JPH10192718A - Resin regenerator for condensate desalter - Google Patents

Resin regenerator for condensate desalter

Info

Publication number
JPH10192718A
JPH10192718A JP9001076A JP107697A JPH10192718A JP H10192718 A JPH10192718 A JP H10192718A JP 9001076 A JP9001076 A JP 9001076A JP 107697 A JP107697 A JP 107697A JP H10192718 A JPH10192718 A JP H10192718A
Authority
JP
Japan
Prior art keywords
resin
exchange resin
anion
regeneration tower
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9001076A
Other languages
Japanese (ja)
Inventor
Yoshihiro Segawa
嘉弘 瀬川
Yuki Hirose
由紀 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP9001076A priority Critical patent/JPH10192718A/en
Publication of JPH10192718A publication Critical patent/JPH10192718A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To improve the quality of treated water and to reduce the amt. of a waste liq. to be generated in a separation stage by improving the separation of an ion-exchange resin and preventing its reverse degeneration. SOLUTION: This regenerator is provided with an anionic resin regeneration tower 3 to be supplied with a cation-exchange resin and an anion-exchange resin from a condensate desalting tower 1 through a resin outlet pipeline 10 and a cationic resin regeneration tower 4 for storing the cation-exchange resin. A cationic resin outlet pipeline 20 is connected to the lower part of the anionic resin regeneration tower 3 and used also as a whole ion-exchange resin outlet pipe to return the whole resin to the condensate desalting tower 1. An internally held water return pipeline 13, a developing water injection pipeline 17, a sodium hydroxide feed pipe 18, an agitating water injection pipeline 11, a waste liq. transfer pipe 22 and a cationic resin return pipeline 12 are connected to the anionic resin regeneration tower 3. A cation-exchange resin inlet pipeline 21, a sulfuric acid feed pipe 19, a drain pipeline 23 and a cationic resin return pipeline 12 are connected to the cationic resin regeneration tower 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、復水脱塩塔内のイ
オン交換樹脂の再生を行う発電プラントの復水脱塩装置
用樹脂再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin regeneration device for a condensate desalination unit of a power plant for regenerating an ion exchange resin in a condensate desalination tower.

【0002】[0002]

【従来の技術】一般に、従来の原子力発電プラントでは
原子炉の信頼性の高い運転を行い、一次冷却材の健全性
を保つために、復水および給水の浄化が行われている。
図6により従来の原子力発電プラントの一般系統を説明
図する。
2. Description of the Related Art Generally, in a conventional nuclear power plant, condensing and purifying water are performed in order to operate a nuclear reactor with high reliability and maintain the integrity of a primary coolant.
FIG. 6 illustrates a general system of a conventional nuclear power plant.

【0003】図6において符号24は沸騰水型原子炉であ
り、原子炉1で発生した高温、高圧蒸気はタービン25に
送られ、タービン25を回転させて発電機26を駆動する。
このタービン25で仕事を行った蒸気は主復水器27に流入
し海水冷却によって復水となり、三基並列接続した低圧
復水ポンプ28により空気抽出器29、グランド蒸気復水器
30を経て復水脱塩装置31へ送られる。
In FIG. 6, reference numeral 24 denotes a boiling water reactor. The high-temperature, high-pressure steam generated in the reactor 1 is sent to a turbine 25, and the turbine 25 is rotated to drive a generator 26.
The steam that has performed the work in the turbine 25 flows into the main condenser 27 and is condensed by cooling seawater.The air is extracted by the low-pressure condensate pump 28 connected in parallel with three units, the air extractor 29 and the ground steam condenser
After passing through 30, it is sent to the condensate desalination device 31.

【0004】この復水脱塩装置31により内部に装荷され
ている粒状の陽および陰イオン交換樹脂(直径0.4mm 〜
1.2mm )によって復水中の溶解性金属イオン不溶解性不
純物(クラッド)、海水リーク時の、C1- 等の不純物
が浄化される。その後、三基並列接続した高圧復水ポン
プ32により低圧給水加熱器33に送られ、さらに給水ポン
プ34および高圧給水加熱器35を経て昇圧、昇温され、給
水として原子炉31へ還流される。
[0004] Granular positive and negative ion exchange resins (0.4 mm in diameter) loaded inside the condensate desalination unit 31 are used.
The condensate water by 1.2 mm) soluble metal ion insoluble impurities (cladding), when seawater leakage, C1 - impurities such is purified. Thereafter, the water is sent to the low-pressure feed water heater 33 by the three high-pressure condensate pumps 32 connected in parallel, and further pressurized and heated through the feed water pump 34 and the high-pressure feed water heater 35, and is returned to the reactor 31 as feed water.

【0005】図7によりこの復水脱塩装置31の構造を説
明する。図7に示すように復水脱塩装置31は大別して復
水脱塩塔36と再生系42とから構成される。この復水脱塩
塔36内には粒状のイオン交換樹脂37が積層されている。
復水入口管38を通して復水脱塩塔36の塔頂部から復水が
復水脱塩塔36内に供給され、この復水中に含まれるクラ
ッドおよびイオン不純物がイオン交換樹脂37により捕獲
される。復水脱塩塔36により浄化された復水は復水出口
管39から樹脂ストレーナ40を流れて次の装置(図示せ
ず)に送られる。
[0005] The structure of the condensate desalination apparatus 31 will be described with reference to FIG. As shown in FIG. 7, the condensate desalination apparatus 31 is roughly composed of a condensate desalination tower 36 and a regeneration system 42. In this condensate desalination tower 36, a granular ion exchange resin 37 is laminated.
Condensate is supplied into the condensate desalination tower 36 from the top of the condensate desalination tower 36 through the condensate inlet pipe 38, and clad and ionic impurities contained in the condensate are captured by the ion exchange resin 37. The condensate purified by the condensate desalination tower 36 flows from the condensate outlet pipe 39 through the resin strainer 40 and is sent to the next device (not shown).

