JPH10206714A - Lens moving device - Google Patents

Lens moving device

Info

Publication number
JPH10206714A
JPH10206714A JP9019601A JP1960197A JPH10206714A JP H10206714 A JPH10206714 A JP H10206714A JP 9019601 A JP9019601 A JP 9019601A JP 1960197 A JP1960197 A JP 1960197A JP H10206714 A JPH10206714 A JP H10206714A
Authority
JP
Japan
Prior art keywords
lens
moving device
lens holding
axis
holding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9019601A
Other languages
Japanese (ja)
Inventor
Eiji Osanai
英司 小山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9019601A priority Critical patent/JPH10206714A/en
Publication of JPH10206714A publication Critical patent/JPH10206714A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lens Barrels (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To make an inclinable angle large, to make bearing rigidity high in a radial direction, and to prolong stroke in an optical axis direction so as to improve positioning accuracy by supporting the guide surface of a lens holding board by means of a static pressure bearing means in a non-contact state, and respectively and individually supporting driving means by means of a base board. SOLUTION: The inside peripheral surface of a fixing member 2 and the outside peripheral surface being the guide surface of the lens holding board 3 are supported in the non-contact state each other by the static pressure or pressure fluid jetted from a porous pad 7 being an annular porous drawing type static pressure bearing means held by the inside peripheral surface, and a lens 4 can freely reciprocate along the axis (Z axis) of the member 2 and the guiding member 3. By making the size of the pad 7 in the Z-axis direction small, the allowable value of the inclination angle to the Z axis can be made large. A Z linear motor is provided with rotors 51a to 51c and stators 52a to 52c, and disposed outside the member 2 in a peripheral direction at an equal interval; and the rotors 51a to 51c are driven in the Z axis direction in accordance with supplied current amount.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体リソグラフ
ィに用いる投影露光装置、各種精密加工機あるいは各種
精密測定器等においてレンズを位置決めするためのレン
ズ移動装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus used for semiconductor lithography, a lens moving apparatus for positioning a lens in various precision processing machines or various precision measuring instruments, and the like.

【0002】[0002]

【従来の技術】半導体露光装置の投影レンズの倍率補正
手段として、レンズ鏡筒にレンズ移動装置を組み込んだ
機構については特公昭62−032613号に記載され
ている。ここに記載されたレンズ移動装置は、駆動案内
としての静圧空気軸受と、駆動アクチュエータとしての
供給空気圧力を制御した静圧空気軸受、電歪素子お
よび磁歪素子、ダイヤフラム等とで構成されている。
2. Description of the Related Art A mechanism in which a lens moving device is incorporated in a lens barrel as a means for correcting the magnification of a projection lens of a semiconductor exposure apparatus is described in Japanese Patent Publication No. 62-032613. The lens moving device described here includes a static pressure air bearing as a drive guide, a static pressure air bearing as a drive actuator that controls supply air pressure, an electrostrictive element and a magnetostrictive element, a diaphragm, and the like. .

【0003】また、特開平06−226570号には、
静圧軸受け手段で支持された楔形状の入力片を用いた変
位縮小機構について記載されている。
[0003] Japanese Patent Application Laid-Open No. 06-226570 discloses that
A displacement reduction mechanism using a wedge-shaped input piece supported by a hydrostatic bearing is described.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例において、特公昭62−032613号に記載され
ている従来のレンズ移動装置は、レンズ光軸から傾斜さ
せるためにレンズの直径方向の両端間で約1mm程度の
駆動ストローク差を必要とする場合、原理的に実施不可
能であったり、また、剛性が非常に弱くなる等の欠点が
あった。また、特開平06−226570号に記載され
ているレンズ移動装置では、レンズ光軸方向に数mm程
度の駆動ストロークを必要とする場合、レンズの位置決
め分解能が粗くなったり、機構自体が大型化してしま
う。さらに、レンズを移動させる方向をレンズ光軸方向
に合わせるには各構成部品の形状寸法を高精度に保たな
ければならない、という欠点があった。
However, in the above-mentioned conventional example, the conventional lens moving device described in Japanese Patent Publication No. 62-032613 has a problem in that the lens is inclined between the diametrical ends of the lens in order to incline the lens from the optical axis. When a drive stroke difference of about 1 mm is required, there are drawbacks that it cannot be performed in principle and that the rigidity becomes very weak. In the lens moving device described in Japanese Patent Application Laid-Open No. 06-226570, when a driving stroke of about several mm is required in the lens optical axis direction, the positioning resolution of the lens becomes coarse or the mechanism itself becomes large. I will. Furthermore, there is a disadvantage that the shape and dimensions of each component must be maintained with high accuracy in order to match the direction in which the lens is moved with the lens optical axis direction.

