JPH10196303A - High performance blade - Google Patents

High performance blade

Info

Publication number
JPH10196303A
JPH10196303A JP541297A JP541297A JPH10196303A JP H10196303 A JPH10196303 A JP H10196303A JP 541297 A JP541297 A JP 541297A JP 541297 A JP541297 A JP 541297A JP H10196303 A JPH10196303 A JP H10196303A
Authority
JP
Japan
Prior art keywords
blade
wing
wall surface
secondary flow
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP541297A
Other languages
Japanese (ja)
Inventor
Eiichiro Watanabe
英一郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP541297A priority Critical patent/JPH10196303A/en
Publication of JPH10196303A publication Critical patent/JPH10196303A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high performance blade to further improve efficiency through reduction of winding up of a secondary flow, in a high performance blade used as the moving blades or the stationary blades of a steam turbine and a gas turbine. SOLUTION: The shape in the direction of the height of a blade of a blade inlet part 2 is formed such that the central part of the height of the blade is protruded toward the belly 4 side of a blade 1, and formed in a curved shape forming a bow shape in a radial direction. Further, the shape, in the direction of the height of a blade, of a blade outlet part 6 is formed such that the central part, in the direction of the height of a blade, of the blade is formed in a curve shape, forming a bow shape, protruding toward the back side 5 of the blade 1 to form a blade profile. This constitution generates a flow, running toward a tip wall surface and a base wall surface, at the blade inlet part 2, pressurizes each wall surface, suppresses development of a vortex due to a secondary flow and reduces incurring of a secondary flow loss, and suppresses a pressure gradient in the direction of the height of the blade, occurring at the blade inlet port part 2, at the blade outlet port part 6, reduces the occurrence of winding up of a secondary flow due to a pressure gradient, reduces incurring of a flow loss due to a secondary flow, and improves the efficiency of a turbine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一様流の流れの中
で作動する翼の近傍に配設された側壁面上、および翼面
上を発達する境界層内に発生する二次流れを制御して、
二次流れ損失を低減して、内部効率を向上させるため、
三次元的に形状を変えた三次元翼にし、蒸気タービン、
若しくはガスタービン等の動翼、および又は静翼として
使用するようにした高性能翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary flow generated on a side wall disposed near a blade operating in a uniform flow, and in a boundary layer developed on the blade. Control
To reduce secondary flow loss and improve internal efficiency,
Three-dimensionally changed shape three-dimensional blade, steam turbine,
Also, the present invention relates to a high-performance blade used as a moving blade and / or a stationary blade of a gas turbine or the like.

【0002】[0002]

【従来の技術】高性能反動翼では、リアクションコント
ロールによって、動翼、静翼共に、三次元設計法による
二次流れ損失の低減が図られている。しかし、従来の翼
の三次元設計法による製作では、翼の内、外径端のチッ
プおよびベースに近接する側壁面では、側壁面上を発達
する境界層内に二次流れが発生し、これが翼の後縁から
渦として流出し、二次流れ損失を発生させるものとなっ
ていた。しかしながら、最近になって、翼の高さ方向の
形状をラジアルラインから傾けることにより、流れを側
壁面に押しつけ、チップおよびベースに近接した側壁面
における渦の発達を押さえて、翼の後縁から流出する渦
を低減して、二次流れ損失の低減を図るようにしたもの
が実用化されてきている。このように、翼の高さ方向の
形状をラジアル方向から傾斜させた高性能翼を、通常完
全三次元翼と称している。
2. Description of the Related Art In a high-performance reaction blade, a secondary flow loss is reduced by a three-dimensional design method for both a moving blade and a stationary blade by reaction control. However, in the conventional wing manufacturing by the three-dimensional design method, a secondary flow occurs in a boundary layer that develops on the side wall surface of the wing, on the side wall surface close to the tip and the base at the outer diameter end, and this is generated. It flowed out as a vortex from the trailing edge of the wing, causing secondary flow losses. However, more recently, by tilting the wing's height profile from the radial line, the flow is forced against the side wall surface, suppressing the development of vortices on the side wall surface close to the tip and base, and from the trailing edge of the wing. The one that reduces the outflow vortex to reduce the secondary flow loss has been put to practical use. Such a high-performance wing in which the shape of the wing in the height direction is inclined from the radial direction is usually called a complete three-dimensional wing.

