JPH10189895A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH10189895A
JPH10189895A JP8341422A JP34142296A JPH10189895A JP H10189895 A JPH10189895 A JP H10189895A JP 8341422 A JP8341422 A JP 8341422A JP 34142296 A JP34142296 A JP 34142296A JP H10189895 A JPH10189895 A JP H10189895A
Authority
JP
Japan
Prior art keywords
film
charge storage
storage electrode
hole
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8341422A
Other languages
Japanese (ja)
Other versions
JP3233051B2 (en
Inventor
Hidenobu Miyamoto
秀信 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP34142296A priority Critical patent/JP3233051B2/en
Publication of JPH10189895A publication Critical patent/JPH10189895A/en
Application granted granted Critical
Publication of JP3233051B2 publication Critical patent/JP3233051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a charge storage electrode which has a sufficient mechanical strength and a clean surface. SOLUTION: An oxide film 110 and a nitride film 111 are grown in layers on a bit line 109, the nitride film 111 is dry-etched with a resist pattern as a mask, so as to form a through-hole 111a, an oxide film 113 is frown on the nitride film 111. A wide charge storage electrode-forming recess 115 is provided to the oxide 113, corresponding to the position of the through-hole 111a of the nitride film 111, a contact hole 116 is formed so as to reach a diffusion layer 106 penetrating through the through-hole 111a, a conductor film 117 is filled into the contact hole 116 and attached onto the inner wall of the recess 115, and a cylindrical charge storage electrode 119 having a large surface area is formed by initializing the charge storage electrode-forming recess 115.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スタック型の電荷
蓄積電極を有する半導体装置の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device having a stack type charge storage electrode.

【0002】[0002]

【従来の技術】近年、ダイナミック・ランダムアクセス
・メモリ(DRAM)においては、多結晶シリコン膜を
電荷蓄積電極に用いるスタック型のメモリセル構造が採
用されているが、素子の高集積化が進むにつれて十分な
蓄積容量を得るために電荷蓄積電極の表面積を増大させ
る様々な工夫がなされている。
2. Description of the Related Art In recent years, a dynamic random access memory (DRAM) has adopted a stack type memory cell structure using a polycrystalline silicon film as a charge storage electrode. Various attempts have been made to increase the surface area of the charge storage electrode in order to obtain a sufficient storage capacity.

【0003】この一例として特開平3−257859号
公報に記載された半導体装置を図7に示す。図におい
て、1はシリコン基板,2は素子分離領域,3はゲート
絶縁膜,4はゲート電極25は絶縁膜サイドウォールス
ペーサ,6は不純物領域,7は電荷蓄積電極,8はキャ
パシタ誘電膜,9はキャパシタプレート電極,10は層
間絶縁膜,11は読み出し・書き込み電極(ビット線)
である。
FIG. 7 shows a semiconductor device described in Japanese Patent Application Laid-Open No. Hei 3-257859 as an example. In the figure, 1 is a silicon substrate, 2 is an element isolation region, 3 is a gate insulating film, 4 is a gate electrode 25 is an insulating film sidewall spacer, 6 is an impurity region, 7 is a charge storage electrode, 8 is a capacitor dielectric film, 9 Is a capacitor plate electrode, 10 is an interlayer insulating film, 11 is a read / write electrode (bit line)
It is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の半導体装置の製造方法では、電荷蓄積電極7
は、多結晶シリコン膜7aと7bの2層から形成されて
いたため、膜7aと7bとの接続部7cの機械的強度が
弱く、電極形成後の洗浄等の工程で崩れてしまう可能性
があった。また電荷蓄積電極7の垂直部分をエッチバッ
クにより形成しているため、最上端の形状が鋭角にな
り、電界集中によるリークを引き起こしたり、エッチバ
ックされた多結晶シリコン面にデポ物が形成されてしま
うという問題点があった。
However, in such a conventional method of manufacturing a semiconductor device, the charge storage electrode 7 is not provided.
Is formed from two layers of the polycrystalline silicon films 7a and 7b, the mechanical strength of the connecting portion 7c between the films 7a and 7b is weak, and may be destroyed in a step such as cleaning after forming the electrodes. Was. Further, since the vertical portion of the charge storage electrode 7 is formed by etching back, the shape of the uppermost end becomes an acute angle, causing leakage due to electric field concentration, or forming a deposit on the etched back polycrystalline silicon surface. There was a problem that it would.

