真空紫外線で蛍光
体を励起する際、多くの蛍光体の母体結晶のバンドギャ
ップあるいは基礎吸収端のエネルギーは6eV以下(波
長>200nm)であるため、真空紫外線が侵入できる
距離は数100オングストロームであり、発光領域は蛍
光体表面に限られている場合がほとんどであり、蛍光体
全体が発光に寄与していることはない。したがって、発
光に寄与していない蛍光体内部を発光させることができ
れば蛍光体の輝度は向上し、発光効率も向上することに
なる。このためには蛍光体の内部まで侵入できる長波長
の紫外線が有効である。波長200〜400nmの範囲
にある紫外線であれば、蛍光体内部まで発光させたり、
2層目、3層目の蛍光体まで発光させることができるは
ずである。
Further, when exciting the phosphor with vacuum ultraviolet rays having a wavelength of 147 nm, the energy of the band gap or the fundamental absorption edge of the host crystal of many phosphors is 6 eV or less (wavelength> 200 nm). The possible distance is several hundred angstroms, the light emitting region is almost always limited to the phosphor surface, and the entire phosphor does not contribute to light emission. Therefore, if the inside of the phosphor that does not contribute to light emission can be made to emit light, the luminance of the phosphor improves and the luminous efficiency also improves. For this purpose, ultraviolet light having a long wavelength that can penetrate into the phosphor is effective. If it is an ultraviolet ray having a wavelength in the range of 200 to 400 nm, light is emitted to the inside of the phosphor,
It should be possible to emit light up to the second and third phosphor layers.

【0007】本発明は、上記事情を鑑み、真空紫外線を
有効に利用して蛍光体の表面だけでなく内部まで発光さ
せることにより、従来よりも高効率のPDPを提供する
ことを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a PDP with higher efficiency than the conventional one by effectively utilizing vacuum ultraviolet rays to emit light not only on the surface but also inside the phosphor.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に本発明のPDPは、真空紫外線およびこの真空紫外線
より長波長の紫外線によって可視光を発光する可視域発
光蛍光体と、真空紫外線によってこの真空紫外線より長
波長の紫外線を発光する紫外域発光蛍光体とを混合した
蛍光膜を備えたことを特徴とする。
In order to achieve the above object, a PDP of the present invention comprises a visible light emitting phosphor which emits visible light by using vacuum ultraviolet rays and ultraviolet rays having a wavelength longer than the vacuum ultraviolet rays, and a vacuum ultraviolet ray. It is characterized by including a fluorescent film mixed with an ultraviolet light emitting phosphor that emits ultraviolet light having a wavelength longer than vacuum ultraviolet light.

【0009】また、紫外域発光蛍光体の混合割合(重量
比)が可視域発光蛍光体の混合割合よりも小さいことを
特徴とする。
Further, the mixing ratio (weight ratio) of the ultraviolet light emitting phosphor is smaller than the mixing ratio of the visible light emitting phosphor.

【0010】また、紫外域発光蛍光体の混合割合が1〜
5重量%であることを特徴とする。
The mixing ratio of the ultraviolet light emitting phosphor is 1 to
5% by weight.

【0011】また、可視域発光蛍光体の平均粒径が紫外
域発光蛍光体の平均粒径よりも小さいことを特徴とす
る。
Further, the average particle diameter of the visible light emitting phosphor is smaller than the average particle diameter of the ultraviolet light emitting phosphor.

【0012】可視域発光蛍光体の平均粒径が4μmより
小さく、紫外域発光蛍光体の平均粒径が4μmより大き
いことを特徴とする。
The average particle size of the visible light emitting phosphor is smaller than 4 μm, and the average particle size of the ultraviolet light emitting phosphor is larger than 4 μm.

【0013】また、紫外域発光蛍光体がLaPO4 :C
eとBaSi25 :PbとYPO4 :Ceからなる群
のうち一種以上であることを特徴とする。
The ultraviolet light emitting phosphor is LaPO 4 : C
e and BaSi 2 O 5 : Pb and YPO 4 : Ce.

【0014】また、可視域発光蛍光体が希土類元素で付
活されたアルミン酸バリウムマグネシウムであり、これ
に紫外域発光蛍光体を混合したことを特徴とする。
The visible light emitting phosphor is barium magnesium aluminate activated with a rare earth element, and an ultraviolet light emitting phosphor is mixed with this.

【0015】また、可視域発光蛍光体のBaMgAl10
17:Euと、紫外域発光蛍光体のLaPO4 :Ceま
たはBaSi25 :Pbとを混合したことを特徴とす
る。
Further, the visible light emitting phosphor BaMgAl 10
It is characterized in that O 17 : Eu is mixed with the ultraviolet light emitting phosphor LaPO 4 : Ce or BaSi 2 O 5 : Pb.

【0016】本発明によれば、真空紫外線(147n
m)によって紫外線(例えば200〜400nm)を発
光する紫外域発光蛍光体を可視光を発光する蛍光体に混
合した蛍光膜を使用することにより、蛍光体の表面は主
として真空紫外線によって発光し、蛍光体の内部は主と
して紫外線によって発光するので、一定の入力に対して
発光輝度が向上して発光効率が向上するので、高効率の
PDPを実現できる。
According to the present invention, vacuum ultraviolet rays (147 n
m), by using a phosphor film in which an ultraviolet light emitting phosphor that emits ultraviolet light (for example, 200 to 400 nm) is mixed with a phosphor that emits visible light, the surface of the phosphor emits mainly by vacuum ultraviolet light, Since the inside of the body emits light mainly by ultraviolet rays, the light emission luminance is improved and the light emission efficiency is improved for a given input, so that a highly efficient PDP can be realized.