【0005】本発明は、上述の従来例における問題点に
鑑みてなされたもので、傾斜可能な角度を比較的大きく
てラジアル方向の軸受剛性が高く、かつ光軸方向の長ス
トロークが長くて位置決め精度の高いレンズ移動装置を
提供することを目的とする。
The present invention has been made in view of the above-mentioned problems in the prior art, and has a relatively large tiltable angle, high radial bearing rigidity, and a long stroke in the optical axis direction. It is an object of the present invention to provide a highly accurate lens moving device.

【0006】[0006]

【課題を解決するための手段および作用】上記の目的を
達成するために本発明では、レンズ光路を遮らないよう
に開口部を有する台盤と、台盤に立設された支持手段
と、この支持手段の支持面に対向する案内面を有するレ
ンズ保持盤と、前記支持面と前記案内面を互に非接触に
支持する静圧軸受手段と、前記レンズ保持盤を前記支持
面に平行な軸に沿って移動させる駆動手段を有し、前記
駆動手段が前記レンズ台盤に個別に支持されていること
を特徴とする。
In order to achieve the above object, according to the present invention, there is provided a base plate having an opening so as not to block the optical path of a lens, a supporting means provided upright on the base plate, A lens holding plate having a guide surface facing the support surface of the support means, a hydrostatic bearing means for supporting the support surface and the guide surface in a non-contact manner with each other, and an axis parallel to the support surface. , And the driving means is individually supported by the lens base.

【0007】上記構成において、駆動手段によってレン
ズの光軸方向の位置決めを行なう。レンズ保持盤の案内
面は静圧軸受け手段によって非接触に支持されており、
また、駆動手段はそれぞれ個別に台盤に支持されている
ため、駆動量を大きくすることができる。板バネ等の弾
性部材を必要としないために、駆動量が大きくても案内
面やレンズ保持盤が変形して、レンズ位置決め精度が低
下する恐れがない。レンズ変形の恐れもない。また、駆
動手段がレンズ保持盤の周方向の異なる部位にそれぞれ
連結された少なくとも3個の駆動装置を有すれば、各駆
動装置の駆動量を変えることで、レンズ保持盤およびレ
ンズの中心軸に垂直な平面に対する傾斜角度を調節する
ことができる。
In the above arrangement, the positioning of the lens in the optical axis direction is performed by the driving means. The guide surface of the lens holding plate is supported in a non-contact manner by static pressure bearing means,
Further, since the driving means are individually supported by the base plate, the driving amount can be increased. Since an elastic member such as a leaf spring is not required, there is no possibility that the guide surface or the lens holding plate is deformed even if the driving amount is large, and the lens positioning accuracy is reduced. There is no fear of lens deformation. Further, if the driving means has at least three driving devices respectively connected to different portions of the lens holding plate in the circumferential direction, by changing the driving amount of each driving device, the center of the lens holding plate and the lens can be adjusted. The angle of inclination with respect to the vertical plane can be adjusted.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1および図2は本発明の一実施例に係る
レンズ移動装置の構成を示す。図2は平面図であり、図
1は図2におけるAーB断面図である。
FIGS. 1 and 2 show the structure of a lens moving device according to an embodiment of the present invention. FIG. 2 is a plan view, and FIG. 1 is a sectional view taken along a line AB in FIG.