【0005】本発明の目的は、十分な機械的強度を持
ち、かつプラズマ等に曝されず清浄な表面を有する電荷
蓄積電極を形成する半導体装置の製造方法を提供するこ
とにある。
It is an object of the present invention to provide a method of manufacturing a semiconductor device having a charge storage electrode having sufficient mechanical strength and a clean surface which is not exposed to plasma or the like.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る半導体装置の製造方法は、膜形成工程
と、ホール形成工程と、凹陥部・コンタルトホール形成
工程と、導体膜形成工程とを有し、半導体基板上にDR
AMのスタックセルを形成する半導体装置の製造方法で
あって、膜形成工程は、ビット線上に酸化膜と窒化膜を
積層成長させる処理であり、ホール形成工程は、レジス
トパターンをマスクとして前記窒化膜をドライエッチン
グしてホールを形成する処理であり、凹陥部・コンタク
トホール形成工程は、前記窒化膜上に酸化膜を成長させ
た後、該酸化膜に広口の電荷蓄積電極形成用凹陥部を前
記窒化膜のホールの位置に対応させて設け、かつ前記窒
化膜のホールを通して拡散層に達するコンタクトホール
を形成する処理であり、導体膜形成工程は、前記コンタ
クトホール内に導体膜を充填し、かつ前記電荷蓄積電極
形成用凹陥部の内壁面に導体膜を添着させる処理であ
る。
In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention comprises a film forming step, a hole forming step, a recess / contral hole forming step, a conductive film forming step, And DR on the semiconductor substrate.
A method of manufacturing a semiconductor device for forming an AM stack cell, wherein the film forming step is a step of laminating an oxide film and a nitride film on a bit line, and the hole forming step is using the resist pattern as a mask to form the nitride film. Is a process of forming a hole by dry etching.In the recess / contact hole forming step, after growing an oxide film on the nitride film, a wide-opening charge storage electrode forming recess is formed in the oxide film. A process for forming a contact hole provided corresponding to the position of the hole in the nitride film and reaching the diffusion layer through the hole in the nitride film, wherein the conductive film forming step fills the conductive film in the contact hole, and This is a process of attaching a conductive film to the inner wall surface of the concave portion for forming the charge storage electrode.

【0007】また、不要な前記導電体膜及び該導電体膜
上の酸化膜の除去は、ドライエッチングを用いたエッチ
バックにより行う。
The unnecessary removal of the conductor film and the oxide film on the conductor film is performed by etch-back using dry etching.

【0008】また、前記導電体膜は、n+ポリシリコ
ン,タングステン,TiNのいずれか或いは、これらの
材料の積層膜から形成されるものである。
The conductor film is formed of any of n + polysilicon, tungsten, and TiN, or a laminated film of these materials.

【0009】[0009]

【作用】本発明では、電荷蓄積電極形成用凹陥部を開口
し、かつ下地の窒化膜に拡散層まで達する容量コンタク
トを開口し、続いて容量コンタクトに埋め込んだ導電体
膜と一体に電荷蓄積電極形成用凹陥部の内壁面に強度の
高い電荷蓄積電極を形成する。
According to the present invention, an opening for forming a charge storage electrode and an opening for a capacitor contact reaching the diffusion layer in the underlying nitride film are formed. Subsequently, the charge storage electrode is integrated with the conductor film embedded in the capacitor contact. A high-strength charge storage electrode is formed on the inner wall surface of the forming recess.

【0010】また、電荷蓄積電極形成用凹陥部の内壁面
に形成される導電体膜は、凹形状をなしているため、該
導電体膜を酸化膜等によって保護することにより、蓄積
電極表面の大部分をデポ直後の清浄なままに保つことが
できる。更に、蓄積電極部を凹陥部として形成すること
により、従来の残しパターンの電極面積に比べ容易に大
きくすることができる。
Further, since the conductive film formed on the inner wall surface of the concave portion for forming the charge storage electrode has a concave shape, the conductive film is protected by an oxide film or the like so that the surface of the storage electrode can be protected. Most can be kept clean immediately after the depot. Further, by forming the storage electrode portion as a concave portion, it is possible to easily increase the storage electrode portion in comparison with the conventional electrode pattern of the remaining pattern.

【0011】[0011]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0012】(実施形態1)図1〜図3は、本発明の実
施形態1に係る半導体装置の製造方法を工程順に示す断
面図である。
(Embodiment 1) FIGS. 1 to 3 are sectional views showing a method of manufacturing a semiconductor device according to Embodiment 1 of the present invention in the order of steps.

【0013】図1(a)に示すように、まずシリコン基
板101の表面に、素子分離領域102,ゲート酸化膜
103を積層形成する。次に、ゲート酸化膜103上に
第一の多結晶シリコン膜を堆積し、これに燐を拡散した
後、その表面にタングステンシリサイド膜を堆積し、フ
ォトレジスト(図示せず)をマスクにしてタングステン
シリサイド膜及び第一の多結晶シリコン膜を順次エッチ
ングすることにより、ゲート電極104を形成する。
As shown in FIG. 1A, an element isolation region 102 and a gate oxide film 103 are first formed on the surface of a silicon substrate 101. Next, a first polycrystalline silicon film is deposited on the gate oxide film 103, phosphorus is diffused into the first polysilicon film, a tungsten silicide film is deposited on the surface thereof, and a tungsten (Si) film is deposited using a photoresist (not shown) as a mask. The gate electrode 104 is formed by sequentially etching the silicide film and the first polycrystalline silicon film.

【0014】続いて、前記フォトレジストを除去し、低
濃度のn型不純物のイオン注入を行った後、全面にサイ
ドウォール用の酸化膜を堆積してからエッチバックを行
い、サイドウォール酸化膜105を形成する。
Subsequently, after removing the photoresist and performing ion implantation of low-concentration n-type impurities, an oxide film for a sidewall is deposited on the entire surface and then etched back to form a sidewall oxide film 105. To form

【0015】次に、高濃度のn型不純物のイオン注入を
行い、LDD型の不純物拡散層106を形成し、シリコ
ン基板101の全面に第一層間絶縁膜107を堆積し、
続いてCMPまたはエッチバック等により表面の平坦化
を行う。
Next, ion implantation of a high concentration n-type impurity is performed to form an LDD type impurity diffusion layer 106, and a first interlayer insulating film 107 is deposited on the entire surface of the silicon substrate 101.
Subsequently, the surface is flattened by CMP or etch back.