【0017】[0017]

【発明の実施の形態】本発明のPDPは、真空紫外線お
よびこれより長波長の紫外線によって励起されて可視光
を発光する可視域発光蛍光体をベースとして、これに真
空紫外線によってこれより長波長の紫外線を発光する紫
外域発光蛍光体を比較的少量混合した蛍光膜を具備した
ことを特徴とする。可視域発光蛍光体は本来の真空紫外
線によって励起されて可視光を発光すると共に、真空紫
外線が紫外域発光蛍光体によって紫外線に変換され、こ
の紫外線によっても可視域発光蛍光体が励起され、可視
光を発光させる。このため、可視域発光蛍光体だけを使
用した従来のPDPにくらべて、本発明のPDPは輝度
が向上し、発光効率が向上するという特徴がある。
BEST MODE FOR CARRYING OUT THE INVENTION The PDP of the present invention is based on a visible light-emitting phosphor which emits visible light when excited by vacuum ultraviolet light and ultraviolet light of a longer wavelength. It is characterized by comprising a fluorescent film in which a relatively small amount of an ultraviolet light emitting phosphor that emits ultraviolet light is mixed. The visible light-emitting phosphor emits visible light when excited by the original vacuum ultraviolet light, and the vacuum ultraviolet light is converted into ultraviolet light by the ultraviolet light-emitting phosphor, which also excites the visible light-emitting phosphor to produce visible light. To emit light. For this reason, the PDP of the present invention has characteristics that the luminance is improved and the luminous efficiency is improved as compared with the conventional PDP using only the visible light emitting phosphor.

【0018】可視域発光蛍光体は基本的に通常のPDP
に使用されるものであればいずれのものでも使用でき
る。また、紫外域発光蛍光体は真空紫外線を紫外線(可
視域発光蛍光体が有する紫外線励起スペクトルに相当す
るもので、例えば、真空紫外線よりも長波長であり、約
400nmの波長よりは小さいもの)に変換できるもの
であればどれでも使用できる。
The visible light emitting phosphor is basically a normal PDP.
Any material can be used as long as it is used. In addition, the ultraviolet light emitting phosphor converts vacuum ultraviolet light into ultraviolet light (corresponding to the ultraviolet excitation spectrum of the visible light emitting phosphor, for example, having a longer wavelength than vacuum ultraviolet light and smaller than a wavelength of about 400 nm). Anything that can be converted can be used.

【0019】[0019]

【実施例】以下、本発明のAC面放電型PDPの実施例
を図を用いて詳細に説明する。図1はAC面放電型PD
Pのセル構造を示す要部拡大断面図である。特に、図1
(a)は表示電極の断面を示し、図1(b)はアドレス
電極の断面を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an AC surface discharge type PDP of the present invention will be described below in detail with reference to the drawings. Figure 1 shows an AC surface discharge type PD
It is a principal part expanded sectional view which shows the cell structure of P. In particular, FIG.
1A shows a cross section of a display electrode, and FIG. 1B shows a cross section of an address electrode.

【0020】本発明のPDPは次のようにして製造され
る。すなわち、背面ガラス基板4上にアルミ蒸着により
アドレス電極5を形成する。次に、低融点ガラスを用い
て誘電体層10を印刷する。同様に低融点ガラスを用い
て隔壁8を形成後、各隣接セル11,12,13に赤、
緑、青色用の蛍光体を含む蛍光膜14,15,16をア
ドレス電極の上方および隔壁の側面に塗布形成する。こ
こで、各蛍光膜14,15,16は真空紫外線によって
可視光を放射する可視域発光蛍光体14a,15a,1
6aと、真空紫外線によって紫外線を放射する紫外域発
光蛍光体17とが所定の割合で混合されていることを特
徴とする。カラーPDPの場合は前記のように形成する
が、モノクロPDPの場合は各色に塗り分ける必要はな
い。蛍光膜の形成は、各蛍光体とシアノエチルセルロー
スなどのバインダー溶液とを所定の割合で混合した液を
使用してスクリーン印刷により行う。なお、蛍光膜形成
後、バインダー成分を除去するために、500℃程度で
焼成する。
The PDP of the present invention is manufactured as follows. That is, the address electrodes 5 are formed on the rear glass substrate 4 by aluminum evaporation. Next, the dielectric layer 10 is printed using low melting glass. Similarly, after forming the partition walls 8 using low melting point glass, red is applied to each of the adjacent cells 11, 12, and 13.
Phosphor films 14, 15, and 16 containing phosphors for green and blue are applied and formed above the address electrodes and on the side surfaces of the partition walls. Here, each of the fluorescent films 14, 15, 16 is a visible light emitting phosphor 14a, 15a, 1 that emits visible light by vacuum ultraviolet rays.
6a and an ultraviolet light emitting phosphor 17 that emits ultraviolet light by vacuum ultraviolet light are mixed at a predetermined ratio. In the case of a color PDP, it is formed as described above, but in the case of a monochrome PDP, it is not necessary to paint each color separately. The fluorescent film is formed by screen printing using a liquid obtained by mixing each fluorescent substance and a binder solution such as cyanoethyl cellulose at a predetermined ratio. After the formation of the fluorescent film, baking is performed at about 500 ° C. in order to remove the binder component.