【0006】ここで、復水脱塩塔36内のイオン交換樹脂
37はクラッドの捕獲により入口部と出口部の圧力差圧の
上昇および塔出口へのクラッドのリーク量の増大を来す
ためにイオン交換樹脂37に付着したクラッドを除去し、
さらに系外排出するため水および空気による逆洗再生が
行われている。また、イオン不純物の捕獲によりイオン
交換能力を消費した場合には薬品により、イオン交換能
力を回復させる化学再生が行われている。
Here, the ion exchange resin in the condensate demineralization tower 36
37 removes the clad attached to the ion-exchange resin 37 in order to increase the pressure differential pressure at the inlet and outlet and increase the amount of leak of the clad to the tower outlet by capturing the clad,
Further, backwashing with water and air is performed to discharge the water outside the system. In addition, when the ion exchange capacity is consumed by capturing the ionic impurities, chemical regeneration is performed to restore the ion exchange capacity by using a chemical.

【0007】イオン交換樹脂37は復水脱塩塔36内から配
管41を経由して陽イオン交換樹脂再生塔43へ送られて逆
洗を行った後、各々の比重差を利用し陽イオン交換樹脂
層と陰イオン交換樹脂層に分離され、上方に積層された
陰イオン交換樹脂は陰イオン交換樹脂再生塔44へ送られ
る。
[0007] The ion exchange resin 37 is sent from the condensate desalination tower 36 to the cation exchange resin regeneration tower 43 via the pipe 41 and backwashed, and then the cation exchange is performed by utilizing the difference in specific gravity of each. The anion exchange resin separated into a resin layer and an anion exchange resin layer and laminated on the upper side is sent to an anion exchange resin regeneration tower 44.

【0008】陽イオン交換樹脂再生塔43と陰イオン交換
樹脂再生塔44に分けられたそれぞれの樹脂は再度逆洗を
行った後、硫酸を陰イオン交換樹脂再生塔44へ、苛性ソ
ーダ陽イオン交換樹脂再生塔43へ通薬することにより化
学再生が行われ、その後、陰イオン交換樹脂は陽イオン
樹脂再生塔43へ送られる。そこで混合洗浄した後、樹脂
戻し配管45を通して復水脱塩塔36に戻され、復水浄化が
再び行われる。
After each of the resins divided into the cation exchange resin regeneration tower 43 and the anion exchange resin regeneration tower 44 is backwashed again, sulfuric acid is transferred to the anion exchange resin regeneration tower 44 and the caustic soda cation exchange resin Chemical regeneration is performed by passing the medicine through the regeneration tower 43, and then the anion exchange resin is sent to the cation resin regeneration tower 43. Then, after mixing and washing, the mixture is returned to the condensate desalination tower 36 through the resin return pipe 45, and the condensate purification is performed again.

【0009】なお、陽イオン交換樹脂再生塔43および陰
イオン交換樹脂再生塔44からの廃液はドレンストレーナ
46を通して廃棄物処理設備47へ送られ、ろ過脱塩もしく
は濃縮処理される。この陽イオン交換樹脂再生塔43、陰
イオン交換樹脂再生塔44およびドレンストレーナ46によ
って復水脱塩装置31の再生系42が構成されている。
The waste liquid from the cation exchange resin regeneration tower 43 and the anion exchange resin regeneration tower 44 is drained by a drain strainer.
It is sent to a waste treatment facility 47 through 46, and is subjected to filtration and desalination or concentration treatment. The cation exchange resin regeneration tower 43, the anion exchange resin regeneration tower 44, and the drain strainer 46 constitute a regeneration system 42 of the condensate desalination unit 31.

【0010】図8により従来の陽イオン交換樹脂再生塔
43の構造を説明する。陽イオン交換樹脂再生塔43には、
復水脱塩塔36から移送される樹脂を供給する樹脂入口管
41、樹脂を展開させ分離するための水を導く水注入管5
0、分離後上層の陰イオン交換樹脂を抜き出す陰イオン
交換樹脂出口管51、陽イオン交換樹脂の再生薬品である
硫酸を導く硫酸入口管49および混合されたイオン交換樹
脂を復水脱塩塔36へ送るための樹脂出口管52が接続され
ている。
FIG. 8 shows a conventional cation exchange resin regeneration tower.
The structure of 43 will be described. In the cation exchange resin regeneration tower 43,
Resin inlet pipe for supplying resin transferred from condensate desalination tower 36
41, water injection pipe 5 for introducing water for spreading and separating resin
0, an anion exchange resin outlet pipe 51 for extracting the upper layer anion exchange resin after separation, a sulfuric acid inlet pipe 49 for introducing sulfuric acid as a regenerating chemical of the cation exchange resin, and a condensate desalination tower 36 for the mixed ion exchange resin. A resin outlet pipe 52 for feeding the water to the container is connected.

【0011】陽イオン交換樹脂再生塔43に移送された樹
脂は、樹脂撹拌用注水管48から注水された上昇水流によ
り上昇展開される。樹脂撹拌用注水管48からの注水を停
止し樹脂を自然沈降させ陽および陰イオン交換樹脂の比
重差を利用することにより両樹脂は分離される。
The resin transported to the cation exchange resin regeneration tower 43 is developed by the rising water flow injected from the resin stirring water injection pipe 48. The water injection from the resin stirring water injection pipe 48 is stopped, the resin is allowed to settle naturally, and the two resins are separated by utilizing the specific gravity difference between the positive and anion exchange resins.