【0003】図3は、前述した、従来の三次元設計法に
製作された高性能翼を軸方向後流側から見た図で、翼後
縁02の形状と、翼01内から流出する流れ05,06
を示す概念図である。図に示す、翼後縁02の形状から
理解できるように、翼高さ方向が、ラジアル方向Rに向
う直線状に形成された翼01を設けるようにした高性能
翼では、三次元設計法による翼01形状の製作により、
翼面上を発達する境界層内に発生する、二次流れ等によ
る損失の低減は図れるものの、翼01の内、外径端に対
向して配置されるチップ壁面03、およびベース壁面0
4上を発達する境界層内の流れに生じる、二次流れの発
生は低減できず、二次流れによって生じ、翼後縁02か
ら渦として流出することにより生じる二次流れ損失を低
減することはできなかった。
FIG. 3 is a view of the above-described high-performance blade manufactured by the conventional three-dimensional design method viewed from the axial downstream side, and shows the shape of the blade trailing edge 02 and the flow flowing out of the blade 01. 05,06
FIG. As can be understood from the shape of the wing trailing edge 02 shown in the figure, a high-performance wing in which the wing height direction is linearly formed in the radial direction R is provided by a three-dimensional design method. By making the wing 01 shape,
Although the loss due to the secondary flow and the like generated in the boundary layer developed on the wing surface can be reduced, the tip wall surface 03 and the base wall surface 0 of the wing 01 which are arranged to face the outer diameter end.
4 cannot be reduced, and the secondary flow loss caused by the secondary flow and flowing out as a vortex from the wing trailing edge 02 cannot be reduced. could not.

【0004】このため、高性能翼を軸方向後流側から見
た図で、翼後縁02′の形状と、翼01′内から流出す
る流れ05,011を示す図4、図4に示す高性能翼の
斜視図である図5、およびチップ壁面03とベース壁面
04との間に配列された高性能翼の斜視図である図6に
示すように、翼高さ方向が、ラジアル方向Rに対してチ
ップ面03およびベース面04近傍で、翼高さ方向の形
状を相互に反対方向に傾斜させるとともに、翼高さ方向
に連続した弓状の曲線を形成するようにした、完全三次
元翼と称する高性能翼が製作され、使用されるようにな
ってきている。
[0004] For this reason, FIGS. 4 and 4 show the shape of the trailing edge 02 ′ and the flows 05 and 011 flowing out from the inside of the blade 01 ′ when the high-performance blade is viewed from the downstream side in the axial direction. As shown in FIG. 5 which is a perspective view of the high-performance wing, and FIG. 6 which is a perspective view of the high-performance wing arranged between the chip wall surface 03 and the base wall surface 04, the blade height direction is the radial direction R. In the vicinity of the tip surface 03 and the base surface 04, the shape in the blade height direction is inclined in opposite directions to each other, and a continuous arcuate curve is formed in the blade height direction. High performance wings, referred to as wings, are being manufactured and used.

【0005】また、この種の高性能翼は、スキュード
(Skewed)翼、又はバウ(Bow)翼とも呼ばれ
ることもある。さらに、このような完全三次元翼では、
図5,図6に示すように、ラジアル方向Rに対して、翼
02高さ方向に設ける弓状の湾曲は、前縁近傍の翼入口
部07および後縁02′近傍の翼出口部08とも、翼高
さ方向の中央部を最大突出量にして、翼腹09側に湾曲
させるように形成されている。すなわち、図5に示すよ
うに、ラジアル方向Rに対して、翼高さ方向に矢視長さ
で示される量だけ、前縁から後縁02′にかけて腹側0
10へ湾曲させるとともに、互いにラジアル方向Rに対
する傾斜角が逆になるチップ側とベース側との間を、滑
らかな曲線でつなぎ弓形を形成するようにしている。
[0005] This type of high-performance wing is sometimes referred to as a skewed wing or a bow wing. Furthermore, in such a complete three-dimensional wing,
As shown in FIGS. 5 and 6, the arcuate curvature provided in the height direction of the wing 02 with respect to the radial direction R indicates both the wing inlet portion 07 near the leading edge and the wing outlet portion 08 near the trailing edge 02 ′. It is formed so that the central portion in the blade height direction has a maximum protrusion amount and is curved toward the blade antinode 09 side. That is, as shown in FIG. 5, the abdominal side 0 from the leading edge to the trailing edge 02 'by an amount indicated by the arrow length in the blade height direction with respect to the radial direction R.
In addition, the tip side and the base side, which are inclined to the radial direction R and are inclined to each other at an angle of 10, are connected by a smooth curve to form a bow.