【0021】前面ガラス基板2上にはペアの表示電極3
としてITOなどの透明導電膜を形成する。表示電極は
片側のガラス基板にのみ形成され、面放電型と呼ばれ
る。次に、誘電体層6を形成後、保護層7としてMgO
を蒸着する。保護層は放電によるスパッタリングから誘
電体層を守ると共に、2次電子放出係数を増加して放電
開始電圧を低下させる働きをする。
A pair of display electrodes 3 are provided on the front glass substrate 2.
As a transparent conductive film such as ITO. The display electrode is formed only on one glass substrate, and is called a surface discharge type. Next, after the dielectric layer 6 is formed, MgO is used as the protective layer 7.
Is deposited. The protective layer protects the dielectric layer from sputtering by discharge, and also increases the secondary electron emission coefficient and lowers the firing voltage.

【0022】次に、前面ガラス基板と背面ガラス基板を
それぞれに形成した電極が直交するように配置し、か
つ、フリットガラス(図示しない)をガラス基板の周囲
に塗布しておき、焼成溶融させて両ガラス基板の周囲を
封止する。背面ガラス基板に設けた排気孔(図示しな
い)から内部を排気し、加熱脱ガス後、所定の割合に混
合した不活性ガスを封入し、排気孔を封じ切る。封入ガ
スは500TorrのHe−Ne−Xe混合ガスであ
り、混合比は68:29:3である。
Next, the electrodes formed on the front glass substrate and the rear glass substrate are arranged so as to be orthogonal to each other, and frit glass (not shown) is applied to the periphery of the glass substrate. The periphery of both glass substrates is sealed. The inside is evacuated from an exhaust hole (not shown) provided in the rear glass substrate, and after heating and degassing, an inert gas mixed in a predetermined ratio is sealed and the exhaust hole is completely closed. The sealing gas is a 500 Torr He-Ne-Xe mixed gas, and the mixing ratio is 68: 29: 3.

【0023】本発明は蛍光膜の組成に特徴があり、その
他の構造、製造工程などは同一であるので、以下の各実
施例の説明では製造工程の説明は省略する。また、各蛍
光体は代表的なものの名称のみを列挙しており、真空紫
外線によって紫外線を発生させる紫外域発光蛍光体を真
空紫外線によって可視光を発生する可視域発光蛍光体に
混合し、前記紫外線によって可視域発光蛍光体を内部ま
で励起し発光させるという本発明の技術的思想に属する
蛍光体はすべて本発明に含まれる。
The present invention is characterized by the composition of the fluorescent film, and the other structures and manufacturing steps are the same. Therefore, the description of the manufacturing steps will be omitted in the following description of each embodiment. In addition, each phosphor is listed only the names of representative ones, and an ultraviolet light emitting phosphor that generates ultraviolet light by vacuum ultraviolet light is mixed with a visible light emitting phosphor that generates visible light by vacuum ultraviolet light, and the ultraviolet light is mixed. The present invention includes all phosphors belonging to the technical idea of the present invention in which the visible light emitting phosphor is excited to the inside to emit light.

【0024】可視域発光蛍光体の一例として、青色蛍光
体16aにはBaMgAl1017:Euを、緑色蛍光体
15aにはZn2 SiO4 :Mnを、赤色蛍光体14a
には(Y,Gd)BO3 :Euを使用し、紫外域発光蛍
光体17には、例えばBaSi25 :Pb、YPO
4 :Ce、LaPO4 :Ceなどが使用できる。なお、
紫外域発光蛍光体として真空紫外線によって紫外線(例
えば波長200〜400nm)を放射するものであれば
どのようなものでも使用できることはいうまでもない。
As an example of the visible light emitting phosphor, BaMgAl 10 O 17 : Eu is used for the blue phosphor 16a, Zn 2 SiO 4 : Mn is used for the green phosphor 15a, and the red phosphor 14a is used.
(Y, Gd) BO 3 : Eu is used for the ultraviolet light emitting phosphor 17, for example, BaSi 2 O 5 : Pb, YPO
4 : Ce, LaPO 4 : Ce, etc. can be used. In addition,
It goes without saying that any substance that emits ultraviolet rays (for example, wavelengths of 200 to 400 nm) by vacuum ultraviolet rays can be used as the ultraviolet light emitting phosphor.

【0025】以下、各実施例の蛍光膜の組成と相対発光
効率の測定結果について説明する。
The measurement results of the composition and the relative luminous efficiency of the phosphor film of each embodiment will be described below.

【0026】実施例1乃至実施例7は、可視域発光蛍光
体として平均粒径3μm、最大粒径10μm、最小粒径
1μmのBaMgAl1017:Euを使用し、紫外域発
光蛍光体として平均粒径10μm、最大粒径30μm、
最小粒径2μmのBaSi25 :Pbを使用し、Ba
Si25 :Pbの混合割合をそれぞれ2,3,4,
5,10,25,50重量%(wt%)として蛍光膜を
形成したものである。
In Examples 1 to 7, BaMgAl 10 O 17 : Eu having an average particle diameter of 3 μm, a maximum particle diameter of 10 μm, and a minimum particle diameter of 1 μm was used as a visible light emitting phosphor, and an average ultraviolet light emitting phosphor was used. Particle size 10 μm, maximum particle size 30 μm,
BaSi 2 O 5 : Pb having a minimum particle size of 2 μm is used.
The mixing ratios of Si 2 O 5 : Pb were 2, 3, 4,
The fluorescent film was formed at 5, 10, 25, 50% by weight (wt%).