【0012】図9は、陽イオン交換樹脂再生塔43内のイ
オン交換樹脂層の分離面を概略断面で示している。陽イ
オン交換樹脂再生塔43内の上方部には陰イオン交換樹脂
層Aが形成され、この樹脂層Aの下方部には陽イオン交
換樹脂層Bが形成され、樹脂分離面のごく近傍において
陽イオン交換樹脂と陰イオン交換樹脂が相互に混在して
いる混合樹脂層Cが形成される。
FIG. 9 is a schematic sectional view showing the separation surface of the ion exchange resin layer in the cation exchange resin regeneration tower 43. An anion exchange resin layer A is formed in an upper part of the cation exchange resin regeneration tower 43, and a cation exchange resin layer B is formed in a lower part of the resin layer A. The mixed resin layer C in which the ion exchange resin and the anion exchange resin are mixed with each other is formed.

【0013】[0013]

【発明が解決しようとする課題】このように陽イオン交
換樹脂再生塔43内には陽イオン交換樹脂と陰イオン交換
樹脂の混合樹脂層Cが形成されている。これは両樹脂の
比重粒径分布の特性から避けられないものである。この
ため、ある程度の量の陽イオン交換樹脂が陰イオン交換
樹脂再生塔44へ混入し、さらにある程度の量の陰イオン
交換樹脂が陽イオン交換樹脂再生塔43に残留することと
なる。この混入あるいは残留した樹脂は苛性ソーダ、硫
酸の薬品に接触し逆再生されて次の形となる。
As described above, the mixed resin layer C of the cation exchange resin and the anion exchange resin is formed in the cation exchange resin regeneration tower 43. This is inevitable due to the specific gravity particle size distribution characteristics of both resins. For this reason, a certain amount of the cation exchange resin is mixed into the anion exchange resin regeneration tower 44, and a certain amount of the anion exchange resin remains in the cation exchange resin regeneration tower 43. The mixed or remaining resin comes into contact with caustic soda and sulfuric acid chemicals and is regenerated in the following form.

【0014】 陽イオン交換樹脂(RC ):RC −Na+ 陰イオン交換樹脂(RA ):RA =SO4 2-、RA −H
SO4 - この逆再生された両樹脂が、復水脱塩塔36へ戻され復水
を処理すると加水分解により、次の反応が進行する。
Cation exchange resin (R C ): R C —Na + anion exchange resin (R A ): R A = SO 4 2− , R A —H
SO 4 - When the reverse-regenerated resins are returned to the condensate and desalination tower 36 and the condensate is treated, the next reaction proceeds by hydrolysis.

【0015】[0015]

【化1】 又はEmbedded image Or

【化2】 すなわち、処理水中へNa- 、SO4 - イオンがリーク
し水質の恐れの要因となる課題がある。
Embedded image In other words, there is a problem that Na and SO 4 ions leak into the treated water and cause a risk of water quality.

【0016】本発明は、上記課題を解決するためになさ
れたもので、樹脂の分離を改善し、逆再生を防ぎ、処理
水質を向上させることができ、分離工程で発生する廃液
量を低減できる復水脱塩装置用樹脂再生装置を提供する
ことを目的とする。
The present invention has been made to solve the above-mentioned problems, and can improve resin separation, prevent reverse regeneration, improve the quality of treated water, and reduce the amount of waste liquid generated in the separation step. An object of the present invention is to provide a resin regeneration device for a condensate desalination device.

【0017】[0017]

【課題を解決するための手段】請求項1の発明は、復水
脱塩塔から供給された陽イオン交換樹脂と陰イオン交換
樹脂により上部には陰イオン交換樹脂層が、下部には陽
イオン交換樹脂層が、中間部には陰イオン交換樹脂と陽
イオン交換樹脂の混合樹脂層が内部に形成される陰イオ
ン樹脂再生塔と、前記陽イオン交換樹脂を貯留する陽イ
オン樹脂再生塔とを具備し、前記陰イオン樹脂再生塔の
下部には陽イオン交換樹脂出口管が設けられ、この陽イ
オン交換樹脂出口管は前記復水脱塩塔へ戻す全イオン交
換樹脂の出口管を兼ね、前記陽イオン交換樹脂層の下部
の陰イオン樹脂再生塔には陽イオン交換樹脂の撹拌用注
水管が設けられ、前記混合樹脂層の下部には前記混合樹
脂層と陰イオン交換樹脂層の展開用注水管が接続され、
陰イオン樹脂再生塔の上部に展開用水戻り管が接続さ
れ、前記陰イオン樹脂再生塔にはアルカリ性薬品注入管
が接続され、前記陽イオン樹脂再生塔には酸性薬品注入
管が接続されてなることを特徴とする。
According to a first aspect of the present invention, an anion exchange resin layer is formed on an upper portion and a cation exchange resin is formed on a lower portion by a cation exchange resin and an anion exchange resin supplied from a condensate desalination tower. An exchange resin layer, an anion resin regeneration tower in which a mixed resin layer of an anion exchange resin and a cation exchange resin is formed in the middle, and a cation resin regeneration tower that stores the cation exchange resin A cation exchange resin outlet pipe is provided at a lower portion of the anion resin regeneration tower, and the cation exchange resin outlet pipe also serves as an outlet pipe for all ion exchange resins to be returned to the condensate desalination tower. A water injection pipe for stirring the cation exchange resin is provided in the anion resin regeneration tower below the cation exchange resin layer, and an injection pipe for developing the mixed resin layer and the anion exchange resin layer is provided below the mixed resin layer. The water pipe is connected,
A water return pipe for development is connected to the upper part of the anionic resin regeneration tower, an alkaline chemical injection pipe is connected to the anionic resin regeneration tower, and an acidic chemical injection pipe is connected to the cation resin regeneration tower. It is characterized by.