【0016】次に、フォトレジスト(図示せず)をマス
クにしたエッチングにより、ビット線コンタクト108
を形成し、全面にn型の多結晶シリコン膜を堆積した後
にエッチバックにより、ビット線コンタクト108内以
外の多結晶シリコン膜を除去する。次に、タングステン
シリサイド膜を堆積し、フォトレジスト(図示せず)を
マスクにしてタングステンシリサイド膜をエッチングす
ることにより、ビット線109をビット線コンタクト1
08に対応させて形成する。
Next, a bit line contact 108 is formed by etching using a photoresist (not shown) as a mask.
After the n-type polycrystalline silicon film is deposited on the entire surface, the polycrystalline silicon film other than in the bit line contact 108 is removed by etch back. Next, by depositing a tungsten silicide film and etching the tungsten silicide film using a photoresist (not shown) as a mask, the bit line 109 is connected to the bit line contact 1.
08.

【0017】続いて、フォトレジストを除去し、シリコ
ン基板101の全面に第二層間絶縁膜110を堆積し、
CMPまたはエッチバック等により表面の平坦化を行
う。この第二層間絶縁膜110上にSiH4ガスを用い
た減圧CVD法にてシリコン窒化膜111を例えば10
0nm形成する。
Subsequently, the photoresist is removed, and a second interlayer insulating film 110 is deposited on the entire surface of the silicon substrate 101.
The surface is flattened by CMP or etch back. The silicon nitride film 111, for example, by low pressure CVD method using SiH 4 gas on the second interlayer insulating film 110 10
0 nm is formed.

【0018】続いて、シリコン窒化膜111上にフォト
レジスト112を堆積し、拡散層106に対応するフォ
トレジスト112にコンタクトパターン112aを設
け、このレジストパターン112をマスクとしてドライ
エッチングにより、シリコン窒化膜111にコンタクト
パターン111aを開口する。
Subsequently, a photoresist 112 is deposited on the silicon nitride film 111, a contact pattern 112a is provided on the photoresist 112 corresponding to the diffusion layer 106, and the silicon nitride film 111 is dry-etched using the resist pattern 112 as a mask. The contact pattern 111a is opened.

【0019】次に図1(b)に示すように、レジストパ
ターン112を除去した後、シリコン基板101の全面
にSiH4ガスを用いた常圧CVD法にてシリコン酸化
膜113を例えば800nm形成し、シリコン酸化膜1
13にレジストパターン114を形成する。次に、レジ
ストパターン114をマスクにしてシリコン酸化膜11
3をドライエッチングし、シリコン窒化膜111をエッ
チングストッパーとして、電荷蓄積電極形成用凹陥部1
15を形成する。
Next, as shown in FIG. 1B, after removing the resist pattern 112, a silicon oxide film 113 is formed on the entire surface of the silicon substrate 101 by, for example, 800 nm by a normal pressure CVD method using SiH 4 gas. , Silicon oxide film 1
13, a resist pattern 114 is formed. Next, using the resist pattern 114 as a mask, the silicon oxide film 11 is formed.
3 is dry-etched, and the charge storage electrode forming recess 1 is
15 are formed.

【0020】更に図1(c)に示すように、シリコン窒
化膜111をマスクとしてドライエッチングを行うこと
により、電荷蓄積電極形成用凹陥部115の底部に不純
物拡散層106に達する容量コンタクト116を形成す
る。
Further, as shown in FIG. 1C, a capacity contact 116 reaching the impurity diffusion layer 106 is formed at the bottom of the charge storage electrode forming recess 115 by performing dry etching using the silicon nitride film 111 as a mask. I do.

【0021】レジストパターン114を除去した後、図
2(d)に示すように、シリコン基板101の全面にS
iH4ガスを用いた減圧CVD法にて、例えば反応温度
620℃,反応圧力0.2Torrで第三の多結晶シリ
コン膜を堆積し、これに燐を拡散してn+多結晶シリコ
ン膜117(導電体膜)を電荷蓄積電極形成用凹陥部1
15の内壁面及び上縁に必要な膜厚に形成する。またn
+多結晶シリコン膜117は、容量コンタクト116内
にも充填され、不純物拡散層106に接合する。なお、
導電体膜として、n+多結晶シリコン膜を用いたが、こ
のn+多結晶シリコン膜に代えて、導電体膜としたアモ
ルファスシリコン膜を用いても良い。
After the resist pattern 114 is removed, as shown in FIG.
By a low pressure CVD method using iH 4 gas, for example, a third polycrystalline silicon film is deposited at a reaction temperature of 620 ° C. and a reaction pressure of 0.2 Torr, and phosphorus is diffused therein to diffuse an n + polycrystalline silicon film 117 ( (A conductor film) and a recess 1 for forming a charge storage electrode.
15 is formed to a required film thickness on the inner wall surface and the upper edge. And n
+ Polycrystalline silicon film 117 is also filled in capacitor contact 116 and is bonded to impurity diffusion layer 106. In addition,
Although the n + polycrystalline silicon film is used as the conductor film, an amorphous silicon film as the conductor film may be used instead of the n + polycrystalline silicon film.