【0027】次に、実施例8乃至実施例14は、可視域
発光蛍光体として実施例1乃至実施例7に使用したもの
と同一の平均粒径3μmのBaMgAl1017:Euを
使用し、紫外域発光蛍光体として平均粒径5μm、最大
粒径20μm、最小粒径1μmのLaPO4 :Ceを使
用し、LaPO4 :Ceの混合割合をそれぞれ2,3,
4,5,10,25,50重量%として蛍光膜を形成し
たものである。
Next, in Examples 8 to 14, BaMgAl 10 O 17 : Eu having the same average particle size of 3 μm as that used in Examples 1 to 7 was used as the visible light emitting phosphor. LaPO 4 : Ce having an average particle diameter of 5 μm, a maximum particle diameter of 20 μm, and a minimum particle diameter of 1 μm was used as the ultraviolet light emitting phosphor, and the mixing ratio of LaPO 4 : Ce was 2, 3, respectively.
The fluorescent film was formed at 4, 5, 10, 25, and 50% by weight.

【0028】なお、比較例1は平均粒径の3μmの可視
域発光蛍光体BaMgAl1017:Euを100重量%
使用して蛍光膜を形成したものである。
In Comparative Example 1, 100% by weight of a visible light-emitting phosphor BaMgAl 10 O 17 : Eu having an average particle diameter of 3 μm was used.
It is used to form a fluorescent film.

【0029】次に、実施例15乃至実施例21は、可視
域発光蛍光体として平均粒径10μm、最大粒径30μ
m、最小粒径3μmのBaMgAl1017:Euを使用
し、紫外域発光蛍光体として実施例1乃至実施例7と同
一の平均粒径10μmのBaSi25 :Pbを使用
し、BaSi25 :Pbの混合割合をそれぞれ2,
3,4,5,10,25,50重量%使用して蛍光膜を
形成したものである。
Next, in Examples 15 to 21, the average particle size was 10 μm and the maximum particle size was 30 μm.
m, the minimum particle size 3μm BaMgAl 10 O 17: using Eu, BaSi the same average particle diameter of 10μm as in Examples 1 to 7 as the ultraviolet region light emitting phosphor 2 O 5: using Pb, BaSi 2 The mixing ratio of O 5 : Pb was 2,
A fluorescent film is formed using 3, 4, 5, 10, 25, and 50% by weight.

【0030】次に、実施例22乃至実施例28は、可視
域発光蛍光体として実施例15乃至実施例21に使用し
たものと同一の平均粒径10μmのBaMgAl
1017:Euを使用し、紫外域発光蛍光体として実施例
8乃至実施例14に使用したものと同一の平均粒径5μ
mのLaPO4 :Ceを使用し、LaPO4 :Ceの混
合割合をそれぞれ2,3,4,5,10,25,50重
量%として蛍光膜を形成したものである。
Next, in Examples 22 to 28, BaMgAl having the same average particle diameter of 10 μm as those used in Examples 15 to 21 was used as the visible light emitting phosphor.
Using 10 O 17 : Eu, the same average particle size of 5 μm as that used in Examples 8 to 14 as the ultraviolet light emitting phosphor was used.
LaPO of m 4: using Ce, LaPO 4: is obtained by forming a fluorescent film mixing ratio of Ce as each 2,3,4,5,10,25,50% by weight.

【0031】なお、比較例2は平均粒径10μmの可視
域発光蛍光体BaMgAl1017:Euを100重量%
使用して蛍光膜を形成したものである。
In Comparative Example 2, 100% by weight of a visible light emitting phosphor BaMgAl 10 O 17 : Eu having an average particle diameter of 10 μm was used.
It is used to form a fluorescent film.

【0032】上記各実施例および各比較例の蛍光膜をそ
れぞれ形成したAC型PDPを製作し、一定の駆動条件
で放電させ蛍光膜を発光させた。AC型PDPの前面ガ
ラス基板2に対向配置した輝度計により輝度を測定し、
一定入力における相対輝度すなわち相対発光効率を求め
た。ただし、比較例を100とした。
An AC-type PDP on which the fluorescent films of the above Examples and Comparative Examples were respectively formed was manufactured and discharged under a constant driving condition to emit light from the fluorescent films. The luminance is measured by a luminance meter arranged opposite to the front glass substrate 2 of the AC type PDP,
The relative luminance at a constant input, that is, the relative luminous efficiency was obtained. However, the comparative example was set to 100.

【0033】実施例1乃至実施例14についての相対発
光効率を表1と図2に示し、また、実施例15乃至実施
例28についての相対発光効率を表2と図3にそれぞれ
示す。
Tables 1 and 2 show the relative luminous efficiencies of Examples 1 to 14, and Tables 2 and 3 show the relative luminous efficiencies of Examples 15 to 28.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】これらの結果から以下のことがわかる。す
なわち、 可視域発光蛍光体に少量の紫外域発光蛍光体を混合
すると発光効率が顕著に向上する。 発光効率が向上する混合割合は、平均粒径、紫外域
発光蛍光体の種類などによって異なる。例えば、可視域
発光蛍光体が平均粒径3μmのBaMgAl1017:E
uの場合、約14wt%以下のLaPO4 :Ceで、ま
た、6wt%以下のBaSi25 :Pbでそれぞれ発
光効率が向上し、特にLaPO4 :Ceでは2乃至8w
t%の範囲で、BaSi25 :Pbでは1乃至5wt
%の範囲で高い発光効率が得られる。可視域発光蛍光体
が平均粒径10μmの場合は約7wt%以下で発光効率
が向上するが、平均粒径3μmの場合よりは効果が小さ
い。また、BaSi25 :PbよりLaPO4 :Ce
のほうが、効果が大きい。 主成分である可視域発光蛍光体の平均粒径が小さい
ほうが、例えば、10μmより3μmのほうが、紫外域
発光蛍光体の混合による発光効率の向上効果が大きい。
The following can be understood from these results. That is, when a small amount of the ultraviolet light emitting phosphor is mixed with the visible light emitting phosphor, the luminous efficiency is remarkably improved. The mixing ratio at which the luminous efficiency is improved differs depending on the average particle size, the type of the ultraviolet light emitting phosphor, and the like. For example, the visible light emitting phosphor is BaMgAl 10 O 17 : E having an average particle size of 3 μm.
In the case of u, the luminous efficiency is improved with LaPO 4 : Ce of about 14 wt% or less and BaSi 2 O 5 : Pb of 6 wt% or less, and particularly, 2 to 8 w in LaPO 4 : Ce.
In the range of t%, 1 to 5 wt% for BaSi 2 O 5 : Pb.
%, High luminous efficiency can be obtained. When the visible light emitting phosphor has an average particle diameter of 10 μm, the luminous efficiency is improved at about 7 wt% or less, but the effect is smaller than when the average particle diameter is 3 μm. Further, LaPO 4 : Ce is used instead of BaSi 2 O 5 : Pb.
Is more effective. When the average particle diameter of the visible light emitting phosphor as the main component is smaller, for example, 3 μm than 10 μm, the effect of improving the luminous efficiency by mixing the ultraviolet light emitting phosphor is greater.