【0010】同図のレンズ移動装置は、装置全体を支持
する環状の台盤1と、これに一体的に設けられた円筒状
の支持手段である固定部材2と、その支持面である内周
面に遊合する円筒状のレンズ保持盤3と、該レンズ保持
盤3に保持されたレンズ4と、レンズ4を台盤1に対し
て接近、離間させる3個の駆動手段であるZリニアモー
タ5a〜5cと、レンズ4の台盤1に対する回転を規制
する第2の支持手段(取り付け板15aおよび多孔質パ
ッド17等)を有する。固定部材2の内周面とレンズ保
持盤3の案内面である外周面は、固定部材2の内周面に
保持された環状の多孔質絞り型の静圧軸受手段である多
孔質パッド7から噴出される加圧流体の静圧によって互
に非接触に支持され、従って、レンズ4は、固定部材2
と案内部材3の中心軸(以下「Z軸」という。)に沿っ
て往復移動自在である。また、多孔質パッド7の軸受間
隙の許す範囲内において、Z軸に対して傾斜自在であ
り、多孔質パッド7のZ軸方向の寸法を小さくすること
で、Z軸に対する傾斜角の許容値を大きくすることがで
きる。さらに、レンズ保持盤3、レンズ4の重量の大部
分は台盤1とリニアモータ可動子51a〜51cの間に
設けられた付勢手段であるベローズシリンダ8a〜8c
への加圧流体の圧力によって支持される。固定部材2は
多孔質パッド7に加圧流体を供給する図示しない内部流
路を有し、また、台盤1はベローズシリンダ8a〜8c
に加圧流体を供給する図示しない内部流路を有する。な
お、多孔質パッド7とレンズ保持盤3との間の間隔の寸
法は7μm程度である。
The lens moving apparatus shown in FIG. 1 has an annular base 1 for supporting the entire apparatus, a fixing member 2 which is a cylindrical supporting means provided integrally therewith, and an inner peripheral surface which is a supporting surface thereof. A cylindrical lens holding board 3 that fits on a surface, a lens 4 held by the lens holding board 3, and a Z linear motor as three driving means for moving the lens 4 toward and away from the base 1. 5a to 5c and second support means (the mounting plate 15a, the porous pad 17, etc.) for restricting the rotation of the lens 4 with respect to the base 1. The inner peripheral surface of the fixed member 2 and the outer peripheral surface which is the guide surface of the lens holding plate 3 are formed from a porous pad 7 which is an annular porous diaphragm type hydrostatic bearing means held on the inner peripheral surface of the fixed member 2. The lenses 4 are supported in non-contact with each other by the static pressure of the jetted pressurized fluid, and therefore, the lens 4
, And can reciprocate along a central axis (hereinafter, referred to as “Z axis”) of the guide member 3. Further, the porous pad 7 can be inclined with respect to the Z-axis within a range allowed by the bearing gap, and by reducing the dimension of the porous pad 7 in the Z-axis direction, the allowable value of the inclination angle with respect to the Z-axis can be reduced. Can be bigger. Further, most of the weight of the lens holding plate 3 and the lens 4 is caused by bellows cylinders 8a to 8c serving as urging means provided between the base plate 1 and the linear motor movers 51a to 51c.
Is supported by the pressure of the pressurized fluid to the The fixing member 2 has an internal flow path (not shown) for supplying a pressurized fluid to the porous pad 7, and the base 1 has bellows cylinders 8a to 8c.
Has an internal flow path (not shown) for supplying a pressurized fluid to the fluid. Note that the distance between the porous pad 7 and the lens holding plate 3 is about 7 μm.