【0022】次に、CMP(メカニカルケミカルポリッ
シング)により、電荷蓄積電極形成用凹陥部115から
はみ出した上縁のn+多結晶シリコン膜117を除去
し、それぞれ分離された導電体膜からなる電荷蓄積電極
119,119を形成する(図2(e))。
Next, the upper edge n + polycrystalline silicon film 117 protruding from the charge storage electrode forming recessed portion 115 is removed by CMP (mechanical chemical polishing), and the charge storage film composed of the separated conductive films is removed. The electrodes 119, 119 are formed (FIG. 2E).

【0023】次に図2(f)に示すように、電荷蓄積電
極119の間に残ったシリコン酸化膜113をエッチン
グし、最後に電荷蓄積電極119をマスクとして不要な
シリコン窒化膜111をエッチングにより除去し、図2
(g)に示すように、電荷蓄積電極119の下端119
aを拡散層106に直接接合し、電荷蓄積電極形成用凹
陥部115を利用して円筒形の大きな面積を有する電荷
蓄積電極119として形成する。
Next, as shown in FIG. 2F, the silicon oxide film 113 remaining between the charge storage electrodes 119 is etched, and finally the unnecessary silicon nitride film 111 is etched by using the charge storage electrodes 119 as a mask. Removed, Figure 2
As shown in (g), the lower end 119 of the charge storage electrode 119
a is directly bonded to the diffusion layer 106, and is formed as the charge storage electrode 119 having a large cylindrical area using the charge storage electrode forming recess 115.

【0024】本実施形態1では、電荷蓄積電極119の
材料としてn+多結晶シリコン膜117を使用したが、
これに代えて、タングステン,TiNのいずれか、或い
はこれらの材料からなる積層膜を用いても良い。
In the first embodiment, the n + polycrystalline silicon film 117 is used as the material of the charge storage electrode 119.
Instead of this, either tungsten or TiN, or a laminated film made of these materials may be used.

【0025】また、本実施形態1では、電荷蓄積電極1
19の下層のシリコン窒化膜111が電荷蓄積電極直下
に残る構造となっているが、シリコン窒化膜111をウ
ェットエッチングで完全に除去して電荷蓄積電極119
の表面積を増加させることも可能である。
In the first embodiment, the charge storage electrode 1
Although the lower portion of the silicon nitride film 111 has a structure immediately below the charge storage electrode, the silicon nitride film 111 is completely removed by wet etching to remove the charge storage electrode 119.
It is also possible to increase the surface area of.

【0026】(実施形態2)次に、本発明の実施形態2
について図面を参照して説明する。図4〜図6は、本発
明の実施形態2に係る半導体装置の製造方法を示す工程
順に示す断面図である。
(Embodiment 2) Next, Embodiment 2 of the present invention
Will be described with reference to the drawings. 4 to 6 are cross-sectional views illustrating a method of manufacturing a semiconductor device according to Embodiment 2 of the present invention in the order of steps.

【0027】図4(a)に示すように、まずシリコン基
板201表面に、素子分離領域202,ゲート酸化膜2
03を積層形成し、第一の多結晶シリコン膜を堆積し、
これに燐を拡散した後、これの表面にタングステンシリ
サイド膜を堆積する。次に、フォトレジスト(図示せ
ず)をマスクにしてタングステンシリサイド膜及び第一
の多結晶シリコン膜を順次エッチングすることにより、
ゲート電極204を形成する。続いて、フォトレジスト
を除去し、低濃度のn型の不純物のイオン注入を行った
後、全面にサイドウォール用の酸化膜を堆積してからエ
ッチバックを行い、サイドウォール酸化膜205を形成
する。
As shown in FIG. 4A, first, an element isolation region 202 and a gate oxide film 2 are formed on the surface of a silicon substrate 201.
03, a first polycrystalline silicon film is deposited,
After phosphorus is diffused into this, a tungsten silicide film is deposited on the surface thereof. Next, the tungsten silicide film and the first polycrystalline silicon film are sequentially etched using a photoresist (not shown) as a mask,
A gate electrode 204 is formed. Subsequently, after removing the photoresist and performing ion implantation of low-concentration n-type impurities, an oxide film for a sidewall is deposited on the entire surface and then etched back to form a sidewall oxide film 205. .

【0028】次に、高濃度のn型の不純物のイオン注入
を行い、LDD型の不純物拡散層206を形成した後、
全面に第一層間絶縁膜207を堆積し、続いてCMPま
たはエッチバック等により表面の平坦化を行う。次に、
フォトレジスト(図示せず)をマスクにしたエッチング
によりビット線コンタクト208を形成し、全面にn型
の多結晶シリコン膜を堆積した後にエッチバックによ
り、ビット線コンタクト内以外の多結晶シリコン膜を除
去する。
Next, high-concentration n-type impurity ions are implanted to form an LDD-type impurity diffusion layer 206.
A first interlayer insulating film 207 is deposited on the entire surface, and then the surface is flattened by CMP or etch back. next,
A bit line contact 208 is formed by etching using a photoresist (not shown) as a mask, an n-type polycrystalline silicon film is deposited on the entire surface, and then the polycrystalline silicon film other than in the bit line contact is removed by etch back. I do.