【0037】上記のように少量の紫外域発光蛍光体を混
合すると発光効率が高くなり、混合割合が大きくなると
発光効率が低下していく減少の理由は明確ではないが、
一応次のような説明が可能である。すなわち、可視域発
光蛍光体に紫外域発光蛍光体を混合していくと、紫外域
発光蛍光体が真空紫外線を吸収して例えば波長200〜
400nmの紫外線を発生し、この紫外線が可視域発光
蛍光体の内部まで浸透して効率よく可視光を発光させる
ので、図4の曲線Aに示すように発光強度は増加する。
しかし、混合割合が増えると紫外域発光蛍光体による真
空紫外線の遮蔽作用によって可視域発光蛍光体に到達す
る真空紫外線が減少し、発光強度は徐々に飽和してい
く。
As described above, it is not clear why the luminous efficiency increases when a small amount of the ultraviolet light emitting phosphor is mixed, and the luminous efficiency decreases as the mixing ratio increases.
The following explanation is possible. That is, as the visible light emitting phosphor is mixed with the ultraviolet light emitting phosphor, the ultraviolet light emitting phosphor absorbs the vacuum ultraviolet rays and has a wavelength of 200 to 200, for example.
Ultraviolet light of 400 nm is generated, and this ultraviolet light penetrates into the visible light emitting phosphor to efficiently emit visible light, so that the emission intensity increases as shown by curve A in FIG.
However, when the mixing ratio increases, the amount of vacuum ultraviolet light reaching the visible light emitting phosphor decreases due to the shielding effect of the vacuum ultraviolet light by the ultraviolet light emitting phosphor, and the light emission intensity is gradually saturated.

【0038】一方、紫外域発光蛍光体の混合割合を増加
するにつれて可視域発光蛍光体の絶対量が減少するの
で、真空紫外線による可視域発光蛍光体の発光強度は図
4の曲線Bのように減少していく。曲線Aと曲線Bとを
合成すると、混合割合の小さい範囲でピークが生じる曲
線Cが得られる。
On the other hand, since the absolute amount of the visible light emitting phosphor decreases as the mixing ratio of the ultraviolet light emitting phosphor increases, the luminous intensity of the visible light emitting phosphor due to the vacuum ultraviolet ray is as shown by the curve B in FIG. Decreasing. When the curves A and B are combined, a curve C in which a peak occurs in a range where the mixing ratio is small is obtained.

【0039】また、図2と図3から可視域発光蛍光体の
平均粒径を紫外域発光蛍光体の平均粒径よりも小さくす
ると発光効率の向上が顕著になることがわかる。これは
次のように説明することができる。すなわち、粒径の小
さな可視域発光蛍光体が粒径の大きな紫外域発光蛍光体
の表面を被覆した状態になるので、紫外域発光蛍光体か
ら放射された紫外線は途中であまり減少することなく可
視域発光蛍光体へ到達し、しかも、粒径の小さな可視域
発光蛍光体の内部まで充分に浸透し、これを励起して効
率よく発光させる。この結果、可視域発光蛍光体と紫外
域発光蛍光体の望ましい平均粒径の境界は3μmと5μ
mの間で約4μmと見積もることができる。
FIGS. 2 and 3 show that when the average particle size of the visible light emitting phosphor is smaller than that of the ultraviolet light emitting phosphor, the luminous efficiency is significantly improved. This can be explained as follows. In other words, since the visible light-emitting phosphor having a small particle diameter covers the surface of the ultraviolet light-emitting phosphor having a large particle diameter, the ultraviolet light emitted from the ultraviolet light-emitting phosphor is visible without being greatly reduced in the middle. The phosphor reaches the area light-emitting phosphor, and sufficiently penetrates into the visible area light-emitting phosphor having a small particle size, and excites the phosphor to emit light efficiently. As a result, the boundary between the desirable average particle size of the visible light emitting phosphor and the ultraviolet light emitting phosphor is 3 μm and 5 μm.
m, it can be estimated to be about 4 μm.

【0040】上記の実験結果に基づいて、本発明のPD
Pは従来の可視域発光蛍光体の紫外域発光蛍光体を可視
域発光蛍光体よりも少ない重量比で混合した蛍光膜を具
備することにより、発光効率を顕著に向上させたことを
特徴とする。
Based on the above experimental results, the PD of the present invention
P is characterized by significantly improving the luminous efficiency by providing a phosphor film in which the conventional visible light emitting phosphor is mixed with the ultraviolet light emitting phosphor at a smaller weight ratio than the visible light emitting phosphor. .