【0006】このような従来の完全三次翼では、翼高さ
の中央部を腹側09に弓状に湾曲させているので、チッ
プ壁面03およびベース壁面04近傍の背側010に
は、図4に矢視で示すような、これらの壁面03,04
に向う押し付け流れ011がそれぞれ発生し、チップ壁
面03およびベース壁面04上の圧力を上昇させ、これ
らの壁面03,04上に発達する、境界層内に発生する
クロスフローを低減させることによって、二次流れ損失
の低減を図ることはできる。
In such a conventional complete tertiary wing, the central portion of the wing height is curved in an arcuate manner toward the ventral side 09, so that the dorsal side 010 near the chip wall surface 03 and the base wall surface 04 has the configuration shown in FIG. These wall surfaces 03 and 04 as shown by arrows
Are generated by increasing the pressures on the chip wall surface 03 and the base wall surface 04, and reducing the cross-flow that develops on the wall surfaces 03 and 04 and occurs in the boundary layer. The next flow loss can be reduced.

【0007】しかしながら、このように、チップ壁面0
3およびベース壁面04近傍の圧力を上昇させること
は、これらの壁面03,04近傍から翼高さ方向、いわ
ゆるラジアル方向Rへ圧力勾配が生ずることとなり、こ
の圧力勾配によって、これらの壁面03,04の境界層
内に発生する、二次流れのラジアル方向Rへの巻き上が
りが増大することとなり、この二次流れの巻き上がりに
より、翼01′内を通過する主流05の流れが乱され、
流動損失を大きくして、段落効率が低下するという不具
合がある。
However, as described above, the chip wall surface 0
Increasing the pressure near the wall 3 and the base wall surface 04 causes a pressure gradient in the blade height direction, so-called radial direction R, from the vicinity of the wall surfaces 03 and 04. The winding of the secondary flow in the radial direction R, which is generated in the boundary layer, increases, and the winding of the secondary flow disturbs the flow of the main flow 05 passing through the wing 01 ′,
There is a problem that the flow loss is increased and the paragraph efficiency is reduced.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来の高性
能翼、特にチップ壁面およびベース壁面近傍の圧力を上
昇させ、これらの壁面上で発達する境界層内で発生する
クロスフローを低減させ、二次流れ損失を低減するよう
にした、従来の完全三次元翼の特性は、そのまま維持す
るようにするとともに、従来の完全三次元翼で発生す
る、チップ壁面上およびベース壁面上から翼高さ方向に
形成される圧力勾配によって発生する、二次流れの巻き
上がりによる効率の低下を防止するため、翼出口部で、
このチップ壁面およびベース壁から翼高さ中央部に向け
て形成される圧力勾配の大きさを抑制して、二次流れの
巻き上がりを低減することによって、段落効率の低下を
少くした高性能翼を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention increases the pressure near the conventional high-performance blades, especially the chip wall and the base wall, and reduces the cross flow generated in the boundary layer developed on these walls. In addition to maintaining the characteristics of the conventional complete three-dimensional wing, which reduces the secondary flow loss, the blade height from the tip wall surface and the base wall surface generated by the conventional complete three-dimensional wing is maintained. In order to prevent a decrease in efficiency due to the winding of the secondary flow generated by the pressure gradient formed in the vertical direction, at the blade outlet,
A high-performance blade that reduces the reduction in paragraph efficiency by suppressing the magnitude of the pressure gradient formed from the tip wall surface and the base wall toward the center of the blade height to reduce winding of the secondary flow. The task is to provide

【0009】[0009]

【課題を解決するための手段】このため本発明の高性能
翼は、次の手段とした。三次元設計法により、一様流の
流れの中で作動する翼のチップ近傍に配設されたチップ
壁面、および翼のベース近傍に配設されたベース壁面近
傍の圧力を上昇させ、これらの壁面上で発達する境界層
内のクロスフローを低減させ、二次流れ損失を低減する
ようにした、完全三次元翼に製作された高性能翼におい
て、翼プロフィルを、翼入口部が翼高さ中央部で腹側に
弓状に湾曲させると共に、翼出口部が、逆に翼高さ中央
部で背側に弓状に湾曲させた翼形状にした。
Therefore, the high-performance blade of the present invention has the following means. By the three-dimensional design method, the pressure near the tip wall located near the tip of the blade that operates in a uniform flow and the pressure near the base wall located near the base of the blade are increased, and these wall surfaces are increased. In a high-performance wing made of a complete three-dimensional wing that reduces the cross flow in the boundary layer developed above and reduces the secondary flow loss, the wing profile is set at the wing height center The wings were curved in the abdominal side at the wing portion, and the wing outlet portion was formed into the wing shape curved in the back side at the center of the wing height.