【0011】Zリニアモータ5a〜5cは取り付け板1
5a〜15cを介してレンズ保持盤3に固設された可動
子51a〜51cと台盤1に固設された固定子52a〜
52cを備え、固定部材2の外側に周方向に等間隔で配
設されている。可動子51a〜51cは取り付け板15
a〜15cと一体である支持体16a〜16cに固着さ
れたコイルであり、図示しない配線によって所定の駆動
回路に接続され、該駆動回路から供給される電流量に応
じてZ軸方向へ駆動される。各Zリニアモータ5a〜5
cの固定子52a〜52cは内面に永久磁石を有する筒
状の枠体である。各Zリニアモータ5a〜5cに供給さ
れる電流量が同じであれば、レンズ4はZ軸方向に移動
し、各Zリニアモータ5a〜5cに供給される電流量を
個別に変化させることによってレンズ4のZ軸に対する
傾斜角度を変化させることができる。
The Z linear motors 5a to 5c are mounted on the mounting plate 1.
The movers 51a to 51c fixed to the lens holding board 3 and the stators 52a to 52 fixed to the base plate 1 via 5a to 15c.
52c are provided outside the fixing member 2 at equal intervals in the circumferential direction. The movers 51a to 51c are attached to the mounting plate 15.
The coils are fixed to supports 16a to 16c integral with a to 15c, are connected to a predetermined drive circuit by wiring (not shown), and are driven in the Z-axis direction according to the amount of current supplied from the drive circuit. You. Each Z linear motor 5a-5
The stators 52a to 52c of c are cylindrical frames having a permanent magnet on the inner surface. If the amount of current supplied to each of the Z linear motors 5a to 5c is the same, the lens 4 moves in the Z-axis direction, and the amount of current supplied to each of the Z linear motors 5a to 5c is individually changed. 4 with respect to the Z axis can be changed.

【0012】図2に示すように、取り付け板15a〜1
5cは、固定部材2の切り欠き部18a〜18cに遊合
している。取り付け板15aの側面と対向する固定部材
2の切り欠き部18aの側面には、多孔質絞り型の静圧
軸受手段である多孔質パッド17が設けられている。取
り付け板15aは、その側面が案内面になっていて対向
する一対の多孔質パッド17により非接触で支持され
る。従って、レンズ4はZ軸回りに回動することを規制
されている。
As shown in FIG. 2, the mounting plates 15a to 15a
5c fits into the notches 18a to 18c of the fixing member 2. On the side surface of the cutout portion 18a of the fixing member 2 facing the side surface of the mounting plate 15a, a porous pad 17 which is a porous throttle type static pressure bearing means is provided. The mounting plate 15a has a side surface serving as a guide surface, and is supported in a non-contact manner by a pair of opposed porous pads 17. Therefore, the rotation of the lens 4 about the Z axis is restricted.

【0013】台盤1は各Zリニアモータ5a〜5cに隣
接する第1の非接触型の変位センサ9a〜9cを有し、
各変位センサ9a〜9cは取り付け板15a〜15cの
図示下面に対向する検出端を有し、レンズ4のZ軸方向
の位置の変化を検出する。変位センサ9a〜9cの出力
を前述の駆動回路にフィードバックすることにより、レ
ンズ4の微動位置決めを自動的に行なうことができる。
The base 1 has first non-contact type displacement sensors 9a to 9c adjacent to the Z linear motors 5a to 5c, respectively.
Each of the displacement sensors 9a to 9c has a detection end facing the illustrated lower surface of the mounting plates 15a to 15c, and detects a change in the position of the lens 4 in the Z-axis direction. By feeding back the outputs of the displacement sensors 9a to 9c to the drive circuit described above, the fine movement positioning of the lens 4 can be performed automatically.

【0014】本実施例は、Zリニアモータ5a〜5cが
それぞれ個別に台盤1上に支持されており、また、レン
ズ保持盤3と台盤1が非接触であるため、レンズ保持盤
3の移動中に大きな振動が発生するおそれがない。ま
た、ベローズシリンダ8a〜8cによってレンズ保持盤
3や保持されたレンズ4の重量の大部分を支えているた
め、Zリニアモータ5a〜5cの駆動力が小さくて済
む。
In this embodiment, the Z linear motors 5a to 5c are individually supported on the base 1, and the lens holder 3 and the base 1 are not in contact with each other. There is no possibility that large vibrations occur during the movement. Further, since most of the weight of the lens holding plate 3 and the held lens 4 is supported by the bellows cylinders 8a to 8c, the driving force of the Z linear motors 5a to 5c can be small.