【0041】上記の実施例では、可視域発光蛍光体とし
て青色発光のBaMgAl1017:Euを使用し、紫外
域発光蛍光体としてBaSi25 :Pb、LaPO
4 :Ceを使用した例について説明したが、これらの材
料に限定されるものではない。例えば、可視域発光蛍光
体としては他の青色発光蛍光体であるCaWO4 :P
b、Y2 SiO5 :Ce、BaMgAl1423:Euな
どでもよいし、赤色発光蛍光体であるY23 :Eu、
2 SiO5 :Eu、Y3 Al512:Eu、YBO
3 :Eu、GdBO3 :Eu、ScBO3 :Eu、Lu
BO3 :Euなどでもよいし、緑色発光蛍光体であるZ
2 SiO4 :Mn、BaAl1219:Mn、BaMg
AL1423:Mn、SrAl1219:Mn、ZnAl12
19:Mn、C、aAl1219:Mn、YBO3 :T
b、LuBO3 :Tb、GdBO3 :Tb、ScBO
3 :Tb、Sr4 SiO8 Cl4 :Euなどでもよく、
真空紫外線および紫外線によって可視光を発光しうる蛍
光体はすべて本発明の可視域発光蛍光体として使用でき
る。
In the above embodiment, blue-emitting BaMgAl 10 O 17 : Eu is used as the visible light emitting phosphor, and BaSi 2 O 5 : Pb, LaPO is used as the ultraviolet light emitting phosphor.
4 : Although an example using Ce has been described, it is not limited to these materials. For example, as the visible light emitting phosphor, another blue light emitting phosphor, CaWO 4 : P
b, Y 2 SiO 5 : Ce, BaMgAl 14 O 23 : Eu, etc., or a red light-emitting phosphor Y 2 O 3 : Eu,
Y 2 SiO 5 : Eu, Y 3 Al 5 O 12 : Eu, YBO
3 : Eu, GdBO 3 : Eu, ScBO 3 : Eu, Lu
BO 3 : Eu or the like, or a green light-emitting phosphor Z
n 2 SiO 4 : Mn, BaAl 12 O 19 : Mn, BaMg
AL 14 O 23: Mn, SrAl 12 O 19: Mn, ZnAl 12
O 19 : Mn, C, aAl 12 O 19 : Mn, YBO 3 : T
b, LuBO 3 : Tb, GdBO 3 : Tb, ScBO
3 : Tb, Sr 4 SiO 8 Cl 4 : Eu, etc.
Any phosphor capable of emitting visible light by vacuum ultraviolet light and ultraviolet light can be used as the visible light emitting phosphor of the present invention.

【0042】また、紫外域発光蛍光体は前記のBaSi
25 :Pb、LaPO4 :Ceのほか、YPO4 :C
eでもよいし、他のものでもよい。可視域発光蛍光体を
励起できる波長の紫外線を放射するものはどのようなも
のでも1種あるいは2種以上混合して使用できる。
The ultraviolet light emitting phosphor is the aforementioned BaSi
2 O 5: Pb, LaPO 4 : addition of Ce, YPO 4: C
e or another thing. Any material that emits ultraviolet light having a wavelength that can excite the visible light emitting phosphor can be used alone or in combination of two or more.

【0043】紫外域発光蛍光体の有効な混合割合は蛍光
体材料の種類、組み合わせ、粒径などによって異なる
が、混合割合が多いと可視域発光蛍光体自身の割合が減
少して発光強度が低下するので、紫外域発光蛍光体の混
合割合は可視域発光蛍光体よりも少なくするべきであ
り、特に望ましい範囲は1〜5wt%である。
The effective mixing ratio of the ultraviolet light emitting phosphor varies depending on the kind, combination, particle size, etc. of the phosphor material. However, if the mixing ratio is large, the ratio of the visible light emitting phosphor itself decreases and the emission intensity decreases. Therefore, the mixing ratio of the ultraviolet light emitting phosphor should be smaller than that of the visible light emitting phosphor, and a particularly desirable range is 1 to 5 wt%.

【0044】また、蛍光体の平均粒径については、どの
紫外域発光蛍光体の場合でも、紫外域発光蛍光体の平均
粒径よりも可視域発光蛍光体の平均粒径が小さいほう
が、大きい場合よりも発光効率が高くなり、望ましい。
Regarding the average particle diameter of the phosphor, the smaller the average particle diameter of the visible light-emitting phosphor than the average particle diameter of the ultraviolet light-emitting phosphor is, in any case, larger. Luminous efficiency is higher than that, which is desirable.

【0045】以上、AC面放電型PDPについて説明し
たが、本発明はAC面放電型だけでなく、AC対向放電
型、DC型など真空紫外線および紫外線によって可視光
を発光する蛍光体を用いたPDPであればどのような方
式のものにでも適用できることはいうまでもない。
The AC surface discharge type PDP has been described above. However, the present invention is not limited to the AC surface discharge type, but the PDP using a vacuum ultraviolet ray and a phosphor emitting visible light by ultraviolet rays such as an AC facing discharge type and a DC type. Needless to say, the present invention can be applied to any system.