【0010】本発明の高性能翼は、上述の手段により、
従来の完全三次元翼と同様に、翼入口部の腹側への弓状
の湾曲により、翼内外径端のチップおよびベース壁面と
翼面における境界層内の二次流れを低減し、これらの面
から発生する渦の発達をおさえ、翼の後縁から流出する
渦の強さを低減して、二次流れ損失を低減することがで
きる。
[0010] The high-performance wing of the present invention has the following features.
As in the case of the conventional complete three-dimensional wing, the arc-shaped curvature of the wing entrance to the ventral side reduces the secondary flow in the boundary layer between the tip and the base wall surface and the base wall surface and the wing surface at the wing inner and outer diameter ends. The development of the vortex generated from the surface can be suppressed, and the strength of the vortex flowing out from the trailing edge of the wing can be reduced, so that the secondary flow loss can be reduced.

【0011】また、これに加えて、翼出口部が翼入口部
の弓状の湾曲とは逆の背側へ突出する弓状の湾曲にした
ことより、翼入口部で流れを壁面側に押し付け、チップ
壁面およびベース壁面から翼高さ中央部に向けて圧力低
下が生じていた、ラジアル方向の圧力勾配が、翼入口部
から翼出口部にかけて徐々に小さくなり、翼背面での二
次流れの半径方向への巻き上がりを低減し、二次流れ損
失を低減することとなり、従来の完全三次元翼で発生し
ていた、翼内を通過する主流の乱れが少くなり、段落効
率を向上させることができる。
In addition, in addition to the above, since the blade outlet has an arcuate curve projecting to the back side opposite to the arcuate curve of the blade inlet, the flow is pressed against the wall surface at the blade inlet. The pressure gradient in the radial direction, which had decreased from the tip wall surface and the base wall surface toward the center of the blade height, gradually decreased from the blade inlet to the blade outlet, and the secondary flow at the blade back surface It reduces curling in the radial direction and reduces secondary flow loss, reducing the turbulence of the main flow passing through the inside of the wing, which occurs with conventional complete three-dimensional wings, and improving paragraph efficiency. Can be.

【0012】[0012]

【発明の実施の形態】以下、本発明の高性能翼の実施の
一形態を、図面にもとづき説明する。図1は本発明の高
性能翼の実施の第1形態を示す図で、翼高さ方向に設け
る弓状の湾曲形状を示すための斜視図、図2は図1に示
す高性能翼を、チップ壁面とベース壁面との間に配置し
たものを示すための斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a high-performance blade according to the present invention will be described below with reference to the drawings. FIG. 1 is a view showing a first embodiment of the high-performance wing of the present invention, and is a perspective view showing an arcuate curved shape provided in the wing height direction. FIG. 2 is a view showing the high-performance wing shown in FIG. It is a perspective view for showing what was arranged between a chip wall surface and a base wall surface.

【0013】図1に示すように、翼1の翼入口部2にお
いては、チップ側およびベース側から、徐々に腹4側へ
の突出量を大きくして、翼高さ中央部で腹4側に最も突
出させた曲線状の弓状に湾曲した形状が、翼高さ方向に
形成されている。すなわち、翼入口部2の最上流端であ
る前縁3においては、ラジアル方向Rから、矢視で示す
腹4方向に、矢視の長さで示す大きさだけ突出した弓状
の湾曲が形成されている。
As shown in FIG. 1, at the wing inlet portion 2 of the wing 1, the amount of protrusion from the tip side and the base side to the antinode 4 side is gradually increased, so that the antinode 4 side is located at the center of the wing height. The most protruding curved arcuate shape is formed in the blade height direction. That is, at the leading edge 3, which is the most upstream end of the wing inlet section 2, an arc-shaped curve protruding from the radial direction R in the antinode 4 direction as viewed in the direction of the arrow by the length shown in the direction of the arrow is formed. Have been.