【0015】なお、レンズの初期取り付け状態を調整す
るために、レンズ4のZ軸に対する傾斜角度を変化させ
た場合は、これに伴って多孔質パッド7の軸受間隙の寸
法と、各Zリニアモータ5a〜5cのそれぞれの永久磁
石とコイルの間隙寸法が変化するが、このような傾斜量
は微量であるため、多孔質パッド7とレンズ保持盤3が
接触したり、あるいはリニアモータの駆動量が著しく制
限されるおそれはない。すなわち、通常は、リニアモー
タの最小間隙は1〜2mm程度であり、例えば、図3に
示すように、多孔質パッド7の軸受面の直径をd、Z軸
方向の寸法をw、軸受間隙の中心部の寸法をh0、軸受
間隙の両端の寸法h1,h2としたとき、d=200m
m、w=20mm、レンズ4の傾斜角度の微調節量αが
3x10ー4radであれば、軸受間隙の寸法の変動量
(h1−h2)/2は約3μmとなる(h0の変動量は
無視できるほど小さい)が、前述のように、多孔質パッ
ド7の間隙寸法h1,h2の初期設定値は7μm程度に
設定されているため、上記のトラブルは発生しない。ま
た、各リニアモータの可動ストロークは5mm程度まで
可能である。
When the inclination angle of the lens 4 with respect to the Z axis is changed to adjust the initial mounting state of the lens, the dimension of the bearing gap of the porous pad 7 and the Z linear motor Although the gap size between the permanent magnet and the coil of each of 5a to 5c changes, such a small amount of inclination causes the contact between the porous pad 7 and the lens holding plate 3 or the driving amount of the linear motor. There is no danger of significant restrictions. That is, usually, the minimum gap of the linear motor is about 1 to 2 mm. For example, as shown in FIG. 3, the diameter of the bearing surface of the porous pad 7 is d, the dimension in the Z-axis direction is w, and the gap of the bearing gap is w. Assuming that the dimension at the center is h0 and the dimensions h1 and h2 at both ends of the bearing gap, d = 200 m
m, w = 20mm, if fine adjustment of the inclination angle of the lens 4 alpha is a 3x10 over 4 rad, the fluctuation amount of the size of the bearing gap (h1-h2) / 2 is about 3 [mu] m (amount of variation of h0 is However, as described above, since the initial setting values of the gap dimensions h1 and h2 of the porous pad 7 are set to about 7 μm, the above trouble does not occur. The movable stroke of each linear motor can be up to about 5 mm.

【0016】図4は第2の実施例を示すもので、本実施
例は第1の実施例の環状の多孔質軸受7の代わりに、案
内面が平面である多孔質軸受パッド27を複数枚対向す
るように設けた構成である。従って、図2の多孔質軸受
パッド17のような他の支持手段を付加することなく、
レンズ4はZ軸回りに回動することを規制される。
FIG. 4 shows a second embodiment. In this embodiment, a plurality of porous bearing pads 27 each having a flat guide surface are used in place of the annular porous bearing 7 of the first embodiment. This is a configuration provided to face each other. Therefore, without adding other support means such as the porous bearing pad 17 of FIG.
The rotation of the lens 4 about the Z axis is restricted.

【0017】なお、第1および第2の実施例のZリニア
モータの代わりに圧電素子や回転モータとネジまたは弾
性ヒンジの組み合わせを用いることもできる。
It is to be noted that a combination of a piezoelectric element or a rotary motor and a screw or an elastic hinge can be used instead of the Z linear motor of the first and second embodiments.