【0029】次に、タングステンシリサイド膜を堆積
し、フォトレジスト(図示せず)をマスクにしてタング
ステンシリサイド膜をエッチングすることにより、ビッ
ト線209を形成する。続いて、フォトレジストを除去
し、全面に第二層間絶縁膜210を堆積し、CMPまた
はエッチバック等により、表面の平坦化を行う。この第
二層間絶縁膜210上にSiH4ガスを用いた減圧CV
D法にてシリコン窒化膜211を例えば100nm形成
する。続いて、容量コンタクトのレジストパターン21
2をマスクとしてドライエッチングによりシリコン窒化
膜211にコンタクトパターンを形成する。
Next, a bit line 209 is formed by depositing a tungsten silicide film and etching the tungsten silicide film using a photoresist (not shown) as a mask. Subsequently, the photoresist is removed, a second interlayer insulating film 210 is deposited on the entire surface, and the surface is planarized by CMP or etch back. Decompression CV using SiH 4 gas on the second interlayer insulating film 210
The silicon nitride film 211 is formed to a thickness of, for example, 100 nm by the method D. Subsequently, the resist pattern 21 of the capacitance contact
2 is used as a mask to form a contact pattern on the silicon nitride film 211 by dry etching.

【0030】次に図4(b)に示すようにレジストパタ
ーン212を除去した後、全面にSiH4ガスを用いた
常圧CVD法にてシリコン酸化膜213を例えば800
nm形成し、レジストパターン214を形成する。次
に、このレジストパターン214をマスクにしてシリコ
ン酸化膜213をドライエッチングし、シリコン窒化膜
211がエッチングストッパーとして電荷蓄積電極形成
用凹陥部215を形成する。更に、シリコン窒化膜21
1をマスクとしてドライエッチングを行うことにより、
予め開口されていた部分に不純物拡散層206に達する
容量コンタクト216を形成する(図4(c))。
Next, as shown in FIG. 4B, after removing the resist pattern 212, a silicon oxide film 213 is formed on the entire surface by, for example, 800 pressure-assisted CVD using SiH 4 gas.
Then, a resist pattern 214 is formed. Next, the silicon oxide film 213 is dry-etched using the resist pattern 214 as a mask to form a charge storage electrode forming recess 215 using the silicon nitride film 211 as an etching stopper. Further, the silicon nitride film 21
By performing dry etching using 1 as a mask,
A capacitor contact 216 that reaches the impurity diffusion layer 206 is formed in a previously opened portion (FIG. 4C).

【0031】レジストパターン214を除去した後、図
5(d)に示すように、全面にSiH4ガスを用いた減
圧CVD法にて、例えば反応温度620℃,反応圧力
0.2Torrで第三の多結晶シリコン膜を堆積し、こ
れに燐を拡散し、n+多結晶シリコン膜217を電荷蓄
積電極形成用凹陥部215の内壁面及び上縁に必要な膜
厚に形成する。またn+多結晶シリコン膜217は、容
量コンタクト216内にも充填され、不純物拡散層20
6に接合する。なお、導電体膜として、n+多結晶シリ
コン膜を用いたが、このn+多結晶シリコン膜に代え
て、導電体膜としたアモルファスシリコン膜を用いても
良い。
After the resist pattern 214 is removed, as shown in FIG. 5D, a third process is performed at a reaction temperature of 620 ° C. and a reaction pressure of 0.2 Torr by a low pressure CVD method using SiH 4 gas on the entire surface. A polycrystalline silicon film is deposited, and phosphorus is diffused in the polycrystalline silicon film to form an n + polycrystalline silicon film 217 on the inner wall surface and upper edge of the concave portion 215 for forming a charge storage electrode to a required thickness. The n + polycrystalline silicon film 217 is also filled in the capacitor contact 216, and the impurity diffusion layer 20
6 Although the n + polycrystalline silicon film is used as the conductor film, an amorphous silicon film as a conductor film may be used instead of the n + polycrystalline silicon film.

【0032】次に、図5(e)に示すように、SiH4
ガスを用いた常圧CVD法にてBPSG膜218を電荷
蓄積電極形成用凹陥部215内及び上縁に例えば100
0nm堆積し、リフローによる平坦化を行うか又はSO
G(スピン・オングラス法)で塗布形成しても良い。B
PSG膜218を形成する方法としては、これに限ら
ず、他の方法を用いてもよい。。次に、CMP(メカニ
カルケミカルポリッシング)によりBPSG膜218及
び電荷蓄積電極形成用ホール215内以外のn+多結晶
シリコン膜217を順次除去し、それぞれ分離された導
電体膜からなる電荷蓄積電極219,219を形成する
(図5(f))。
[0032] Next, as shown in FIG. 5 (e), SiH 4
A BPSG film 218 is formed in the charge storage electrode forming recess 215 and on the upper edge thereof by, for example, 100
0 nm deposited and planarized by reflow or SO
G (spin-on-glass method) may be applied and formed. B
The method for forming the PSG film 218 is not limited to this, and another method may be used. . Next, the BPSG film 218 and the n + polycrystalline silicon film 217 other than those in the charge storage electrode forming holes 215 are sequentially removed by CMP (mechanical chemical polishing), and the charge storage electrodes 219 and 219 of a separated conductive film are removed. 219 are formed (FIG. 5F).