【0018】この請求項1によれば、復水脱塩塔から混
合状態で供給された陽イオン交換樹脂と陰イオン交換樹
脂が、陰イオン樹脂再生塔へ移送された後、樹脂を陽お
よび陰イオン交換樹脂層に分離する復水脱塩装置用樹脂
再生装置において、上部から陰イオン交換樹脂層、混合
樹脂層、陽イオン交換樹脂層の順に陰イオン再生塔下部
の撹拌用注水管からの注水により一旦分離された後、陰
イオン再生塔の展開用注水管から注水し、陰イオン交換
樹脂層と混合樹脂層を陰イオン樹脂再生塔上部まで展開
させ、この後徐々に展開用注水流量を下げ、陽イオン交
換樹脂のみが沈降する流量とする。
According to the first aspect, after the cation exchange resin and the anion exchange resin supplied in a mixed state from the condensate demineralization tower are transferred to the anion resin regeneration tower, the resin is subjected to cation and anion exchange. In a resin regenerating unit for a condensate desalination unit that separates into an ion-exchange resin layer, water is injected from the stirring water injection pipe below the anion regeneration tower in the order of an anion exchange resin layer, a mixed resin layer, and a cation exchange resin layer from the top. Once separated, water is injected from the injection pipe of the anion regeneration tower, and the anion exchange resin layer and the mixed resin layer are extended to the upper part of the anion resin regeneration tower. And the flow rate at which only the cation exchange resin sediments.

【0019】これにより、陰イオン樹脂再生塔の展開用
注水管上部には陰イオン交換樹脂層、下部には陽イオン
交換樹脂層が形成される。この状態で陰イオン樹脂再生
塔下部の撹拌用注水管から注水しながら陽イオン交換樹
脂出口管より陽イオン交換樹脂を陽イオン樹脂再生塔へ
移送する。よって、混合樹脂層を陽イオン交換樹脂と陰
イオン交換樹脂に容易に分離することができ、樹脂の分
離を確実に行うことができる。
As a result, an anion exchange resin layer is formed above the developing water injection pipe of the anion resin regeneration tower, and a cation exchange resin layer is formed below. In this state, the cation exchange resin is transferred to the cation resin regeneration tower from the cation exchange resin outlet pipe while water is injected from the stirring injection pipe below the anion resin regeneration tower. Therefore, the mixed resin layer can be easily separated into the cation exchange resin and the anion exchange resin, and the separation of the resin can be reliably performed.

【0020】請求項2の発明は、前記陰イオン樹脂再生
塔において、陰イオン交換樹脂層と混合樹脂層の展開用
水は陰イオン樹脂再生塔内部保有水をからなることを特
徴とする。
According to a second aspect of the present invention, in the anion resin regeneration tower, the water for developing the anion exchange resin layer and the mixed resin layer comprises water retained in the anion resin regeneration tower.

【0021】これにより、樹脂分離時の廃液量を低減す
ることができる。すなわち、この陰イオン交換樹脂層と
混合樹脂層の展開用水として補給水等を用いた場合、展
開用水は全て廃液処理系へ廃液として移送されることと
なる。このことから本発明は、廃液量を増やすことなく
樹脂分離性を向上することができる。
Thus, the amount of waste liquid at the time of resin separation can be reduced. That is, when replenishing water or the like is used as the developing water for the anion exchange resin layer and the mixed resin layer, all the developing water is transferred to the waste liquid treatment system as a waste liquid. From this, the present invention can improve the resin separability without increasing the amount of waste liquid.

【0022】請求項3の発明は、前記陰イオン交換樹脂
層と混合樹脂層の展開用水を供給するための注入ポンプ
とポンプ出口側に流量調節弁を設けることを特徴とす
る。これにより、陰イオン樹脂再生塔内部水を循環させ
ることができる。
The invention according to claim 3 is characterized in that an injection pump for supplying water for developing the anion exchange resin layer and the mixed resin layer and a flow control valve on the pump outlet side are provided. Thereby, the water inside the anion resin regeneration tower can be circulated.

【0023】請求項4の発明は、陰イオン交換樹脂層と
混合樹脂層の展開用水流量を所定量にコントロールする
制御系を有することを特徴とする。陰イオン交換樹脂層
と混合樹脂層の展開が開始すると展開用水を供給する注
水ポンプの出口側に設けられた流量調節弁に流量コント
ローラの制御信号を与えることにより、展開用水をコン
トロールすることができる。
According to a fourth aspect of the present invention, there is provided a control system for controlling a developing water flow rate of the anion exchange resin layer and the mixed resin layer to a predetermined amount. When the development of the anion exchange resin layer and the mixed resin layer starts, the developing water can be controlled by giving a control signal of a flow controller to a flow control valve provided on an outlet side of a water injection pump for supplying the developing water. .

【0024】[0024]

【発明の実施の形態】図1から図5を参照して本発明に
係る復水脱塩装置の実施の形態について説明する。図1
は再生系の系統図、図2から図5は陰イオン樹脂再生塔
の内部および陽イオン樹脂再生塔付近の構成を示す部分
系統図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a condensate desalination apparatus according to the present invention will be described with reference to FIGS. FIG.
Is a system diagram of a regeneration system, and FIGS. 2 to 5 are partial system diagrams showing the configuration inside the anion resin regeneration tower and the vicinity of the cation resin regeneration tower.

【0025】図1において、符号1は復水脱塩塔であ
り、その内部のイオン交換樹脂2が供給される陰イオン
樹脂再生塔3、陽イオン交換樹脂を貯留する陽イオン樹
脂再生塔4、さらに陰イオン樹脂再生塔3と陽イオン樹
脂再生塔4のドレンを処理する廃棄物処理設備6が設置
されている。
In FIG. 1, reference numeral 1 denotes a condensate demineralization tower, in which an anion resin regeneration tower 3 to which an ion exchange resin 2 is supplied, a cation resin regeneration tower 4 for storing a cation exchange resin, Further, a waste treatment facility 6 for treating the drain of the anion resin regeneration tower 3 and the cation resin regeneration tower 4 is provided.