【0018】[0018]

【発明の効果】本発明のレンズ移動装置では、レンズ保
持盤(静圧軸受)の傾斜角度方向のストロークを犠牲に
することなくラジアル方向の軸受剛性を向上させること
ができるために耐外乱特性が向上し、駆動量が大きく
(長ストロークが可能)てもレンズの位置決め精度が低
下するおそれがない。加えて、レンズを安定して支持
し、クリーン度が高いためにレンズを汚染する恐れもな
い。さらに、レンズ光軸の傾斜角度を調節し、レンズを
移動させる方向をレンズ光軸方向に合わせることができ
るため、各構成部品の形状寸法や組み立て精度を緩くで
き、コストが安くなる。
According to the lens moving device of the present invention, the bearing rigidity in the radial direction can be improved without sacrificing the stroke of the lens holding plate (static pressure bearing) in the direction of the inclination angle, so that the resistance to disturbance is improved. Therefore, even if the driving amount is large (a long stroke is possible), there is no possibility that the positioning accuracy of the lens is reduced. In addition, since the lens is stably supported and the degree of cleanness is high, there is no danger of contaminating the lens. Further, since the direction of movement of the lens can be adjusted to the direction of the lens optical axis by adjusting the tilt angle of the lens optical axis, the shape and dimensions of each component and the assembling accuracy can be reduced, and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係るレンズ移動装置の模
式断面図である。
FIG. 1 is a schematic sectional view of a lens moving device according to one embodiment of the present invention.

【図2】 図1の装置の模式平面図である。FIG. 2 is a schematic plan view of the device of FIG.

【図3】 図1の装置の一部分を拡大して示す拡大部分
断面図である。
FIG. 3 is an enlarged partial sectional view showing a part of the apparatus of FIG. 1 in an enlarged manner.

【図4】 本発明の他の実施例に係るレンズ移動装置の
模式平面図である。
FIG. 4 is a schematic plan view of a lens moving device according to another embodiment of the present invention.

【符号の説明】 1:台盤、 2:固定部材、 3:レンズ保持盤、
4:レンズ、 5a〜5c:Zリニアモータ、 7,1
7,27:多孔質パッド、8a〜8c:ベローズ、 9
a〜9c:変位センサ。
[Description of Signs] 1: Base board, 2: Fixing member, 3: Lens holding board,
4: Lens, 5a to 5c: Z linear motor, 7, 1
7, 27: porous pad, 8a to 8c: bellows, 9
a to 9c: displacement sensors.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 レンズ光路を遮らないように開口部を有
する台盤と、台盤に立設された支持手段と、該支持手段
の支持面に対向する案内面を有するレンズ保持盤と、前
記支持面と前記案内面を互に非接触に支持する静圧軸受
手段と、前記レンズ保持盤を前記支持面に平行な軸に沿
って移動させる駆動手段とを有し、前記駆動手段が前記
台盤に個別に支持された複数個の駆動装置を備えている
ことを特徴とするレンズ移動装置。
A pedestal having an opening so as not to block a lens optical path; support means erected on the pedestal; a lens holding disk having a guide surface facing a support surface of the support means; Hydrostatic bearing means for supporting the support surface and the guide surface in non-contact with each other, and drive means for moving the lens holding plate along an axis parallel to the support surface, wherein the drive means is provided on the base. A lens moving device comprising a plurality of driving devices individually supported on a board.
【請求項2】 前記案内面が前記レンズ保持盤と一体で
ある円筒状の案内部材の内周面または外周面であり、前
記レンズ保持盤の前記支持面に平行な軸まわりの回転を
非接触に規制する第2の静圧軸受手段をさらに有するこ
とを特徴とする請求項1記載のレンズ移動装置。
2. The method according to claim 1, wherein the guide surface is an inner circumferential surface or an outer circumferential surface of a cylindrical guide member integrated with the lens holding plate, and the rotation around an axis parallel to the support surface of the lens holding plate is not contacted. 2. The lens moving device according to claim 1, further comprising a second hydrostatic bearing means for restricting the lens movement.
【請求項3】 前記静圧軸受手段が多孔質絞り型である
ことを特徴とする請求項1または2記載のレンズ移動装
置。
3. The lens moving device according to claim 1, wherein said hydrostatic bearing means is a porous diaphragm type.
【請求項4】 前記駆動手段が、レンズ保持盤の周方向
の異なる部位にそれぞれ連結された少なくとも3個の駆
動装置を有することを特徴とする請求項1ないし3のい
ずれか1項に記載のレンズ移動装置。
4. The apparatus according to claim 1, wherein said driving means has at least three driving devices respectively connected to different circumferential portions of the lens holding plate. Lens moving device.
【請求項5】 前記駆動手段がリニアモータを含むこと
を特徴とする請求項請求項1ないし4のいずれか1項に
記載のレンズ移動装置。
5. The lens moving device according to claim 1, wherein said driving means includes a linear motor.
JP9019601A 1997-01-20 1997-01-20 Lens moving device Pending JPH10206714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9019601A JPH10206714A (en) 1997-01-20 1997-01-20 Lens moving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9019601A JPH10206714A (en) 1997-01-20 1997-01-20 Lens moving device

