JPH10197494A - Eddy current flaw detector - Google Patents

Eddy current flaw detector

Info

Publication number
JPH10197494A
JPH10197494A JP558097A JP558097A JPH10197494A JP H10197494 A JPH10197494 A JP H10197494A JP 558097 A JP558097 A JP 558097A JP 558097 A JP558097 A JP 558097A JP H10197494 A JPH10197494 A JP H10197494A
Authority
JP
Japan
Prior art keywords
eddy current
signal
shape
current flaw
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP558097A
Other languages
Japanese (ja)
Inventor
Akihiro Kirihigashi
章浩 切東
Masaaki Kurokawa
政秋 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP558097A priority Critical patent/JPH10197494A/en
Publication of JPH10197494A publication Critical patent/JPH10197494A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable highly accurate detection even at a location where the shape of a specimen changes by generating an eddy current flaw detection shape signal only under the influence of the shape alone of the specimen by simulation based on a shape signal of the specimen calculated from a measured value of a displacement gage. SOLUTION: A sensor part is driven by an eddy current flaw detection section 2 to scan the inside of a specimen 5 such as SG piping of a nuclear power piping plant. A displacement meter 11 measures the shape of the inside of the specimen 5 to output a displacement signal 22 to the eddy current flaw detection section 2. A shape detecting section 13 calculates a shape signal of the inside of the specimen based on a position signal 21 and the displacement signal 22 to be outputted to a waveform forming section 14. The waveform forming section 14 calculates an eddy current flaw detection shape signal 23 attributed to changes 8 in the shape of the specimen 5 alone by simulation based on the shape signal of the specimen 5 obtained. An arithmetic section 15 subtracts the eddy current flaw detection shape signal 23 from the eddy current flaw detection coil signal 9 thereby obtaining an eddy current flaw detection defect signal 24 only belonging to a defect 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検体に磁場を発
生させて誘起された渦電流の変化から被検体の欠陥を検
出する渦電流探傷装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detection apparatus for detecting a defect in a subject from a change in eddy current induced by generating a magnetic field in the subject.

【0002】[0002]

【従来の技術】渦電流探傷は、非破壊検査手法として頻
繁に適用される手法であり、例えば原子力プラントの配
管・機器等の欠陥探傷に広く用いられている。従来の渦
電流探傷装置を図2に示す。本装置は、渦電流探傷コイ
ル1と、渦電流探傷コイル1を駆動するための渦電流探
傷部2及び得られた渦電流探傷コイル信号9を画像表示
する画像表示部3から構成される。渦電流探傷コイル1
から出た変動磁場4が、被検体5に渦電流6を発生させ
る。渦電流6は渦電流探傷コイル1により検出され、得
られた渦電流探傷コイル信号9は、画像表示部3により
信号処理され、見やすい形で表示される。ここで、被検
体5に欠陥7がある場合、この渦電流6の流れ方が欠陥
7の位置では変化し、渦電流探傷コイル信号9の変化と
して現れる。この変化を観測することで、欠陥を検知す
ることが出来る。
2. Description of the Related Art Eddy current inspection is a method frequently applied as a nondestructive inspection method, and is widely used, for example, for defect inspection of piping and equipment of nuclear power plants. FIG. 2 shows a conventional eddy current flaw detector. This apparatus comprises an eddy current flaw detection coil 1, an eddy current flaw detection unit 2 for driving the eddy current flaw detection coil 1, and an image display unit 3 for displaying an obtained eddy current flaw detection coil signal 9 in an image. Eddy current testing coil 1
Generates a eddy current 6 in the subject 5. The eddy current inspection coil 1 is detected by the eddy current inspection coil 1, and the obtained eddy current inspection coil signal 9 is signal-processed by the image display unit 3 and displayed in an easily viewable form. Here, when there is a defect 7 in the subject 5, the flow of the eddy current 6 changes at the position of the defect 7 and appears as a change in the eddy current flaw detection coil signal 9. By observing this change, a defect can be detected.