【0026】陰イオン樹脂再生塔3内において、復水脱
塩塔1から供給されたイオン交換樹脂2は沈降する際
に、図2に示すように、その比重差により上方には陰イ
オン交換樹脂層Aが、下方には陽イオン交換樹脂層B
が、両者の境界部である中間部には両樹脂の混合樹脂層
Cが形成される。
In the anion resin regenerating tower 3, when the ion exchange resin 2 supplied from the condensate desalination tower 1 is settled, as shown in FIG. Layer A has a cation exchange resin layer B below.
However, a mixed resin layer C of both resins is formed in an intermediate portion which is a boundary between the two.

【0027】復水脱塩塔1の上部には復水供給配管7が
接続され、その下部にはストレーナ8が設けられた復水
出口配管9が接続されている。復水脱塩塔1の下部と陰
イオン樹脂再生塔3の上部とは樹脂供給配管10により接
続されている。
A condensate supply pipe 7 is connected to the upper part of the condensate desalination tower 1, and a condensate outlet pipe 9 provided with a strainer 8 is connected to a lower part thereof. The lower part of the condensate desalination tower 1 and the upper part of the anionic resin regeneration tower 3 are connected by a resin supply pipe 10.

【0028】陰イオン樹脂再生塔3の下部にはイオン交
換樹脂2全体を展開させて分離をするために水を導く撹
拌用注水管11が接続し、その上部には陰イオン樹脂再生
塔内部保有水戻り管13が接続している。この戻り管13
は、その保有水を循環させる注入ポンプ14、注入水量を
調節する調節弁15および流量コントローラ16を介して展
開用注水管17の一端に接続し、この展開用注水管17の他
端は陰イオン樹脂再生塔3に接続している。注水管17か
らの注水は陰イオン交換樹脂および混合樹脂層の展開用
水である。
A lower part of the anion resin regeneration tower 3 is connected to a stirring water supply pipe 11 for introducing water for developing and separating the entire ion exchange resin 2, and an upper part thereof is provided inside the anion resin regeneration tower. A water return pipe 13 is connected. This return pipe 13
Is connected to one end of a water injection pipe 17 for development via an injection pump 14 for circulating the retained water, a control valve 15 for adjusting the amount of water injected, and a flow rate controller 16, and the other end of the water injection pipe 17 for development is connected to an anion. It is connected to the resin regeneration tower 3. The water injected from the water injection pipe 17 is water for developing the anion exchange resin and the mixed resin layer.

【0029】陰イオン樹脂再生塔3には苛性ソーダ供給
配管18が接続し、陽イオン樹脂再生塔4には硫酸供給配
管19が接続されている。陰イオン樹脂再生塔3の下部に
は陽イオン交換樹脂出口管20が接続しており、陽イオン
樹脂は陽イオン樹脂入口管21を経由し陽イオン樹脂再生
塔4へ移送される。
A caustic soda supply pipe 18 is connected to the anionic resin regeneration tower 3, and a sulfuric acid supply pipe 19 is connected to the cation resin regeneration tower 4. A cation exchange resin outlet pipe 20 is connected to a lower portion of the anion resin regeneration tower 3, and the cation resin is transferred to the cation resin regeneration tower 4 via a cation resin inlet pipe 21.

【0030】硫酸により化学再生された陽イオン交換樹
脂は陽イオン樹脂戻り配管12を経由し陰イオン樹脂再生
塔3へ戻される。一方、苛性ソーダで化学再生された陰
イオン交換樹脂と陽イオン樹脂再生塔4から戻された陽
イオン交換樹脂は陰イオン樹脂再生塔3で混合洗浄され
た後、陽イオン交換樹脂出口管20を経由し復水脱塩塔1
へ移送される。
The cation exchange resin chemically regenerated with sulfuric acid is returned to the anion resin regeneration tower 3 via the cation resin return pipe 12. On the other hand, the anion exchange resin chemically regenerated with caustic soda and the cation exchange resin returned from the cation resin regeneration tower 4 are mixed and washed in the anion resin regeneration tower 3 and then pass through the cation exchange resin outlet pipe 20. Condensate desalination tower 1
Transferred to

【0031】陰イオン樹脂再生塔3の下部に接続された
廃液移送管22と、陽イオン樹脂再生塔4の下部に接続さ
れたドレン管23は合流し、ドレンストレーナ5に接続
し、ドレンストレーナ5は廃棄物処理設備6に接続して
いる。
The waste liquid transfer pipe 22 connected to the lower part of the anion resin regenerator 3 and the drain pipe 23 connected to the lower part of the cation resin regenerator 4 join together and are connected to the drain strainer 5. Are connected to a waste treatment facility 6.

【0032】つぎに上記構成に係る本実施の形態の作用
について説明する。復水脱塩塔1内のイオン交換樹脂2
は樹脂供給配管10を経由して陰イオン樹脂再生塔3へ移
送される。つぎに撹拌用水注水管11から陰イオン樹脂再
生塔3内へ水が注入され、その上昇流により混合状態の
イオン交換樹脂は注入水内を自然沈降する。
Next, the operation of the present embodiment according to the above configuration will be described. Ion exchange resin 2 in condensate desalination tower 1
Is transferred to the anionic resin regeneration tower 3 via the resin supply pipe 10. Next, water is injected from the stirring water injection pipe 11 into the anionic resin regeneration tower 3, and the ion exchange resin in a mixed state spontaneously settles in the injected water due to the upward flow.

【0033】この際、図2に示したように陽イオン交換
樹脂と陰イオン交換樹脂は比重差により上方には陰イオ
ン交換樹脂層Aが、下方には陽イオン交換樹脂層Bが、
両者の境界面付近には両樹脂が混在している混合樹脂層
Cが形成される。
At this time, as shown in FIG. 2, the cation exchange resin and the anion exchange resin have an anion exchange resin layer A on the upper side, a cation exchange resin layer B on the lower side, and
A mixed resin layer C in which both resins are mixed is formed near the boundary between the two.