Publications (1)

Publication Number Publication Date
JPH10206714A true JPH10206714A (en) 1998-08-07

Family

ID=12003743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9019601A Pending JPH10206714A (en) 1997-01-20 1997-01-20 Lens moving device

Country Status (1)

Country Link
JP (1) JPH10206714A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195788A (en) * 1998-12-23 2000-07-14 Carl Zeiss Stiftung Trading As Carl Zeiss Optical system, projection illumination unit used especially for microlithography
JP2001168027A (en) * 1999-11-05 2001-06-22 Asm Lithography Bv Lithography device
WO2002016993A1 (en) * 2000-08-18 2002-02-28 Nikon Corporation Optical element holding device
JP2002519843A (en) * 1998-06-20 2002-07-02 カール・ツアイス・スティフツング・トレーディング・アズ・カール・ツアイス Optical systems, especially projection exposure equipment for microlithography
JP2002214504A (en) * 2001-01-19 2002-07-31 Canon Inc Optical device and photographing device
EP1318424A2 (en) * 2001-12-06 2003-06-11 Nikon Corporation Non-contacting holding device for an optical component
US6912094B2 (en) 2001-03-27 2005-06-28 Nikon Corporation Projection optical system, a projection exposure apparatus, and a projection exposure method
US7054079B2 (en) 2003-05-14 2006-05-30 Canon Kabushiki Kaisha Optical element holder, exposure apparatus, and device fabricating method
JP2007523485A (en) * 2004-02-20 2007-08-16 カール・ツアイス・エスエムテイ・アーゲー Projection objective lens of microlithography projection exposure apparatus
JP2008306216A (en) * 2004-02-27 2008-12-18 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
JP2009545146A (en) * 2006-07-24 2009-12-17 カール・ツァイス・エスエムティー・アーゲー Optical device and method for correcting or improving imaging behavior of an optical device
JP2010500770A (en) * 2006-08-16 2010-01-07 カール・ツァイス・エスエムティー・アーゲー Optical system for semiconductor lithography
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2014239234A (en) * 2008-06-10 2014-12-18 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical device that can adjust force action onto optical module
WO2015005018A1 (en) * 2013-07-10 2015-01-15 コニカミノルタ株式会社 Lens drive device and imaging device
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US20230060389A1 (en) * 2021-08-26 2023-03-02 Canon Kabushiki Kaisha Driving apparatus, exposure apparatus, and article manufacturing method