【0046】[0046]

【発明の効果】本発明のPDPは、真空紫外線および紫
外線によって可視光を発光する可視域発光蛍光体と、真
空紫外線によって紫外線を発光する紫外域発光蛍光体と
を混合した蛍光膜を備えているので、可視域発光蛍光体
が真空紫外線と紫外線(紫外域発光蛍光体が発光する)
の両方によって励起され、効率良く可視光を発光するの
で、発光効率の高いPDPを提供することができる。
The PDP of the present invention has a phosphor film in which a visible light emitting phosphor that emits visible light by vacuum ultraviolet light and ultraviolet light and an ultraviolet light emitting phosphor that emits ultraviolet light by vacuum ultraviolet light are mixed. Because the visible light emitting phosphor is vacuum ultraviolet light and ultraviolet light (the ultraviolet light emitting phosphor emits light)
, And efficiently emits visible light, so that a PDP with high luminous efficiency can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示すAC面放電型PDP
の要部拡大断面図
FIG. 1 shows an AC surface discharge type PDP showing one embodiment of the present invention.
Main part enlarged sectional view of

【図2】 本発明に基づく紫外域発光蛍光体の混合割合
と相対発光効率の関係を示す図
FIG. 2 is a diagram showing the relationship between the mixing ratio of the ultraviolet light emitting phosphor according to the present invention and the relative luminous efficiency.

【図3】 本発明に基づく紫外域発光蛍光体の混合割合
と相対発光効率の関係を示す図
FIG. 3 is a diagram showing the relationship between the mixing ratio of the ultraviolet light emitting phosphor according to the present invention and the relative luminous efficiency.

【図4】 相対発光効率のピークを説明するための図FIG. 4 is a diagram for explaining a peak of relative luminous efficiency.

【図5】 従来のAC面放電型PDPの一例を示す斜視
FIG. 5 is a perspective view showing an example of a conventional AC surface discharge type PDP.

【符号の説明】[Explanation of symbols]

14,15,16 蛍光膜 14a,15a,16a 可視域発光蛍光体 17 紫外域発光蛍光体 14, 15, 16 phosphor film 14a, 15a, 16a visible light emitting phosphor 17 ultraviolet light emitting phosphor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01J 11/02 H01J 11/02 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01J 11/02 H01J 11/02 Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】真空紫外線によって、可視光を放出する可
視域発光蛍光体と、紫外線を放出する紫外域発光蛍光体
とを混合した蛍光膜を具備したプラズマディスプレイパ
ネル。
1. A plasma display panel comprising a phosphor film in which a visible light emitting phosphor that emits visible light by vacuum ultraviolet rays and an ultraviolet light emitting phosphor that emits ultraviolet rays are mixed.
【請求項2】紫外域発光蛍光体の混合割合(重量比)が
可視域発光蛍光体の混合割合よりも小さいことを特徴と
する請求項1に記載のプラズマディスプレイパネル。
2. The plasma display panel according to claim 1, wherein a mixing ratio (weight ratio) of the ultraviolet light emitting phosphor is smaller than a mixing ratio of the visible light emitting phosphor.
【請求項3】紫外域発光蛍光体の混合割合が1〜5重量
%であることを特徴とする請求項2に記載のプラズマデ
ィスプレイパネル。
3. The plasma display panel according to claim 2, wherein the mixing ratio of the ultraviolet light emitting phosphor is 1 to 5% by weight.
【請求項4】可視域発光蛍光体の平均粒径が紫外域発光
蛍光体の平均粒径よりも小さいことを特徴とする請求項
1に記載のプラズマディスプレイパネル。
4. The plasma display panel according to claim 1, wherein the average particle diameter of the visible light emitting phosphor is smaller than the average particle diameter of the ultraviolet light emitting phosphor.
【請求項5】可視域発光蛍光体の平均粒径が4μmより
小さく、紫外域発光蛍光体の平均粒径が4μmより大き
いことを特徴とする請求項4に記載のプラズマディスプ
レイパネル。
5. The plasma display panel according to claim 4, wherein an average particle diameter of the visible light emitting phosphor is smaller than 4 μm, and an average particle diameter of the ultraviolet light emitting phosphor is larger than 4 μm.
【請求項6】紫外線域発光蛍光体がLaPO4 :Ceと
BaSi25 :PbとYPO4 :Ceからなる群のう
ち1種以上であることを特徴とする請求項1に記載のプ
ラズマディスプレイパネル。
6. The plasma display according to claim 1, wherein the ultraviolet light emitting phosphor is at least one member selected from the group consisting of LaPO 4 : Ce, BaSi 2 O 5 : Pb and YPO 4 : Ce. panel.
【請求項7】可視域発光蛍光体が希土類元素で付活され
たアルミン酸バリウムマグネシウムであることを特徴と
する請求項1に記載のプラズマディスプレイパネル。
7. The plasma display panel according to claim 1, wherein the visible light emitting phosphor is barium magnesium aluminate activated with a rare earth element.
【請求項8】可視域発光蛍光体がBaMgAl1017
Euであり、紫外域発光蛍光体がLaPO4 :Ceまた
はBASi25 :Pbであることを特徴とする請求項
1に記載のプラズマディスプレイパネル。
8. The visible light emitting phosphor is BaMgAl 10 O 17 :
2. The plasma display panel according to claim 1, wherein the plasma display panel is Eu, and the ultraviolet light emitting phosphor is LaPO 4 : Ce or BASi 2 O 5 : Pb.
JP9014888A 1997-01-29 1997-01-29 Plasma display panel Pending JPH10208647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9014888A JPH10208647A (en) 1997-01-29 1997-01-29 Plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9014888A JPH10208647A (en) 1997-01-29 1997-01-29 Plasma display panel

Publications (1)

Publication Number Publication Date
JPH10208647A true JPH10208647A (en) 1998-08-07

Family

ID=11873563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9014888A Pending JPH10208647A (en) 1997-01-29 1997-01-29 Plasma display panel

Country Status (1)