【0034】つぎに、注入ポンプ14を起動し、陰イオン
再生塔3の内部水を流量コントローラ16の制御信号に基
づき、流量調節弁15により所定の流量に調節された展開
用水として展開用注水管17から注水し、図3に示すよう
に陰イオン交換樹脂層Aと混合樹脂層Cを陰イオン樹脂
再生塔3の上部まで展開させ、この後、徐々に展開用注
水流量を下げ、陽イオン交換樹脂のみが沈降する流量と
する。
Next, the injection pump 14 is started, and the internal water of the anion regeneration tower 3 is used as a developing water injection pipe adjusted to a predetermined flow rate by the flow control valve 15 based on a control signal of the flow controller 16, and is used as a developing irrigation pipe. Water was injected from 17 and the anion exchange resin layer A and the mixed resin layer C were spread to the upper part of the anion resin regeneration tower 3 as shown in FIG. The flow rate is such that only the resin settles.

【0035】これにより、図4に示すように陰イオン樹
脂再生塔3の展開用注水管17の上部には陰イオン交換樹
脂層A、下部には陽イオン交換樹脂層Bが形成される。
この状態で陰イオン樹脂再生塔3の下部の撹拌用注水管
11から注水しながら陽イオン交換樹脂出口管20から陽イ
オン交換樹脂入口配管21を通して陽イオン交換樹脂を陽
イオン樹脂再生塔4へ移送する。
As a result, as shown in FIG. 4, an anion exchange resin layer A is formed on the upper part of the developing water injection pipe 17 of the anion resin regeneration tower 3, and a cation exchange resin layer B is formed on the lower part.
In this state, a stirring injection pipe at the lower part of the anion resin regeneration tower 3
The cation exchange resin is transferred to the cation resin regeneration tower 4 from the cation exchange resin outlet pipe 20 through the cation exchange resin inlet pipe 21 while water is injected from 11.

【0036】そして、図5に示すように樹脂が分離され
た後、陰イオン樹脂再生塔3の展開用水の注入を停止
し、陰イオン樹脂層Aを自然沈降させる。
Then, after the resin is separated as shown in FIG. 5, the injection of the developing water in the anionic resin regenerating tower 3 is stopped, and the anionic resin layer A is spontaneously settled.

【0037】つぎに、陰イオン樹脂再生塔3内へ苛性ソ
ーダ供給管18から苛性ソーダを注入し、陽イオン樹脂再
生塔4内へ硫酸供給管19から硫酸を注入する。苛性ソー
ダが陰イオン交換樹脂層Aを通過することにより、また
硫酸が陽イオン交換樹脂層Bを通過することにより陰イ
オン交換樹脂および陽イオン交換樹脂はそれぞれ化学再
生される。
Next, caustic soda is injected into the anionic resin regeneration tower 3 from the caustic soda supply pipe 18, and sulfuric acid is injected into the cation resin regeneration tower 4 from the sulfuric acid supply pipe 19. As the caustic soda passes through the anion exchange resin layer A and the sulfuric acid passes through the cation exchange resin layer B, the anion exchange resin and the cation exchange resin are chemically regenerated.

【0038】このように陰イオン樹脂再生塔3および陽
イオン樹脂再生塔4内で化学再生を行った硫酸と苛性ソ
ーダは、廃液移送管22およびドレン管23から排出されド
レンストレーナ5を通して廃棄物処理設備6で処理され
る。
The sulfuric acid and caustic soda chemically regenerated in the anion resin regeneration tower 3 and the cation resin regeneration tower 4 are discharged from the waste liquid transfer pipe 22 and the drain pipe 23 and passed through the drain strainer 5 to a waste treatment facility. 6 is processed.

【0039】化学再生が完了した陽イオン交換樹脂は陽
イオン樹脂戻り配管12を経由し陰イオン樹脂再生塔3へ
戻される。陰イオン樹脂再生塔3内で陽および陰イオン
交換樹脂は最終洗浄、混合され、陽イオン交換樹脂出口
管20から復水脱塩塔1へ移送され、再び復水浄化が行わ
れる。
The cation exchange resin having undergone the chemical regeneration is returned to the anion resin regeneration tower 3 via the cation resin return pipe 12. The cation and anion exchange resins are finally washed and mixed in the anion resin regeneration tower 3, transferred from the cation exchange resin outlet pipe 20 to the condensate demineralization tower 1, and condensed again.

【0040】このように本実施の形態によれば、展開用
水注水管17、注水ポンプ14、流量調節弁15、流量調節コ
ントローラ16を設けたことにより、陰イオン樹脂再生塔
3で陽イオン交換樹脂と陰イオン交換樹脂の分離を確実
に行うことができる。さらに、展開用水として陰イオン
樹脂再生塔3の内部保有水を使用することによりここで
発生するドレン水の量を少なくすることができるので、
廃棄物処理設備6の処理負担を少なくすることができ
る。
As described above, according to the present embodiment, the water injection pipe 17, the water injection pump 14, the flow control valve 15, and the flow control controller 16 are provided, so that the cation exchange resin And the anion exchange resin can be reliably separated. Furthermore, since the water retained inside the anionic resin regeneration tower 3 is used as the developing water, the amount of drain water generated here can be reduced.
The processing load on the waste treatment equipment 6 can be reduced.

【0041】[0041]

【発明の効果】本発明によれば、樹脂の分離を改善し、
逆再生を防止し、処理水質を向上させることができ、分
離工程で発生する廃液量を低減できる。また、逆再生さ
れたイオン交換樹脂を復水脱塩塔へ持ち込むことなく処
理水質を良好に維持できるので、プラント構成材の腐蝕
性生成物が減少し、プラントの放射能レベルが下がり、
放射線被曝量を低減することができる。
According to the present invention, the separation of resin is improved,
Reverse regeneration can be prevented, the quality of treated water can be improved, and the amount of waste liquid generated in the separation step can be reduced. In addition, since the treated water quality can be maintained well without bringing the reverse-regenerated ion exchange resin into the condensate demineralization tower, corrosive products of plant components are reduced, and the radioactivity level of the plant is reduced.
Radiation exposure can be reduced.

【0042】また、イオン交換樹脂の分離に必要な水量
を減少することができるので廃液量を減少することがで
きる。そのため廃棄物処理設備の処理量が減少すること
ができる。
Further, since the amount of water necessary for separating the ion exchange resin can be reduced, the amount of waste liquid can be reduced. Therefore, the processing amount of the waste treatment equipment can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る復水脱塩装置用樹脂再生装置の実
施の形態を示す系統図。
FIG. 1 is a system diagram showing an embodiment of a resin regeneration apparatus for a condensate desalination apparatus according to the present invention.

【図2】図1においてイオン交換樹脂の再生作用を説明
するための系統図。
FIG. 2 is a system diagram for explaining a regeneration operation of the ion exchange resin in FIG.

【図3】図2の状態から次の工程を説明するための系統
図。
FIG. 3 is a system diagram for explaining the next step from the state of FIG. 2;

【図4】図3の状態から次の工程を説明するための系統
図。
FIG. 4 is a system diagram for explaining the next step from the state of FIG. 3;

【図5】図4の状態から次の工程を説明するための系統
図。
FIG. 5 is a system diagram for explaining the next step from the state of FIG. 4;

【図6】従来の原子力発電プラントの一般系統図。FIG. 6 is a general system diagram of a conventional nuclear power plant.

【図7】図6における復水脱塩装置の再生系の系統図。FIG. 7 is a system diagram of a regeneration system of the condensate desalination apparatus in FIG.

【図8】図7における復水脱塩装置の陽イオン交換樹脂
の陰イオン樹脂再生塔の縦断面図。
8 is a longitudinal sectional view of a cation exchange resin anion resin regeneration tower of the condensate desalination apparatus in FIG. 7;

【図9】図8における陽イオン樹脂再生塔内のイオン交
換樹脂層の分離面を模式的に示す概略断面図。
9 is a schematic sectional view schematically showing a separation surface of an ion exchange resin layer in the cation resin regeneration tower in FIG.

【符号の説明】[Explanation of symbols]

1…復水脱塩塔、2…イオン交換樹脂、3…陰イオン樹
脂再生塔、4…陽イオン樹脂再生塔、5…ドレンストレ
ーナ、6…廃棄物処理設備、7…復水入口配管、8…ス
トレーナ、9…復水出口配管、10…樹脂供給配管、11…
撹拌用注水配管、12…陽イオン樹脂戻り配管、13…陰イ
オン樹脂再生塔内部保有水戻り配管、14…注入ポンプ、
15…流量調節弁、16…流量コントローラ、17…展開用注
水配管、18…苛性ソーダ供給管、19…硫酸供給管、20…
陽イオン樹脂出口配管、21…陽イオン交換樹脂入口配
管、22…廃液移送管、23…ドレン配管。
DESCRIPTION OF SYMBOLS 1 ... Condensate desalination tower, 2 ... Ion exchange resin, 3 ... Anion resin regeneration tower, 4 ... Cation resin regeneration tower, 5 ... Drain strainer, 6 ... Waste treatment equipment, 7 ... Condensate inlet piping, 8 … Strainer, 9… Condenser outlet pipe, 10… Resin supply pipe, 11…
Water injection pipe for agitation, 12 ... Cation resin return pipe, 13 ... Anion resin regeneration tower internal water return pipe, 14 ... Injection pump,
15 ... Flow control valve, 16 ... Flow controller, 17 ... Irrigation pipe for deployment, 18 ... Caustic soda supply pipe, 19 ... Sulfuric acid supply pipe, 20 ...
Cation resin outlet pipe, 21 ... Cation exchange resin inlet pipe, 22 ... Waste liquid transfer pipe, 23 ... Drain pipe.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 復水脱塩塔から供給された陽イオン交換
樹脂と陰イオン交換樹脂により上部には陰イオン交換樹
脂層が、下部には陽イオン交換樹脂層が、中間部には陰
イオン交換樹脂と陽イオン交換樹脂の混合樹脂層が内部
に形成される陰イオン樹脂再生塔と、前記陽イオン交換
樹脂を貯留する陽イオン樹脂再生塔とを具備し、前記陰
イオン樹脂再生塔の下部には陽イオン交換樹脂出口管が
設けられ、この陽イオン交換樹脂出口管は前記復水脱塩
塔へ戻す全イオン交換樹脂の出口管を兼ね、前記陽イオ
ン交換樹脂層の下部の陰イオン樹脂再生塔には陽イオン
交換樹脂の撹拌用注水管が設けられ、前記混合樹脂層の
下部には前記混合樹脂層と陰イオン交換樹脂層の展開用
注水管が接続され、陰イオン樹脂再生塔の上部に展開用
水戻り管が接続され、前記陰イオン樹脂再生塔にはアル
カリ性薬品注入管が接続され、前記陽イオン樹脂再生塔
には酸性薬品注入管が接続されてなることを特徴とする
復水脱塩装置用樹脂再生装置。
1. An anion exchange resin layer at the upper part, a cation exchange resin layer at the lower part, and an anion at the middle part by the cation exchange resin and the anion exchange resin supplied from the condensate desalination tower. An anion resin regeneration tower in which a mixed resin layer of an exchange resin and a cation exchange resin is formed, and a cation resin regeneration tower for storing the cation exchange resin, a lower portion of the anion resin regeneration tower Is provided with a cation exchange resin outlet pipe, and this cation exchange resin outlet pipe also serves as an outlet pipe for all the ion exchange resin returned to the condensate demineralization tower, and the anion resin below the cation exchange resin layer. A water injection pipe for stirring the cation exchange resin is provided in the regeneration tower, and a water injection pipe for developing the mixed resin layer and the anion exchange resin layer is connected to a lower portion of the mixed resin layer, and a water injection pipe for the anion resin regeneration tower is provided. The deployment water return pipe is connected to the upper part An alkaline chemical injection pipe is connected to the anionic resin regeneration tower, and an acidic chemical injection pipe is connected to the cation resin regeneration tower.
【請求項2】 前記混合樹脂層と陰イオン交換樹脂層の
展開用水は、陰イオン樹脂再生塔内部水からなることを
特徴とする請求項1記載の復水脱塩装置用樹脂再生装
置。
2. The resin regenerating apparatus according to claim 1, wherein the water for developing the mixed resin layer and the anion exchange resin layer comprises water inside the anionic resin regenerating tower.
【請求項3】 前記混合樹脂層と陰イオン交換樹脂層を
展開させるために、注水ポンプと流量調節弁を有するこ
とを特徴とする請求項1記載の復水脱塩装置用樹脂再生
装置。
3. The resin regenerating apparatus according to claim 1, further comprising a water injection pump and a flow control valve for developing the mixed resin layer and the anion exchange resin layer.
【請求項4】 前記混合樹脂層と陰イオン交換樹脂層の
展開用水の流量を所定量にコントロールする制御系を設
けてなることを特徴とする請求項1記載の復水脱塩装置
用樹脂再生装置。
4. The resin regeneration for a condensate desalination apparatus according to claim 1, further comprising a control system for controlling the flow rate of the developing water of the mixed resin layer and the anion exchange resin layer to a predetermined amount. apparatus.
JP9001076A 1997-01-08 1997-01-08 Resin regenerator for condensate desalter Pending JPH10192718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9001076A JPH10192718A (en) 1997-01-08 1997-01-08 Resin regenerator for condensate desalter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9001076A JPH10192718A (en) 1997-01-08 1997-01-08 Resin regenerator for condensate desalter