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002519843A (en) * 1998-06-20 2002-07-02 カール・ツアイス・スティフツング・トレーディング・アズ・カール・ツアイス Optical systems, especially projection exposure equipment for microlithography
JP2000195788A (en) * 1998-12-23 2000-07-14 Carl Zeiss Stiftung Trading As Carl Zeiss Optical system, projection illumination unit used especially for microlithography
JP2001168027A (en) * 1999-11-05 2001-06-22 Asm Lithography Bv Lithography device
US7154684B2 (en) 2000-08-18 2006-12-26 Nikon Corporation Optical element holding apparatus
US7420752B2 (en) 2000-08-18 2008-09-02 Nikon Corporation Holding apparatus
WO2002016993A1 (en) * 2000-08-18 2002-02-28 Nikon Corporation Optical element holding device
JP2002214504A (en) * 2001-01-19 2002-07-31 Canon Inc Optical device and photographing device
US6912094B2 (en) 2001-03-27 2005-06-28 Nikon Corporation Projection optical system, a projection exposure apparatus, and a projection exposure method
EP1318424A2 (en) * 2001-12-06 2003-06-11 Nikon Corporation Non-contacting holding device for an optical component
EP1318424A3 (en) * 2001-12-06 2005-05-04 Nikon Corporation Non-contacting holding device for an optical component
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US7054079B2 (en) 2003-05-14 2006-05-30 Canon Kabushiki Kaisha Optical element holder, exposure apparatus, and device fabricating method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP4776551B2 (en) * 2004-02-20 2011-09-21 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection objective lens of microlithography projection exposure apparatus
JP2007523485A (en) * 2004-02-20 2007-08-16 カール・ツアイス・エスエムテイ・アーゲー Projection objective lens of microlithography projection exposure apparatus
JP2008306216A (en) * 2004-02-27 2008-12-18 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2009545146A (en) * 2006-07-24 2009-12-17 カール・ツァイス・エスエムティー・アーゲー Optical device and method for correcting or improving imaging behavior of an optical device
JP2010500770A (en) * 2006-08-16 2010-01-07 カール・ツァイス・エスエムティー・アーゲー Optical system for semiconductor lithography
US9383544B2 (en) 2006-08-16 2016-07-05 Carl Zeiss Smt Gmbh Optical system for semiconductor lithography
US8269947B2 (en) 2006-08-16 2012-09-18 Carl Zeiss Smt Gmbh Optical system for semiconductor lithography
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9766549B2 (en) 2008-06-10 2017-09-19 Carl Zeiss Smt Gmbh Optical apparatus with adjustable action of force on an optical module
US10175581B2 (en) 2008-06-10 2019-01-08 Carl Zeiss Smt Gmbh Optical apparatus with adjustable action of force on an optical module
JP2014239234A (en) * 2008-06-10 2014-12-18 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical device that can adjust force action onto optical module
WO2015005018A1 (en) * 2013-07-10 2015-01-15 コニカミノルタ株式会社 Lens drive device and imaging device
US20230060389A1 (en) * 2021-08-26 2023-03-02 Canon Kabushiki Kaisha Driving apparatus, exposure apparatus, and article manufacturing method

Similar Documents

Publication Publication Date Title
JPH10206714A (en) Lens moving device
US5524502A (en) Positioning apparatus including a hydrostatic bearing for spacing apart a supporting surface and a guide surface
US7573225B2 (en) Electromagnetic alignment and scanning apparatus
JP3640971B2 (en) Positioning device having a force actuator device for compensating for the movement of the center of gravity
JP3506158B2 (en) Exposure apparatus, scanning exposure apparatus, and scanning exposure method
US5858587A (en) Positioning system and method and apparatus for device manufacture
KR100314556B1 (en) An exposure apparatus and an exposure method
US6158298A (en) Stage apparatus and exposure apparatus provided with the stage apparatus
JP4384664B2 (en) High-precision dynamic alignment mechanism for sample inspection and processing
JP3728008B2 (en) Bearing device and positioning device
US6760358B1 (en) Line-narrowing optics module having improved mechanical performance
JPH11251409A (en) Positioner and aligner
JPH0240594A (en) Flap stage
JP2000223411A (en) Positioner and aligner, and device manufacture
JP4287781B2 (en) Positioning device having a reference frame for a measurement system
TW202309998A (en) Driving apparatus, exposure apparatus, and article manufacturing method
KR100430494B1 (en) Positioning apparatus having an object table without the influence of vibration and lithographic apparatus provided with the positioning apparatus
JPH01193133A (en) Fine adjustment stage