Country Link
JP (1) JPH10208647A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039239A1 (en) * 1999-11-26 2001-05-31 Orion Electric Co., Ltd. Plasma display panel with improved radiation efficiency and brightness
JP2001228823A (en) * 1999-12-07 2001-08-24 Pioneer Electronic Corp Plasma display device
EP1132938A2 (en) * 2000-03-01 2001-09-12 Philips Corporate Intellectual Property GmbH Plasma display panel with UV-light emitting layer
EP1164625A2 (en) * 2000-06-01 2001-12-19 Pioneer Corporation Plasma display panel
JP2002056779A (en) * 2000-06-01 2002-02-22 Pioneer Electronic Corp Plasma display panel
JP2002251963A (en) * 1999-12-07 2002-09-06 Pioneer Electronic Corp Plasma display panel
JP2002294230A (en) * 2001-03-30 2002-10-09 Kasei Optonix Co Ltd Aluminosilicate phosphor for vacuum ultraviolet excitation and vacuum ultraviolet-excited light-emitting element obtained using the same
KR100433221B1 (en) * 2001-12-21 2004-05-27 엘지전자 주식회사 Fluorescent material of plasma display panel
KR100603377B1 (en) 2004-10-12 2006-07-20 삼성에스디아이 주식회사 Plasma display panel
KR100765307B1 (en) 2000-09-05 2007-10-10 코닌클리케 필립스 일렉트로닉스 엔.브이. Color picture screen with blue phosphor layer
JP2008514773A (en) * 2004-09-29 2008-05-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device having Eu (III) activated phosphor and second phosphor
WO2011138850A1 (en) * 2010-05-07 2011-11-10 パナソニック株式会社 Plasma display panel

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039239A1 (en) * 1999-11-26 2001-05-31 Orion Electric Co., Ltd. Plasma display panel with improved radiation efficiency and brightness
JP2001228823A (en) * 1999-12-07 2001-08-24 Pioneer Electronic Corp Plasma display device
JP2002251963A (en) * 1999-12-07 2002-09-06 Pioneer Electronic Corp Plasma display panel
JP4614609B2 (en) * 1999-12-07 2011-01-19 パナソニック株式会社 Plasma display panel
EP1132938A2 (en) * 2000-03-01 2001-09-12 Philips Corporate Intellectual Property GmbH Plasma display panel with UV-light emitting layer
EP1132938A3 (en) * 2000-03-01 2004-05-06 Philips Intellectual Property & Standards GmbH Plasma display panel with UV-light emitting layer
US6873106B2 (en) 2000-06-01 2005-03-29 Pioneer Corporation Plasma display panel that inhibits false discharge
EP1164625A2 (en) * 2000-06-01 2001-12-19 Pioneer Corporation Plasma display panel
JP2002056779A (en) * 2000-06-01 2002-02-22 Pioneer Electronic Corp Plasma display panel
EP1164625A3 (en) * 2000-06-01 2004-08-25 Pioneer Corporation Plasma display panel
KR100765307B1 (en) 2000-09-05 2007-10-10 코닌클리케 필립스 일렉트로닉스 엔.브이. Color picture screen with blue phosphor layer
JP2002294230A (en) * 2001-03-30 2002-10-09 Kasei Optonix Co Ltd Aluminosilicate phosphor for vacuum ultraviolet excitation and vacuum ultraviolet-excited light-emitting element obtained using the same
KR100433221B1 (en) * 2001-12-21 2004-05-27 엘지전자 주식회사 Fluorescent material of plasma display panel
JP2008514773A (en) * 2004-09-29 2008-05-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device having Eu (III) activated phosphor and second phosphor
KR100603377B1 (en) 2004-10-12 2006-07-20 삼성에스디아이 주식회사 Plasma display panel
WO2011138850A1 (en) * 2010-05-07 2011-11-10 パナソニック株式会社 Plasma display panel
US8319430B2 (en) 2010-05-07 2012-11-27 Panasonic Corporation Plasma display panel and method of manufacturing plasma display panel
JP5212553B2 (en) * 2010-05-07 2013-06-19 パナソニック株式会社 Plasma display panel

Similar Documents

Publication Publication Date Title
US6559598B2 (en) Plasma picture screen with UV light emitting layer
US20060113910A1 (en) Plasma display panel
US6583561B2 (en) Material for converting ultraviolet ray and display device using the same
JPH10208647A (en) Plasma display panel
JP4151104B2 (en) Plasma display
JPH11317170A (en) Plasma display panel
US6469451B2 (en) Alternating-current-driven-type plasma display
US7919922B2 (en) Green phosphor for plasma display panel and plasma display panel including a phosphor layer formed of the same
JP3829890B2 (en) Plasma display panel
JP2006299098A (en) Light emitting apparatus and image display unit
US20020180355A1 (en) Plasma display device
US7312575B2 (en) Plasma display panel
JP2003346665A (en) Plasma display device
JPH11193379A (en) Phosphor material production thereof, phosphor film, and plasma display panel
EP1093148A1 (en) Plasma display device
KR100818573B1 (en) High-luminance phosphor layer
JPH11297221A (en) Plasma display panel
KR20030025820A (en) Plasma picture screen with increased efficiency
KR100516937B1 (en) Dielectric layer of plasma display panel and method of fabricating the same
JP2001226670A (en) Fluorescent material for display apparatus and luminescent element produced by using the material
JP2001323262A (en) Fluorescent substance, substrate for plasma display panel, plasma display panel and plasma display device
JP2000034477A (en) Plasma display panel, phosphor, and production of phosphor
JPH11172241A (en) Phosphor material, phosphor film, and plasma display panel
JPH11306995A (en) Plasma display panel
JP2004247311A (en) Plasma display device