【0033】次に図6(g)に示すように、電荷蓄積電
極219の間に残ったシリコン酸化膜213をエッチン
グし、最後に電荷蓄積電極219をマスクとしてシリコ
ン窒化膜211をエッチングにより除去し、図6(h)
に示したように、電荷蓄積電極形成用凹陥部215を利
用して円筒形の大きな面積を有する電荷蓄積電極219
として形成する。
Next, as shown in FIG. 6G, the silicon oxide film 213 remaining between the charge storage electrodes 219 is etched, and finally the silicon nitride film 211 is removed by etching using the charge storage electrodes 219 as a mask. , FIG. 6 (h)
As shown in the figure, the charge storage electrode 219 having a large cylindrical area is formed by using the charge storage electrode formation recess 215.
Form as

【0034】本実施形態2において、電荷蓄積電極21
9の材料として、n+多結晶シリコン膜を使用している
が、その他にタングステン,TiNのいずれか、或いは
これらの材料の積層膜を用いてもよい。
In the second embodiment, the charge storage electrode 21
Although the n + polycrystalline silicon film is used as the material of No. 9, any of tungsten and TiN or a laminated film of these materials may be used.

【0035】また、本実施形態2では、電荷蓄積電極2
19の下層のシリコン窒化膜211が電荷蓄積電極21
9の直下に残る構造となっているが、シリコン窒化膜2
11をウェットエッチングにより完全に除去し、電荷蓄
積電極219の表面積を増加させることも可能である。
In the second embodiment, the charge storage electrode 2
19, the silicon nitride film 211 under the charge storage electrode 21
9, the silicon nitride film 2
It is also possible to completely remove 11 by wet etching and increase the surface area of the charge storage electrode 219.

【0036】また、本実施形態2では、CMPによる研
磨を行う前に電荷蓄積電極219,219間をBPSG
膜で埋め込むことにより、研磨時に電荷蓄積電極219
が破損したり、電極表面が研磨液で汚染されることを防
止することができるという利点を有している。
In the second embodiment, BPSG is applied between the charge storage electrodes 219 before the polishing by CMP.
By embedding with a film, the charge storage electrode 219 is polished during polishing.
This has the advantage that it is possible to prevent the electrode from being damaged or the electrode surface from being contaminated with the polishing liquid.

【0037】[0037]

【発明の効果】以上説明したように本発明によれば、電
荷蓄積電極形成用の凹陥部を開口すると同時に、下層の
窒化膜をマスクとして、拡散層に達するコンタクトホー
ル(容量コンタクト)を形成し、続いて全面に導電体膜
を成長するため、容量コンタクト部と一体となった機械
的強度の高い電荷蓄積電極を形成することができる。
As described above, according to the present invention, a contact hole (capacitance contact) reaching a diffusion layer is formed by opening a recess for forming a charge storage electrode and using a lower nitride film as a mask. Subsequently, since a conductor film is grown on the entire surface, a charge storage electrode having high mechanical strength integrated with the capacitor contact portion can be formed.

【0038】また、導電体膜を分離して各電荷蓄積電極
を形成する方法は、不要な導電膜をCMPまたはエッチ
バックすることにより除去して行っているため、電荷蓄
積電極形成用凹陥部の導電体膜を酸化膜等によって保護
することにより、電荷蓄積電極表面の大部分をデポ直後
の洗浄なままに保つことができる。
In the method of forming each charge storage electrode by separating the conductor film, unnecessary conductive films are removed by CMP or etch back, so that the charge storage electrode forming recesses are formed. By protecting the conductor film with an oxide film or the like, most of the surface of the charge storage electrode can be kept clean immediately after the deposition.

【0039】更に、蓄積電極部を電荷蓄積電極形成用の
凹陥部としての抜きパターンで形成することにより、従
来の残しパターンによる形成方法と比較して電荷蓄積電
極の面積を容易に拡大することができる。
Further, by forming the storage electrode portion with a cutout pattern as a concave portion for forming a charge storage electrode, the area of the charge storage electrode can be easily enlarged as compared with the conventional formation method using the remaining pattern. it can.

【0040】更に、電荷蓄積電極となる導電体膜の除去
をCMPにより行うことが可能であるため、ドライエッ
チングが困難な白金等を含めた導電体を電荷蓄積電極と
しての導電体膜に適用することができる。
Further, since the conductor film serving as the charge storage electrode can be removed by CMP, a conductor including platinum or the like, which is difficult to dry-etch, is applied to the conductor film serving as the charge storage electrode. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1に係る半導体装置の製造方
法を工程順に示す断面図である。
FIG. 1 is a sectional view illustrating a method for manufacturing a semiconductor device according to a first embodiment of the present invention in the order of steps.

【図2】本発明の実施形態1に係る半導体装置の製造方
法を工程順に示す断面図である。
FIG. 2 is a sectional view illustrating a method of manufacturing the semiconductor device according to the first embodiment of the present invention in the order of steps.

【図3】本発明の実施形態1に係る半導体装置の製造方
法を工程順に示す断面図である。
FIG. 3 is a sectional view illustrating a method of manufacturing the semiconductor device according to the first embodiment of the present invention in the order of steps.

【図4】本発明の実施形態2に係る半導体装置の製造方
法を工程順に示す断面図である。
FIG. 4 is a cross-sectional view illustrating a method of manufacturing a semiconductor device according to Embodiment 2 of the present invention in the order of steps.