Publications (1)

Publication Number Publication Date
JPH10192718A true JPH10192718A (en) 1998-07-28

Family

ID=11491423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9001076A Pending JPH10192718A (en) 1997-01-08 1997-01-08 Resin regenerator for condensate desalter

Country Status (1)

Country Link
JP (1) JPH10192718A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050898A (en) * 2009-09-03 2011-03-17 Kurita Water Ind Ltd Method and apparatus for conditioning ion exchange resin
CN102228844A (en) * 2011-07-21 2011-11-02 南华大学 Cleaning method of uranium hydrometallurgy fixed bed ion exchange resin
CN102863054A (en) * 2012-10-17 2013-01-09 广州市太和电路板有限公司 Device for classification recycling of ion exchange resins and process thereof
JP2015136672A (en) * 2014-01-23 2015-07-30 国立大学法人佐賀大学 Method for removing anionic species in solution
CN110776131A (en) * 2019-10-15 2020-02-11 华电电力科学研究院有限公司 Zero-discharge system and process for regenerated wastewater of condensate fine treatment system of coal-fired power plant
KR20200105845A (en) * 2017-12-15 2020-09-09 엘렉트리씨트 드 프랑스 How to identify the unit causing a raw water leak in the condenser of a thermal power plant
CN113697900A (en) * 2021-03-04 2021-11-26 国能蚌埠发电有限公司 Novel full-automatic regeneration system of smart processing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050898A (en) * 2009-09-03 2011-03-17 Kurita Water Ind Ltd Method and apparatus for conditioning ion exchange resin
CN102228844A (en) * 2011-07-21 2011-11-02 南华大学 Cleaning method of uranium hydrometallurgy fixed bed ion exchange resin
CN102863054A (en) * 2012-10-17 2013-01-09 广州市太和电路板有限公司 Device for classification recycling of ion exchange resins and process thereof
JP2015136672A (en) * 2014-01-23 2015-07-30 国立大学法人佐賀大学 Method for removing anionic species in solution
KR20200105845A (en) * 2017-12-15 2020-09-09 엘렉트리씨트 드 프랑스 How to identify the unit causing a raw water leak in the condenser of a thermal power plant
CN110776131A (en) * 2019-10-15 2020-02-11 华电电力科学研究院有限公司 Zero-discharge system and process for regenerated wastewater of condensate fine treatment system of coal-fired power plant
CN113697900A (en) * 2021-03-04 2021-11-26 国能蚌埠发电有限公司 Novel full-automatic regeneration system of smart processing

Similar Documents

Publication Publication Date Title
US4969520A (en) Steam injection process for recovering heavy oil
US3700550A (en) Process for purifying water utilized in a boiling water reactor
JPH10192718A (en) Resin regenerator for condensate desalter
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JPS5833005B2 (en) How to recover and reuse backwash liquid
JP3614995B2 (en) Condensate demineralizer
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP3369725B2 (en) Condensate desalination equipment
KR900001370B1 (en) Method and apparatus for desalting of water by ion-excanhge
JP4370470B2 (en) Method and apparatus for treating radioactive liquid waste
JP2000140839A (en) Desalting device of condensate
JPH11197661A (en) Condensed water desalting apparatus
JP2597552Y2 (en) Pure water production equipment
JPS61155898A (en) Treater for regenerated waste liquor of ion exchnage resin
JPH0271893A (en) Condensate desalter
KR890004710B1 (en) Method and apparatus for regeneration of ion-exchange resin in mixed-bed ion-exchanger
JP2543767B2 (en) Condensate desalination method
JP3238619B2 (en) Regeneration method of desalination equipment
JPH026893A (en) Condensate desalting device
JP2001079424A (en) Equipment and method for regenerating ion exchange resin
JPS5966354A (en) Regeneration of ion-exchange resin
JPH0568973A (en) Partial resin regeneration type condensed water desalting apparatus
JP2001179249A (en) Condensed water desalting apparatus
JP2001129547A (en) Supply water desalting apparatus and treatment method of ion exchange resin in supply water desalting apparatus
JPS591091B2 (en) How to adjust the amount of ion exchange resin in condensate desalination equipment