【0003】[0003]

【発明が解決しようとする課題】上記従来の渦電流探傷
装置では、被検体5に形状変化8がある場合、渦電流6
は、形状変化8及び欠陥7両者の影響を受け、この形状
変化8の影響による渦電流6の変化が大きい場合、欠陥
7があってもその信号が埋もれてしまい、欠陥検出が困
難な場合があった。
In the above-mentioned conventional eddy current flaw detector, when the object 5 has a shape change 8, the eddy current 6
Is affected by both the shape change 8 and the defect 7. If the change of the eddy current 6 due to the effect of the shape change 8 is large, the signal of the defect 7 is buried even if the defect 7 exists, which sometimes makes it difficult to detect the defect. there were.

【0004】本発明は上記課題を解決するためになされ
たもので、その目的とするところは、被検体の形状が変
化する箇所であっても高精度の欠陥検出を可能とする渦
電流探傷装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide an eddy current flaw detection device capable of detecting a defect with high accuracy even in a portion where the shape of an object changes. Is to provide.

【0005】[0005]

【課題を解決するための手段】本発明の渦電流探傷装置
は、磁場を発生させて被検体に誘起された渦電流による
磁場を検出して渦電流探傷コイル信号として出力する渦
電流探傷コイル及び被検体の形状を検出する変位計から
なるセンサ部と、このセンサ部を駆動させる渦電流探傷
部と、前記変位計の測定値に基づいて被検体の形状信号
を算出する形状検出部と、この形状信号に基づいてシミ
ュレーションにより被検体の形状のみの影響を受ける渦
電流探傷形状信号を発生させる波形形成部と、前記渦電
流探傷コイル信号から前記渦電流探傷形状信号を減算
し、渦電流探傷欠陥信号を生成する演算部と、この渦電
流探傷欠陥信号を画像化して表示する画像表示部とを具
備したことを特徴とする。
SUMMARY OF THE INVENTION An eddy current flaw detection apparatus according to the present invention comprises: an eddy current flaw detection coil for generating a magnetic field, detecting a magnetic field due to an eddy current induced in a subject, and outputting the detected magnetic field as an eddy current flaw detection coil signal; A sensor unit including a displacement meter that detects the shape of the subject, an eddy current flaw detection unit that drives the sensor unit, a shape detection unit that calculates a shape signal of the subject based on a measurement value of the displacement meter, A waveform forming section for generating an eddy current flaw detection shape signal affected only by the shape of the subject by simulation based on the shape signal; and subtracting the eddy current flaw detection shape signal from the eddy current flaw detection coil signal to obtain an eddy current flaw detection defect It is characterized by comprising an arithmetic unit for generating a signal, and an image display unit for imaging and displaying the eddy current flaw detection defect signal.

【0006】本発明の渦電流探傷装置によれば、以下に
示す作用・効果を有する。渦電流探傷部がセンサ部を駆
動させる。センサ部の駆動に伴い、渦電流探傷コイルが
変動磁場を発生し、被検体に渦電流を発生させる。ま
た、変位計が被検体の形状を測定する。この変位計の測
定値は、渦電流探傷部を介して形状検出部に出力され
る。被検体の形状が変化し、欠陥が生じた場所付近を走
査する場合、渦電流が変動し、渦電流探傷コイルのイン
ピーダンスが変化する。このインピーダンスの変化は渦
電流探傷部を介して演算部に出力される。
According to the eddy current flaw detector of the present invention, the following operations and effects are obtained. The eddy current testing unit drives the sensor unit. With the driving of the sensor unit, the eddy current inspection coil generates a fluctuating magnetic field, and generates an eddy current in the subject. The displacement meter measures the shape of the subject. The measurement value of this displacement meter is output to the shape detection unit via the eddy current detection unit. When the shape of the subject changes and the vicinity of the location where the defect occurs is scanned, the eddy current fluctuates, and the impedance of the eddy current flaw detection coil changes. This change in impedance is output to the calculation unit via the eddy current detection unit.

【0007】形状検出部は、入力された変位計の測定値
に基づいて被検体の形状を表す形状信号を生成し、波形
発生部に出力する。波形発生部はこの形状信号に基き、
シミュレーション解析により被検体の形状のみの影響を
考慮した渦電流探傷形状信号を生成し、演算部に出力す
る。
The shape detector generates a shape signal representing the shape of the subject based on the input measurement values of the displacement meter, and outputs the shape signal to the waveform generator. The waveform generator is based on this shape signal,
An eddy current flaw detection shape signal that takes into account only the influence of the shape of the subject by simulation analysis is generated and output to the calculation unit.