【図5】本発明の実施形態2に係る半導体装置の製造方
法を工程順に示す断面図である。
FIG. 5 is a cross-sectional view showing a method of manufacturing a semiconductor device according to Embodiment 2 of the present invention in the order of steps.

【図6】本発明の実施形態2に係る半導体装置の製造方
法を工程順に示す断面図である。
FIG. 6 is a sectional view illustrating a method of manufacturing a semiconductor device according to Embodiment 2 of the present invention in the order of steps.

【図7】特開平3−257859号公報に記載された従
来の半導体装置を示す断面図である。
FIG. 7 is a cross-sectional view showing a conventional semiconductor device described in Japanese Patent Application Laid-Open No. 3-25759.

【符号の説明】 101,201 シリコン基板 102,202 素子分離領域 103,203 ゲート絶縁膜 104,204 ゲート電極 105,205 サイドウォール酸化膜 106,206 不純物拡散層 107,207 第一層間絶縁膜 108,208 ビット線コンタクト 109,209 ビット線 110,210 第二層間絶縁膜 111,211 シリコン窒化膜 112,212 レジストパターン 113,213 シリコン酸化膜 114,214 レジストパターン 115,215 電荷蓄積電極形成用凹陥部 116,216 容量コンタクト 117,217 n+多結晶シリコン膜 218 BPSG膜 119,219 電荷蓄積電極DESCRIPTION OF SYMBOLS 101, 201 Silicon substrate 102, 202 Element isolation region 103, 203 Gate insulating film 104, 204 Gate electrode 105, 205 Side wall oxide film 106, 206 Impurity diffusion layer 107, 207 First interlayer insulating film 108 , 208 bit line contact 109, 209 bit line 110, 210 second interlayer insulating film 111, 211 silicon nitride film 112, 212 resist pattern 113, 213 silicon oxide film 114, 214 resist pattern 115, 215 recess for forming charge storage electrode 116,216 Capacitance contact 117,217 n + polycrystalline silicon film 218 BPSG film 119,219 Charge storage electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 膜形成工程と、ホール形成工程と、凹陥
部・コンタルトホール形成工程と、導体膜形成工程とを
有し、半導体基板上にDRAMのスタックセルを形成す
る半導体装置の製造方法であって、 膜形成工程は、ビット線上に酸化膜と窒化膜を積層成長
させる処理であり、 ホール形成工程は、レジストパターンをマスクとして前
記窒化膜をドライエッチングしてホールを形成する処理
であり、 凹陥部・コンタクトホール形成工程は、前記窒化膜上に
酸化膜を成長させた後、該酸化膜に広口の電荷蓄積電極
形成用凹陥部を前記窒化膜のホールの位置に対応させて
設け、かつ前記窒化膜のホールを通して拡散層に達する
コンタクトホールを形成する処理であり、 導体膜形成工程は、前記コンタクトホール内に導体膜を
充填し、かつ前記電荷蓄積電極形成用凹陥部の内壁面に
導体膜を添着させる処理であることを特徴とする半導体
装置の製造方法。
1. A method of manufacturing a semiconductor device, comprising: a film forming step; a hole forming step; a recess / contral hole forming step; and a conductor film forming step, wherein a DRAM stack cell is formed on a semiconductor substrate. The film forming step is a step of laminating an oxide film and a nitride film on the bit line, and the hole forming step is a step of dry-etching the nitride film using a resist pattern as a mask to form holes. Forming a recess and a contact hole, after growing an oxide film on the nitride film, providing a wide-opening charge storage electrode forming recess in the oxide film corresponding to the position of the hole in the nitride film; And forming a contact hole reaching the diffusion layer through the hole in the nitride film. In the conductor film forming step, the contact hole is filled with a conductor film, and the contact hole is formed. The method of manufacturing a semiconductor device, characterized in that the inner wall surface of the storage electrode forming recess is a process of impregnating the conductive film.
【請求項2】 不要な前記導電体膜及び該導電体膜上の
酸化膜の除去は、ドライエッチングを用いたエッチバッ
クにより行うことを特徴とする請求項1に記載の半導体
装置の製造方法。
2. The method according to claim 1, wherein the unnecessary removal of the conductive film and the oxide film on the conductive film is performed by etch-back using dry etching.
【請求項3】 前記導電体膜は、n+ポリシリコン,タ
ングステン,TiNのいずれか或いは、これらの材料の
積層膜から形成されるものであることを特徴とする請求
項1叉は2に記載の半導体装置の製造方法。
3. The semiconductor device according to claim 1, wherein the conductive film is formed of one of n.sup. + Polysilicon, tungsten, and TiN, or a stacked film of these materials. Of manufacturing a semiconductor device.
JP34142296A 1996-12-20 1996-12-20 Method for manufacturing semiconductor device Expired - Fee Related JP3233051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34142296A JP3233051B2 (en) 1996-12-20 1996-12-20 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34142296A JP3233051B2 (en) 1996-12-20 1996-12-20 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH10189895A true JPH10189895A (en) 1998-07-21
JP3233051B2 JP3233051B2 (en) 2001-11-26