【0014】また、翼1の翼出口部6においては、チッ
プ側およびベース側から徐々に背側5へ突出量を大きく
して、翼高さ中央部で最大突出量になる曲線状の弓状の
湾曲が形成されている。すなわち、翼出口部6の最下流
端である後縁7においては、ラジアル方向Rから矢視で
示す背側5方向に、矢視の長さで示す大きさだけ突出さ
せた弓状の湾曲が形成されている。また、これらの翼高
さ方向に設けられる弓状の湾曲は、翼入口部2から翼出
口部6に向けても、不連続点のない滑めらかな曲線にさ
れて連ながれている。
At the blade outlet 6 of the blade 1, the amount of protrusion from the tip side and the base side to the back side 5 is gradually increased, and a curved arcuate shape having the maximum amount of protrusion at the center of the blade height. Is formed. That is, at the trailing edge 7, which is the most downstream end of the blade outlet portion 6, an arc-shaped curve protruding from the radial direction R in the five dorsal directions as viewed in the direction of the arrow by the length shown in the arrow direction. Is formed. Also, these bow-shaped curves provided in the blade height direction are connected in a smooth curve without any discontinuity even from the blade inlet portion 2 to the blade outlet portion 6.

【0015】本発明の高性能翼は、上述のように構成さ
れているので、翼入口部2のラジアル方向に設けた弓状
の曲がりによって、翼入口部2においては、図2に示す
翼1のチップ側に設けられるチップ壁面8、翼1のベー
ス側に設けられるベース壁面9に向う、図4に示した押
し付け流れ011と同様の流れが発生し、チップ壁面8
上およびベース壁面9上の圧力を上昇させ、これら壁面
8,9上で発達する境界層内の二次流れを、これらの圧
力上昇で低減し、壁面8,9のそれぞれから発生する渦
の発達をおさえ、翼1の後縁7から流出する渦の強さを
低減して、二次流れ損失を、従来の完全三次翼と同様に
低減することができる。
Since the high-performance blade of the present invention is configured as described above, the blade-shaped bend provided in the radial direction of the blade inlet 2 causes the blade 1 shown in FIG. A flow similar to the pressing flow 011 shown in FIG. 4 is generated toward the chip wall surface 8 provided on the tip side of the wing 1 and the base wall surface 9 provided on the base side of the wing 1.
The pressure on the upper surface and the base wall 9 is increased, and the secondary flow in the boundary layer that develops on the wall surfaces 8 and 9 is reduced by these pressure increases, and the vortex generated from each of the wall surfaces 8 and 9 is developed. , The strength of the vortex flowing out from the trailing edge 7 of the blade 1 can be reduced, and the secondary flow loss can be reduced as in the case of the conventional complete tertiary blade.

【0016】また、翼出口部6が、翼入口部2に形成さ
れた弓状の湾曲と逆の、背側5へ凸面を形成した弓状の
湾曲にしたことより、翼入口部2で、流れをチップ壁面
8、およびベース壁面9側に押し付け、チップ壁面8お
よびベース壁面9から翼高さ中央部に向けて圧力低下が
生じる、ラジアル方向の圧力勾配が、腹側4に突出した
弓形の形状から、背側に突出した弓形の形状に変化す
る、翼入口部2から翼出口部6にかけての弓形の形状の
変化により、徐々に小さくなり、翼出口部6では全んど
なくなる。このチップ壁面8上、およびベース壁面9上
から翼高さ中央部に向けて低減する圧力勾配の消滅によ
り、従来の完全三次元翼で発生していた、翼1背面での
二次流れの半径方向への巻き上がりを低減し、二次流れ
損失が低減することとなり、従来の完全三次元翼で発生
していた、翼内を通過する整流の乱れが少くなり、段落
効率を向上させることができる。
Further, since the blade outlet portion 6 has an arc-shaped curve having a convex surface on the back side 5 opposite to the arc-shaped curve formed at the blade inlet portion 2, the blade inlet portion 2 has: The flow is pressed against the tip wall surface 8 and the base wall surface 9 and a pressure drop occurs from the tip wall surface 8 and the base wall surface 9 toward the center of the blade height. Due to the change in the shape of the bow from the wing inlet portion 2 to the wing outlet portion 6 which changes from the shape to an arcuate shape protruding to the back side, the size gradually decreases, and is completely eliminated at the wing outlet portion 6. Due to the disappearance of the pressure gradient decreasing from the tip wall surface 8 and the base wall surface 9 toward the center of the blade height, the radius of the secondary flow at the back surface of the blade 1, which is generated in the conventional complete three-dimensional blade, The winding in the direction is reduced, the secondary flow loss is reduced, and the disturbance of commutation passing through the inside of the wing, which occurred in the conventional complete three-dimensional wing, is reduced, and the paragraph efficiency can be improved. it can.

【0017】[0017]

【発明の効果】以上説明したように、本発明になる高性
能翼によれば特許請求の範囲に示す構成により、従来の
三次元設計法により製作された高性能翼を改善した完全
三次元翼に比べ、チップ壁面上およびベース壁面上か
ら、それぞれ翼高さ方向へ変化する圧力勾配の発生が抑
制され、それに伴う、二次流れの半径方向への巻き上が
りも抑制され、この二次流れに起因した流動損失が大巾
に低減されて、タービン効率を向上させることができ
る。
As described above, according to the high-performance wing according to the present invention, a complete three-dimensional wing which is improved from the high-performance wing manufactured by the conventional three-dimensional design method by the configuration shown in the claims. In comparison with the above, the generation of pressure gradients that change in the blade height direction from the tip wall surface and the base wall surface, respectively, is suppressed, and consequently, secondary winding in the radial direction is also suppressed. The resulting flow loss is greatly reduced and turbine efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高性能翼の実施の第1形態を示す図
で、翼高さ方向に設ける弓状の湾曲形状を示すための斜
視図、
FIG. 1 is a view showing a first embodiment of a high-performance blade of the present invention, and is a perspective view showing an arcuate curved shape provided in a blade height direction;

【図2】図1に示す高性能翼をチップ壁面とベース壁面
の間に配置したものを示すための斜視図、
FIG. 2 is a perspective view showing the high-performance wing shown in FIG. 1 arranged between a chip wall surface and a base wall surface;

【図3】従来の三次元設計法に製作された高性能翼を軸
方向後流側から見た図で、翼後縁の形状と、翼内から流
出する流れを示す概念図、
FIG. 3 is a view of a high-performance blade manufactured by a conventional three-dimensional design method viewed from an axial wake side, and is a conceptual diagram showing a shape of a blade trailing edge and a flow flowing out of the blade;

【図4】図3に示す高性能翼を改善した従来の完全三次
元翼を軸方向後流側から見た図で、翼後縁の形状と、翼
内から流出する流れを示す概念図、
FIG. 4 is a view of the conventional complete three-dimensional wing in which the high-performance wing shown in FIG. 3 is improved, viewed from the downstream side in the axial direction, and is a conceptual diagram showing the shape of the trailing edge of the wing and the flow flowing out of the wing;

【図5】図4に示す完全三次元翼の斜視図、5 is a perspective view of the complete three-dimensional wing shown in FIG. 4,

【図6】図5に示す完全三次元翼をチップ壁面およびベ
ース壁面の間に配列した部分斜視図である。
FIG. 6 is a partial perspective view in which the complete three-dimensional wing shown in FIG. 5 is arranged between a chip wall surface and a base wall surface.

【符号の説明】 1 翼 2 翼入口部 3 前縁 4 (翼の)腹 5 (翼の)背 6 翼出口部 7 後縁 8 チップ壁面 9 ベース壁面[Description of Signs] 1 wing 2 wing entrance 3 leading edge 4 (wing) belly 5 (wing) back 6 wing outlet 7 trailing edge 8 tip wall 9 base wall

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸気タービン、若しくはガスタービンの
動翼、および静翼として使用される高性能翼において、
翼入口部が、翼高さ中央部を腹側に突出させた弓状の湾
曲形状に形成されるとともに、翼出口部が、翼高さ中央
部を背側に突出させた弓状の湾曲形状に形成されている
ことを特徴とする高性能翼。
1. A high-performance blade used as a moving blade and a stationary blade of a steam turbine or a gas turbine,
The wing inlet section is formed in an arcuate curved shape with the wing height central part protruding to the ventral side, and the wing outlet part is formed in the arcuate curved shape with the wing height central part protruding to the back side. High performance wing characterized by being formed in.
JP541297A 1997-01-16 1997-01-16 High performance blade Withdrawn JPH10196303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP541297A JPH10196303A (en) 1997-01-16 1997-01-16 High performance blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP541297A JPH10196303A (en) 1997-01-16 1997-01-16 High performance blade

Publications (1)

Publication Number Publication Date
JPH10196303A true JPH10196303A (en) 1998-07-28

Family

ID=11610442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP541297A Withdrawn JPH10196303A (en) 1997-01-16 1997-01-16 High performance blade

Country Status (1)

Country Link
JP (1) JPH10196303A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491493B1 (en) 1998-06-12 2002-12-10 Ebara Corporation Turbine nozzle vane
JP2005054798A (en) * 2003-08-05 2005-03-03 General Electric Co <Ge> Blade profile part of counter stagger type compressor
US6887042B2 (en) 2001-01-12 2005-05-03 Mitsubishi Heavy Industries, Ltd. Blade structure in a gas turbine
US6905307B2 (en) 2001-08-10 2005-06-14 Honda Giken Kogyo Kabushiki Kaisha Stationary vanes for turbines and method for making the same
US7118330B2 (en) 2003-03-12 2006-10-10 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbine nozzle airfoil
JP2013533943A (en) * 2010-07-14 2013-08-29 アイシス イノヴェイション リミテッド Blade assembly for an axial turbine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491493B1 (en) 1998-06-12 2002-12-10 Ebara Corporation Turbine nozzle vane
US6887042B2 (en) 2001-01-12 2005-05-03 Mitsubishi Heavy Industries, Ltd. Blade structure in a gas turbine
US7229248B2 (en) 2001-01-12 2007-06-12 Mitsubishi Heavy Industries, Ltd. Blade structure in a gas turbine
US6905307B2 (en) 2001-08-10 2005-06-14 Honda Giken Kogyo Kabushiki Kaisha Stationary vanes for turbines and method for making the same
US7118330B2 (en) 2003-03-12 2006-10-10 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbine nozzle airfoil
JP2005054798A (en) * 2003-08-05 2005-03-03 General Electric Co <Ge> Blade profile part of counter stagger type compressor
JP4667787B2 (en) * 2003-08-05 2011-04-13 ゼネラル・エレクトリック・カンパニイ Counter stagger type compressor airfoil
JP2013533943A (en) * 2010-07-14 2013-08-29 アイシス イノヴェイション リミテッド Blade assembly for an axial turbine
US9334744B2 (en) 2010-07-14 2016-05-10 Isis Innovation Ltd Vane assembly for an axial flow turbine

Similar Documents

Publication Publication Date Title
JP2753382B2 (en) Axial flow turbine vane device and axial flow turbine
JP3621216B2 (en) Turbine nozzle
JP5300874B2 (en) Blade with non-axisymmetric platform and depression and protrusion on outer ring
JPH0874502A (en) Turbine blade
US6638021B2 (en) Turbine blade airfoil, turbine blade and turbine blade cascade for axial-flow turbine
JP2003074306A (en) Axial flow turbine
EP2492440A2 (en) Turbine nozzle blade and steam turbine equipment using same
JP2016509650A (en) Structure and method for forcibly coupling flow fields of adjacent wing elements of a turbomachine, and turbomachine incorporating the same
JP2003201802A (en) Impeller for radial turbine
JP2010281320A (en) Turbine stage
US6776582B2 (en) Turbine blade and turbine
JP3988723B2 (en) Turbine blade
JPH10196303A (en) High performance blade
CN115176070A (en) Turbomachine component or assembly of components
JP2003020904A (en) Axial flow turbine blade and axial flow turbine stage
CN113153446B (en) Turbine guider and centripetal turbine with high expansion ratio
JP4846139B2 (en) Hydraulic machine
Wang et al. The effect of the pressure distribution in a three-dimensional flow field of a cascade on the type of curved blade
JP2000045703A (en) Axial flow turbine cascade
JPH01247798A (en) High speed centrifugal compressor
JP2000204903A (en) Axial turbine
JP4090613B2 (en) Axial flow turbine
JP3005839B2 (en) Axial turbine
JPH1061405A (en) Stationary blade of axial flow turbo machine
CN219548926U (en) Nozzle ring blade and volute nozzle ring

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406