【0008】演算部は、形状変化及び欠陥による影響の
両者を含む測定値である渦電流探傷コイル信号から、被
検体の形状のみを考慮してシミュレーションにより生成
された渦電流探傷形状信号を減算し、欠陥のみの影響を
示す渦電流探傷欠陥信号を演算し、画像表示部に出力す
る。画像表示部は、渦電流探傷欠陥信号波形を表示し、
この表示された画像より観測者は欠陥の有無を検知でき
る。
The arithmetic unit subtracts an eddy current flaw detection shape signal generated by simulation taking only the shape of the object into consideration from an eddy current flaw detection coil signal which is a measurement value including both the shape change and the influence of a defect. Then, an eddy current flaw detection signal indicating the influence of only the defect is calculated and output to the image display unit. The image display unit displays the eddy current flaw detection defect signal waveform,
The observer can detect the presence or absence of a defect from the displayed image.

【0009】このように、測定された形状、欠陥両者の
影響を受けた渦電流探傷コイル信号からシミュレーショ
ンにより被検体の形状のみの影響を考慮した渦電流探傷
形状信号を減算することで、欠陥のみの影響を考慮した
探傷波形を生成することが可能となる。従って、被検体
の形状の変化の影響を受けず、欠陥の検出の精度が向上
する。
As described above, by subtracting the eddy current flaw detection shape signal in consideration of only the shape of the subject from the eddy current flaw detection coil signal affected by both the measured shape and the defect, only the defect is obtained. It is possible to generate a flaw detection waveform in consideration of the effect of Accordingly, the accuracy of defect detection is improved without being affected by the change in the shape of the object.

【0010】[0010]

【発明の実施の形態】以下、図面を参照しながら本発明
の一実施形態を説明する。図1は、本発明の一実施形態
に係る渦電流探傷装置の全体構成を示すブロック図であ
る。本装置は、変動磁場を発生させる渦電流探傷コイル
1、被検体5の形状を測定する変位計11及び被検体5
の位置を測定する位置信号検出部12からなるセンサ部
と、このセンサ部を駆動させる渦電流探傷部2と、渦電
流探傷部2から出力された位置信号21及び変位信号2
2に基づいて被検体5の形状を表す形状信号を検出し、
その信号波形を表示する形状検出部13と、形状検出部
13において生成された形状信号を用いて、シミュレー
ション解析を行うことで被検体5の形状による渦電流探
傷コイル1の渦電流探傷形状信号23を生成する波形形
成部14と、渦電流探傷形状信号23及び渦電流探傷コ
イル信号9に基づいて渦電流探傷欠陥信号24を演算す
る演算部15と、渦電流探傷欠陥信号24を表示する画
像表示部3から構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the overall configuration of the eddy current inspection device according to one embodiment of the present invention. The present apparatus includes an eddy current flaw detection coil 1 for generating a fluctuating magnetic field, a displacement meter 11 for measuring the shape of a subject 5, and a subject 5.
, An eddy current flaw detector 2 for driving the sensor, a position signal 21 and a displacement signal 2 output from the eddy current flaw detector 2
2, a shape signal representing the shape of the subject 5 is detected,
By performing a simulation analysis using the shape detection unit 13 displaying the signal waveform and the shape signal generated by the shape detection unit 13, the eddy current flaw detection shape signal 23 of the eddy current flaw detection coil 1 based on the shape of the subject 5 is obtained. , An arithmetic unit 15 for calculating an eddy current flaw detection signal 24 based on an eddy current flaw shape signal 23 and an eddy current flaw detection coil signal 9, and an image display for displaying the eddy current flaw detection signal 24. It is composed of a unit 3.

【0011】上記実施形態の動作を説明する。図1に示
すように、渦電流探傷部2により、センサ部を駆動さ
せ、例えば原子力配管プラントのSG配管等の被検体5
の内部を配管の軸方向に沿って走査させる。センサ部を
構成する渦電流探傷コイル1は、励磁により変動磁場を
発生させる。この変動磁場は、被検体5の内部で渦電流
を誘起する。被検体5内部が渦電流探傷コイル1に対し
て一定の形状を保持しかつ欠陥がなければ、この渦電流
は一定である。また、センサ部の走査に伴い、変位計1
1は、被検体5内部の形状を測定し、変位信号22とし
て渦電流探傷部2に出力する。また、例えばロータリー
エンコーダからなる位置信号検出部12は、センサ部の
位置を検出し、渦電流探傷部2に位置信号21として出
力する。
The operation of the above embodiment will be described. As shown in FIG. 1, the sensor unit is driven by the eddy current flaw detection unit 2, and an object 5 such as an SG pipe or the like of a nuclear piping plant is driven.
Is scanned along the axial direction of the pipe. The eddy current flaw detection coil 1 constituting the sensor generates a fluctuating magnetic field by excitation. This fluctuating magnetic field induces an eddy current inside the subject 5. The eddy current is constant if the inside of the subject 5 keeps a constant shape with respect to the eddy current flaw detection coil 1 and there is no defect. In addition, with the scanning of the sensor unit, the displacement meter 1
1 measures the shape inside the subject 5 and outputs it to the eddy current flaw detector 2 as a displacement signal 22. Further, the position signal detection unit 12 including, for example, a rotary encoder detects the position of the sensor unit and outputs the position signal 21 to the eddy current flaw detection unit 2.

【0012】ここで、被検体5の内部に欠陥7がある場
合、その欠陥7付近をセンサ部が走査する際に、欠陥7
により渦電流探傷コイル1により誘起された渦電流が乱
れる。この乱れは、渦電流探傷コイル1のインピーダン
スの変化となって現れる。このインピーダンスの変化
は、渦電流探傷コイル信号9として渦電流探傷部2に出
力される。
If there is a defect 7 inside the subject 5, when the sensor section scans the vicinity of the defect 7, the defect 7
As a result, the eddy current induced by the eddy current detection coil 1 is disturbed. This disturbance appears as a change in the impedance of the eddy current inspection coil 1. This change in impedance is output to the eddy current inspection unit 2 as an eddy current inspection coil signal 9.

【0013】さらに、被検体5の内部に形状変化8があ
る場合、この形状変化8により上記欠陥7付近を走査す
る場合と同様に渦電流の乱れを生じる。さらに、変位計
11によりその形状が測定され、渦電流探傷部2に出力
される。
Further, when there is a shape change 8 inside the object 5, the shape change 8 causes disturbance of the eddy current as in the case where the vicinity of the defect 7 is scanned. Further, the shape is measured by the displacement meter 11 and output to the eddy current flaw detection unit 2.

【0014】渦電流探傷部2は、センサ部から送られた
渦電流探傷コイル信号9及び位置信号21を演算部15
に、位置信号21及び変位信号22を形状検出部13に
出力する。形状検出部13は、位置信号21及び変位信
号22に基づいて、被検体5内部の形状信号を算出す
る。この形状信号は、波形形成部14に出力される。
The eddy current flaw detection unit 2 calculates the eddy current flaw detection coil signal 9 and the position signal 21 sent from the sensor unit by the calculation unit 15.
Then, the position signal 21 and the displacement signal 22 are output to the shape detection unit 13. The shape detection unit 13 calculates a shape signal inside the subject 5 based on the position signal 21 and the displacement signal 22. This shape signal is output to the waveform forming unit 14.

【0015】波形形成部14は、得られた被検体5の形
状信号に基づいて、被検体5の形状変化8のみに起因す
る渦電流探傷形状信号23をシミュレーションにより算
出する。即ち、被検体5の表面形状が分かれば、渦電流
探傷コイル1と被検体5との位置関係が分かるため、そ
れらの配置をシミュレ―ションし、解析によりシミュレ
ーションによる渦電流探傷形状信号23を生成すること
ができる。具体的には、図1の波形形成部14の波線枠
内に示すようなシミュレーション配置を行い、この配置
に基づく理論上の渦電流探傷形状信号23を算出する。
即ち、この算出されたシミュレーションによる渦電流探
傷形状信号23は、被検体5の形状のみの影響を考慮し
た信号であり、被検体5内部にある欠陥7の影響は考慮
していない。このように算出された渦電流探傷形状信号
23は、演算部15に出力される。
The waveform forming section 14 calculates, based on the obtained shape signal of the subject 5, an eddy current flaw detection shape signal 23 caused by only the shape change 8 of the subject 5 by simulation. That is, if the surface shape of the test object 5 is known, the positional relationship between the eddy current flaw detection coil 1 and the test object 5 can be known. Therefore, their arrangement is simulated, and an eddy current flaw detection shape signal 23 by simulation is generated by analysis. can do. Specifically, a simulation arrangement as shown in the wavy frame of the waveform forming unit 14 in FIG. 1 is performed, and a theoretical eddy current flaw detection shape signal 23 based on this arrangement is calculated.
That is, the calculated eddy current flaw detection shape signal 23 obtained by the simulation is a signal in which the influence of only the shape of the subject 5 is considered, and does not consider the influence of the defect 7 inside the subject 5. The eddy current flaw detection shape signal 23 calculated in this way is output to the calculation unit 15.

【0016】演算部15は、波形形成部14で得られた
渦電流探傷形状信号23及び渦電流探傷部2から入力さ
れた渦電流探傷コイル信号9に基づいて、渦電流探傷欠
陥信号24を演算する。具体的には、図1の演算部15
枠内に示されるように、渦電流探傷コイル信号9から渦
電流探傷形状信号23を減算する。即ち、渦電流探傷コ
イル信号9は、形状変化8及び欠陥7両者の影響を受け
た信号であり、渦電流探傷形状信号23は、形状変化8
のみを考慮した信号であるので、上記減算を行うことで
欠陥7のみを考慮した渦電流探傷欠陥信号24が得られ
ることとなる。なお、減算を行うにあたって、渦電流探
傷コイル1と変位計11の位置が異なるため、位置を補
正する必要があるが、これらの位置関係は既知であるた
め、位置信号21を用いて既知量分シフトした値を演算
部15に入力することで補正が可能となる。このように
得られた渦電流探傷欠陥信号24は、画像表示部3に送
られ、表示される。
The calculating section 15 calculates an eddy current flaw detection signal 24 based on the eddy current flaw detection shape signal 23 obtained by the waveform forming section 14 and the eddy current flaw detection coil signal 9 inputted from the eddy current flaw detecting section 2. I do. Specifically, the operation unit 15 of FIG.
As shown in the frame, the eddy current flaw detection shape signal 23 is subtracted from the eddy current flaw detection coil signal 9. That is, the eddy current flaw detection coil signal 9 is a signal affected by both the shape change 8 and the defect 7, and the eddy current flaw detection shape signal 23 is
Since the signal takes into account only the defect 7, the above-mentioned subtraction results in an eddy current flaw detection defect signal 24 taking only the defect 7 into account. In performing the subtraction, since the positions of the eddy current flaw detection coil 1 and the displacement meter 11 are different, it is necessary to correct the positions. However, since these positional relationships are known, the position signal 21 is used to calculate a known amount. Correction is possible by inputting the shifted value to the calculation unit 15. The eddy current flaw detection signal 24 thus obtained is sent to the image display unit 3 and displayed.

【0017】このように、変位計11で被検体5の形状
を測定し、この測定値に基づいて波形形成部14でシミ
ュレーション解析を行うことで、形状のみの影響による
渦電流探傷信号を得ることが出来る。また、この形状の
みの影響を形状及び欠陥の影響を含む渦電流探傷コイル
信号9から減算することで、欠陥のみの影響を受ける渦
電流探傷信号を得ることができ、欠陥探傷時のS/N比
が向上し、被検体5の形状が大きく変化する箇所であっ
ても、欠陥の検出を確実に行うことが可能となる。
As described above, the shape of the subject 5 is measured by the displacement meter 11, and the waveform forming unit 14 performs a simulation analysis based on the measured values, thereby obtaining an eddy current flaw detection signal due to only the shape. Can be done. Further, by subtracting the influence of only the shape from the eddy current inspection coil signal 9 including the influence of the shape and the defect, an eddy current inspection signal affected by only the defect can be obtained, and the S / N at the time of the defect inspection can be obtained. The ratio is improved, and the defect can be reliably detected even at a location where the shape of the subject 5 changes significantly.

【0018】なお、本実施形態では原子力プラントのS
G配管を被検体5として用いたが、例えば原子力プラン
トの機器等、渦電流により欠陥の探傷可能なものであれ
ば本発明を適用可能であることは、勿論である。
In this embodiment, the nuclear power plant S
Although the G pipe was used as the test object 5, it is a matter of course that the present invention is applicable as long as a defect can be detected by eddy current, for example, equipment of a nuclear power plant.

【0019】また、位置信号検出部12により位置信号
21を検出して形状信号を算出し、また渦電流探傷コイ
ル信号9及びシミュレーションによる渦電流探傷形状信
号23のずれを補正する場合を示したが、センサ部が等
速で走査可能なものであれば、位置信号21が無くても
渦電流探傷形状信号23のシフト量を求めることが可能
であるため、位置信号検出部12を用いなくてもよい。
Also, there has been described a case where the position signal 21 is detected by the position signal detecting section 12 to calculate a shape signal, and a deviation between the eddy current flaw detection coil signal 9 and the eddy current flaw shape signal 23 by simulation is corrected. If the sensor unit is capable of scanning at a constant speed, the shift amount of the eddy current flaw detection shape signal 23 can be obtained without the position signal 21, so that the position signal detection unit 12 can be used. Good.

【0020】また、例えば変位計11が光を用いて測定
する場合等、変位計11が渦電流探傷コイル1の渦電流
の検出に影響を及ぼさない場合であれば、渦電流探傷コ
イル1及び変位計11を同じ位置に設けることが可能で
あり、この場合、当然のことながら位置信号検出部12
を省略可能である。
If the displacement meter 11 does not affect the detection of the eddy current of the eddy current inspection coil 1 such as when the displacement meter 11 measures using light, the eddy current inspection coil 1 and the displacement The total 11 can be provided at the same position. In this case, the position signal
Can be omitted.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、被
検体の形状の変化による信号を除去し、欠陥の影響を受
ける信号のみを抽出できるため、被検体の形状が変化す
る箇所であっても高精度の欠陥検出が可能となる。
As described above, according to the present invention, it is possible to remove a signal due to a change in the shape of the object and extract only a signal affected by the defect. However, highly accurate defect detection is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る渦電流探傷装置の全
体構成を示すブロック図。
FIG. 1 is a block diagram showing an overall configuration of an eddy current inspection device according to an embodiment of the present invention.

【図2】従来の渦電流探傷装置の全体構成を示すブロッ
ク図。
FIG. 2 is a block diagram showing the overall configuration of a conventional eddy current flaw detector.

【符号の説明】[Explanation of symbols]

1 渦電流探傷コイル 2 渦電流探傷部 3 画像表示部 5 被検体 7 欠陥 8 形状変化 9 渦電流探傷コイル信号 11 変位計 12 位置信号検出部 13 形状検出部 14 波形形成部 15 演算部 21 位置信号 22 変位信号 23 渦電流探傷形状信号 24 渦電流探傷欠陥信号 DESCRIPTION OF SYMBOLS 1 Eddy current flaw detection coil 2 Eddy current flaw detection part 3 Image display part 5 Subject 7 Defect 8 Shape change 9 Eddy current flaw detection coil signal 11 Displacement meter 12 Position signal detection part 13 Shape detection part 14 Waveform formation part 15 Operation part 21 Position signal 22 Displacement signal 23 Eddy current inspection shape signal 24 Eddy current inspection defect signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 磁場を発生させて被検体に誘起された渦
電流による磁場を検出して渦電流探傷コイル信号として
出力する渦電流探傷コイル及び被検体の形状を検出する
変位計からなるセンサ部と、このセンサ部を駆動させる
渦電流探傷部と、前記変位計の測定値に基づいて被検体
の形状信号を算出する形状検出部と、この形状信号に基
づいてシミュレーションにより被検体の形状のみの影響
を受ける渦電流探傷形状信号を発生させる波形形成部
と、前記渦電流探傷コイル信号から前記渦電流探傷形状
信号を減算し、渦電流探傷欠陥信号を生成する演算部
と、この渦電流探傷欠陥信号を画像化して表示する画像
表示部とを具備したことを特徴とする渦電流探傷装置。
1. A sensor unit comprising: an eddy current inspection coil for generating a magnetic field and detecting a magnetic field due to an eddy current induced in an object to output as an eddy current inspection coil signal; and a displacement meter for detecting the shape of the object. An eddy current flaw detector that drives the sensor unit, a shape detector that calculates a shape signal of the subject based on the measurement value of the displacement meter, and a simulation of only the shape of the subject based on the shape signal. A waveform forming unit for generating an affected eddy current flaw detection shape signal; a calculation unit for subtracting the eddy current flaw detection shape signal from the eddy current flaw detection coil signal to generate an eddy current flaw detection defect signal; An eddy current flaw detection device, comprising: an image display unit that converts a signal into an image and displays the signal.
JP558097A 1997-01-16 1997-01-16 Eddy current flaw detector Withdrawn JPH10197494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP558097A JPH10197494A (en) 1997-01-16 1997-01-16 Eddy current flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP558097A JPH10197494A (en) 1997-01-16 1997-01-16 Eddy current flaw detector

Publications (1)

Publication Number Publication Date
JPH10197494A true JPH10197494A (en) 1998-07-31

Family

ID=11615183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP558097A Withdrawn JPH10197494A (en) 1997-01-16 1997-01-16 Eddy current flaw detector

Country Status (1)

Country Link
JP (1) JPH10197494A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515896A (en) * 2009-01-19 2012-07-12 ゼテック インコーポレイテッド Automatic nondestructive test analysis method of eddy current
JP2012533752A (en) * 2009-07-23 2012-12-27 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Method of processing steam generator capillaries at nuclear power plants
JP2013511043A (en) * 2009-11-12 2013-03-28 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Steam generator modeling and data processing methods for steam generator capillaries in nuclear power plants.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515896A (en) * 2009-01-19 2012-07-12 ゼテック インコーポレイテッド Automatic nondestructive test analysis method of eddy current
JP2012533752A (en) * 2009-07-23 2012-12-27 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Method of processing steam generator capillaries at nuclear power plants
US9177678B2 (en) 2009-07-23 2015-11-03 Westinghouse Electric Company Llc Method of processing steam generator tubes of nuclear power plant
JP2013511043A (en) * 2009-11-12 2013-03-28 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Steam generator modeling and data processing methods for steam generator capillaries in nuclear power plants.

Similar Documents

Publication Publication Date Title
JP2720389B2 (en) Method and apparatus for detecting intrinsic stress of component
US9146214B2 (en) Leakage magnetic flux flaw inspection method and device
KR100218653B1 (en) Electronic induced type test apparatus
JP5562629B2 (en) Flaw detection apparatus and flaw detection method
JP2007192803A (en) Device and method for evaluating corrosion
JP2011080950A (en) Eddy current flaw detector and signal processing method therefor
AU650049B2 (en) Eddy current imaging system
Sadek NDE technologies for the examination of heat exchangers and boiler tubes-principles, advantages and limitations
US7505859B2 (en) Method and algorithms for inspection of longitudinal defects in an eddy current inspection system
JP2766929B2 (en) Non-destructive inspection equipment
JPH10197494A (en) Eddy current flaw detector
JP2008032508A (en) Piping inspection device and piping inspection method
JP2005331262A (en) Non-destructive inspection method and non-destructive inspection device
JP2005127963A (en) Nondestructive inspection method and its apparatus
KR20110122964A (en) The complicated type nondestructive inspection apparatus using the hybrid magnetic induction thin film sensor
KR101936367B1 (en) A fatigue degree inspection apparatus and an inspection method thereof using an electromagnetic induction sensor
JPH0750074B2 (en) Eddy current flaw detector capable of thinning inspection
WO2012021034A2 (en) Conductor thickness detecting device using a double core
Betta et al. Calibration and adjustment of an eddy current based multi-sensor probe for non-destructive testing
JP2004294341A (en) Flaw detection method and flaw detection apparatus by pulsed remote field eddy current
JP2004354218A (en) Digital eddy current defect detection test device
KR20160113069A (en) A fatigue degree inspection apparatus and an inspection method thereof using an electromagnetic induction sensor
JPH04551B2 (en)
JP7215076B2 (en) Creep Remaining Life Diagnosis Method and Creep Remaining Life Diagnosis System
JP2002122572A (en) Method and apparatus for evaluation of material characteristic

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406