Family

ID=18345956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34142296A Expired - Fee Related JP3233051B2 (en) 1996-12-20 1996-12-20 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3233051B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010004794A (en) * 1999-06-29 2001-01-15 김영환 Structure Of The Charge Storage Electrode Of Capacitor And Forming Method Thereof
KR100305024B1 (en) * 1998-10-28 2001-10-19 박종섭 Manufacturing method of semiconductor device
KR100300867B1 (en) * 1999-06-28 2001-11-01 박종섭 A method for forming cylindrical storage node in semiconductor device
US6313005B1 (en) 2000-01-13 2001-11-06 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device
US6469337B1 (en) 1999-04-07 2002-10-22 Nec Corporation Semiconductor memory device and manufacturing method and mask data preparing method for the same
KR100388453B1 (en) * 2001-06-30 2003-06-25 주식회사 하이닉스반도체 Method for fabricating capacitor
KR100393222B1 (en) * 2001-04-26 2003-07-31 삼성전자주식회사 Semiconductor device including storage node of capacitor and manufacturing method the same
KR100421051B1 (en) * 2001-12-15 2004-03-04 삼성전자주식회사 Method of fabricating semiconductor memory device having COB structure and semiconductor memory device fabricated by the same method
KR100438780B1 (en) * 2001-12-01 2004-07-05 삼성전자주식회사 Method for fabricating capacitor of semiconductor device
KR100444773B1 (en) * 2001-12-18 2004-08-21 주식회사 하이닉스반도체 Method for forming of semiconductor device
KR100533376B1 (en) * 1998-12-30 2006-04-21 주식회사 하이닉스반도체 Crown-type capacitor manufacturing method of semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134687A (en) 1997-12-19 2000-10-17 Nec Usa, Inc. Peripheral partitioning and tree decomposition for partial scan

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100305024B1 (en) * 1998-10-28 2001-10-19 박종섭 Manufacturing method of semiconductor device
KR100533376B1 (en) * 1998-12-30 2006-04-21 주식회사 하이닉스반도체 Crown-type capacitor manufacturing method of semiconductor device
US6469337B1 (en) 1999-04-07 2002-10-22 Nec Corporation Semiconductor memory device and manufacturing method and mask data preparing method for the same
US6544840B2 (en) 1999-04-07 2003-04-08 Nec Corporation Semiconductor memory device and manufacturing method and mask data preparing method for the same
KR100300867B1 (en) * 1999-06-28 2001-11-01 박종섭 A method for forming cylindrical storage node in semiconductor device
KR20010004794A (en) * 1999-06-29 2001-01-15 김영환 Structure Of The Charge Storage Electrode Of Capacitor And Forming Method Thereof
US6313005B1 (en) 2000-01-13 2001-11-06 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device
KR100393222B1 (en) * 2001-04-26 2003-07-31 삼성전자주식회사 Semiconductor device including storage node of capacitor and manufacturing method the same
KR100388453B1 (en) * 2001-06-30 2003-06-25 주식회사 하이닉스반도체 Method for fabricating capacitor
KR100438780B1 (en) * 2001-12-01 2004-07-05 삼성전자주식회사 Method for fabricating capacitor of semiconductor device
KR100421051B1 (en) * 2001-12-15 2004-03-04 삼성전자주식회사 Method of fabricating semiconductor memory device having COB structure and semiconductor memory device fabricated by the same method
KR100444773B1 (en) * 2001-12-18 2004-08-21 주식회사 하이닉스반도체 Method for forming of semiconductor device

Also Published As

Publication number Publication date
JP3233051B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
US6573551B1 (en) Semiconductor memory device having self-aligned contact and fabricating method thereof
US6214688B1 (en) Methods of forming integrated circuit capacitors having U-shaped electrodes
JP2002100685A (en) Semiconductor device and manufacturing method thereof
JP3233051B2 (en) Method for manufacturing semiconductor device
KR20050057080A (en) Method for forming conductive material in opening and structure regarding same
JP2865155B2 (en) Semiconductor device and manufacturing method thereof
US6238968B1 (en) Methods of forming integrated circuit capacitors having protected layers of HSG silicon therein
JP2000022112A (en) Capacitor and its manufacture
US6844229B2 (en) Method of manufacturing semiconductor device having storage electrode of capacitor
US5677225A (en) Process for forming a semiconductor memory cell
US7074670B2 (en) Method of forming storage node of capacitor in semiconductor memory, and structure therefore
US6060353A (en) Method of forming a ring shaped storage node structure for a DRAM capacitor structure
US5849617A (en) Method for fabricating a nested capacitor
US5976981A (en) Method for manufacturing a reverse crown capacitor for DRAM memory cell
US5989954A (en) Method for forming a cylinder capacitor in the dram process
JP3976288B2 (en) Semiconductor device and manufacturing method of semiconductor device
JPH10242417A (en) Semiconductor device and its manufacturing method
US5670806A (en) Semiconductor memory device
JPH08204148A (en) Semiconductor device and manufacturing method thereof
US6033966A (en) Method for making an 8-shaped storage node DRAM cell
US6838719B2 (en) Dram cell capacitors having U-shaped electrodes with rough inner and outer surfaces
JP4328396B2 (en) Manufacturing method of memory cell in DRAM
US20050196921A1 (en) Method of forming capacitor over bitline contact
KR100370169B1 (en) Method for manufacturing capacitor of semiconductor
JP2836546B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees