JPH10186A - Method and device of analyzing specified gas component in expired air - Google Patents

Method and device of analyzing specified gas component in expired air

Info

Publication number
JPH10186A
JPH10186A JP8177437A JP17743796A JPH10186A JP H10186 A JPH10186 A JP H10186A JP 8177437 A JP8177437 A JP 8177437A JP 17743796 A JP17743796 A JP 17743796A JP H10186 A JPH10186 A JP H10186A
Authority
JP
Japan
Prior art keywords
path
weighing valve
exhalation
gas component
breath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8177437A
Other languages
Japanese (ja)
Inventor
Hideo Ueda
秀雄 植田
Mitsuo Hiromoto
光雄 広本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITOREEBEN KENKYUSHO KK
Original Assignee
MITOREEBEN KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITOREEBEN KENKYUSHO KK filed Critical MITOREEBEN KENKYUSHO KK
Priority to JP8177437A priority Critical patent/JPH10186A/en
Publication of JPH10186A publication Critical patent/JPH10186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely eliminate the expired air of a dead space part by detecting a specified gas component by a detector, arithmetically processing its signal by an arithmetic processing part, calculating the concentration of the specified gas component from a preliminarily stored calibration curve, and storing it as clinical inspection data. SOLUTION: The expired air B blown through a mouth piece 12 is measured by a flow rate sensor 9 and discharged, and in the stage where the discharge quantity exceeds a dead space capacity, a measuring vale passage 9 forming a part of an expired air discharge route 2 is separated from the expired air discharge passage 2 and integrated into an expired air measuring route 3 continued to a carrier gas supplying part 14, and an expired air sample S within the measuring valve passage 9 is sent to a column 15 together with a carrier gas to separate a specified gas component. The specified gas component is detected by a detector 16, and its detection signal is outputted to a microcomputer 41 and arithmetically processed. Further, the concentration of the specified gas component is calculated from a preliminarily stored calibration curve, and stored as clinical inspection data.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、呼気を検体とする
臨床検査方法及び装置の改良に係わり、被験者の呼気サ
ンプル中に含まれる微量のガス成分濃度を、非選択性で
比較的多量の試料を必要とする検出器を用いて測定する
場合において、被験者の呼出する呼気から死腔の部分を
確実に排除するととともに呼気サンプルを簡単、確実且
つ正確に採取して分析に供するものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a clinical test method and apparatus using breath as a specimen, and to reduce the concentration of a small amount of a gas component contained in a breath sample of a subject to a non-selective and relatively large sample. The present invention relates to a method for reliably excluding a dead space portion from exhaled breath exhaled by a subject when performing measurement using a detector that requires exhalation, and for collecting exhaled breath samples simply, reliably and accurately for analysis.

【0002】[0002]

【従来の技術】呼気は、人(或いは動物)が生命を維持
している限り連続して間欠的に放出されるものである。
しかも、肺胞毛細血管を流れる混合静脈血中の微量の揮
発成分がガス交換により呼気中に移動するため、揮発成
分に関しては呼気と血液の間には相関があると推察され
る。また、血液分析では困難な揮発成分の分別測定も可
能であるし血液と異なり非侵襲であるので、呼気は臨床
生化学検査の検体として理想的なものであると言える。
2. Description of the Related Art Expiration is emitted continuously and intermittently as long as a person (or animal) is sustaining life.
In addition, since a trace amount of volatile components in mixed venous blood flowing through the alveoli capillaries move into exhalation by gas exchange, it is presumed that there is a correlation between exhalation and blood with respect to volatile components. In addition, it is possible to separately measure volatile components, which is difficult in blood analysis, and since it is non-invasive unlike blood, it can be said that breath is ideal as a specimen for clinical biochemical tests.

【0003】しかし、従来、呼気は臨床生化学検査の検
体としては全くと言っていいほど使用されていない。こ
れは、一つには呼気が臨床生化学検査の検体などになる
はずが無いと言う先入観が関係者にあること、二つめに
は呼気中の検出対象ガスが極低濃度(ppb 単位精々ppm
単位)であり、そのため、微量成分の濃縮装置と大型の
高感度ガス検出装置との組合せによって初めて測定可能
になるものであることによる。従って、測定は特殊な機
器や用具を熟練者が操作する実験室のみで行なわれ、臨
床検査報告例は僅かしかない。
[0003] However, conventionally, breath has not been used as a specimen for clinical biochemical examination at all. This is because, firstly, there is a preconceived opinion that breathing cannot be a specimen for clinical biochemical tests, and secondly, the gas to be detected in breathing has an extremely low concentration (at most ppm in ppb unit).
Unit), and therefore, can only be measured by a combination of a trace component concentrating device and a large-sized high-sensitivity gas detecting device. Therefore, the measurement is performed only in the laboratory where the skilled person operates special equipment and tools, and there are only a few reports of clinical tests.

【0004】しかも、呼気は容器に採取しておいても保
管や輸送に場所を取るし、ガス成分の中には不安定なも
のもあるので、血液と異なり分析センターなどに輸送し
て大型装置で分析を行なうことは容易にはできない。従
って、呼気を検体とする臨床生化学検査は必然的にフェ
ース対フェースとなり、ベッドサイド検査や救急車内で
のプレホスピタル検査、診療時のスクリーニング検査、
更には患者の状態監視(連続モニター)など、測定者
(分析者)と被検者(患者)とが対面して測定する場合
に限って有効に用いられると思われる。
[0004] Moreover, even if the exhaled breath is collected in a container, it takes space for storage and transportation, and some of the gas components are unstable. It is not easy to carry out the analysis with. Therefore, clinical biochemical tests using breath as a sample are inevitably face-to-face, and bedside tests, prehospital tests in ambulances, screening tests during medical treatment,
Further, it is considered that the method is effectively used only when the measurement person (analyst) and the subject (patient) face each other, such as monitoring the condition of a patient (continuous monitoring).

【0005】従って、上述したように一部の実験室規模
で行われている濃縮装置と大型高感度ガス検出装置を組
み合わせた装置では実際上役に立たず、小型で可搬性が
あり、高感度でありながら操作が簡便で、安全性や測定
迅速性も優れた検査装置が要求される。勿論、データの
信頼性や経済性も要求される。更に、呼気中の水分が容
器の壁に結露して微量のガス成分を溶解吸着させること
も考えられるので、被検者(患者)から直接呼気を検査
装置に吸引して測定に供するタイプのものが好ましい。
[0005] Therefore, as described above, an apparatus combining a concentrator and a large-sized high-sensitivity gas detector which is performed on a part of a laboratory scale is practically useless, and is small, portable and highly sensitive. Inspection devices that are easy to operate, yet have excellent safety and quick measurement are required. Of course, data reliability and economy are also required. Furthermore, since it is conceivable that moisture in the exhaled breath may condense on the wall of the container and dissolve and adsorb a small amount of gas components, the exhaled breath is directly sucked from the subject (patient) into the testing device and used for measurement. Is preferred.

【0006】[0006]

【発明が解決しようとする課題】このような観点から、
本発明者らは検体として呼気を使用する臨床検査技術の
確立に向けて鋭意研究を重ね、検出器に高感度なPID
(Photo Ionization Detector :光イオン化検出器)を
用いた呼気分析装置を開発した(特開平5−16034
1)。
SUMMARY OF THE INVENTION From such a viewpoint,
The present inventors have conducted intensive studies to establish a clinical testing technique using breath as a specimen, and have developed a highly sensitive PID for a detector.
(Photo Ionization Detector: Photo Ionization Detector)
1).

【0007】しかしこの装置は、呼気をポンプで強制的
に吸引して系外に排出する構成を採っている。従って、
呼気の呼出が少ないか止まっている間も吸引されるの
で、呼気サンプルには大気成分が混入するおそれがあっ
た。また、死腔部分の除去はポンプの回転時間で管理し
ているので、同様の理由により死腔部分の呼気が呼気サ
ンプルに混入するおそれもあった。更に、呼気を系外に
排出する途中において2箇所に三方電磁バルブを設け、
その間をサンプル計量部としている。ところが、光イオ
ン化検出器は微量の呼気サンプルしか必要としないため
呼気排出管は細くならざるを得ず、そのため死腔部分の
呼気を排除するために時間がかかるなどの難点があっ
た。
However, this device employs a configuration in which exhaled air is forcibly sucked by a pump and discharged out of the system. Therefore,
Since the exhalation is aspirated while the exhalation is small or stopped, there is a possibility that an air component may be mixed in the exhaled breath sample. In addition, since the removal of the dead space is controlled by the rotation time of the pump, there is a possibility that the expired air from the dead space may be mixed into the breath sample for the same reason. Furthermore, a three-way solenoid valve is provided at two places during the discharge of exhaled air out of the system,
The interval between them is the sample measuring section. However, since the photoionization detector requires only a small amount of exhaled breath sample, the exhalation discharge tube must be narrowed, and therefore, there is a problem that it takes time to eliminate exhaled breath in the dead space.

【0008】尚、死腔とは気道空間(Dead space)のこ
とであり、この部分の呼気は、肺胞気からの“呼気”と
吸入された“大気”が混ざったもので、正しい呼気試料
(肺胞気試料)として扱うことはできない。死腔容量
は、大人で約150〜200mlとされ、最初の吹込部
分(初期呼気)は試料として取り扱ってはならず、捨て
る必要がある。つまり呼気試料は、これを除いた終末呼
気でなければ、信頼性が得られない。
[0008] The dead space is a dead space, and the expiration in this portion is a mixture of “exhalation” from the alveoli and the inhaled “atmosphere”. (Alveolar air samples). The dead space volume is approximately 150-200 ml for adults and the first insufflation (initial expiration) must not be treated as a sample and must be discarded. That is, the reliability of the breath sample cannot be obtained unless it is the end breath excluding this.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記の観点
から、死腔部分の呼気が確実に排除され、しかも大量に
排出される呼気から比較的多量の呼気サンプルの秤量採
取が精度よく確実に行え、且つ構造が簡単で低コスト化
できる呼気中の特定ガス成分を分析する方法及び装置の
開発を目指して鋭意研究をした結果、本発明を完成させ
たものである。以下、本発明を詳細に説明する。
In view of the above, the present inventors have found that exhalation of the dead space is reliably eliminated, and that a relatively large amount of exhaled breath sample can be accurately weighed from exhaled exhaled air. The present invention has been completed as a result of intensive studies aimed at developing a method and an apparatus for analyzing a specific gas component in exhaled breath that can be reliably performed, has a simple structure, and can be reduced in cost. Hereinafter, the present invention will be described in detail.

【0010】本発明の分析装置は、検体として人の呼気
を採用し、被験者が吹き込んだ呼気中の微量化学物質を
分離測定して臨床生化学的な各種情報を得るものであ
る。
The analyzer of the present invention employs human breath as a specimen, and separates and measures trace chemical substances in the breath breathed by the subject to obtain various clinical biochemical information.

【0011】本発明の分析装置(呼気中の特定ガス成分
分析装置)は、大きく分けて、マウスピースから吹き込
んだ呼気を自然に排出する呼気排出経路と、秤量した呼
気サンプルを分析する呼気測定経路及び演算処理装置か
ら構成される。呼気排出経路は、内壁加温機能を備え先
端にマウスピースが装着される呼気採取管と、秤量バル
ブの秤量弁路及び流量センサを組み込んだ呼気排出管か
ら構成される。また、呼気測定経路は、キャリアガス供
給部と秤量バルブの秤量弁路、カラム、検出器、及びこ
れらを連結する管路から構成される。ここに秤量バルブ
は、両経路に共通して組み込まれており、その秤量弁路
が両経路に交互に切り換えられるようになっている。
尚、秤量バルブ、呼気排出管、カラム、検出器及びこれ
らを連結する管路は恒温槽内に収納されている。検出器
としては、非選択性で比較的多量の試料を必要とする、
換言すれば感度が低い金属酸化物半導体センサや接触燃
焼式センサ等が用いられる。また演算処理装置は、流量
センサの監視と秤量弁路の切替え、検量線の記憶と特定
ガス成分の濃度の算出や記憶等を行なう。
The analyzer of the present invention (a device for analyzing a specific gas component in exhaled breath) is roughly divided into an exhaled breathing route for naturally exhaling the exhaled breath blown from a mouthpiece, and a breathing measurement route for analyzing a weighed breath sample. And an arithmetic processing unit. The exhalation discharge path is composed of an exhalation collection tube having an inner wall heating function and a mouthpiece attached to the tip, and an exhalation discharge tube incorporating a weighing valve path of a weighing valve and a flow sensor. The breath measurement path includes a carrier gas supply section, a weighing valve path of a weighing valve, a column, a detector, and a pipe connecting these. Here, the weighing valve is incorporated in both paths in common, and the weighing valve path is alternately switched to both paths.
The weighing valve, the exhalation discharge pipe, the column, the detector, and the pipeline connecting these are housed in a thermostat. As a detector, it requires a non-selective and relatively large sample,
In other words, a low-sensitivity metal oxide semiconductor sensor, a contact combustion type sensor, or the like is used. Further, the arithmetic processing unit performs monitoring of the flow sensor, switching of the weighing valve path, storage of the calibration curve, and calculation and storage of the concentration of the specific gas component.

【0012】次に呼気測定経路の呼気採取管は、その内
面が体温と同じかそれより高め、例えば36〜100
℃、より好ましくは40〜50℃程度になるように加温
しておくことが望ましい。これは、呼気採取管の内壁に
呼気中の水分が凝縮して付着し、ここにガス成分が溶解
吸着されるのを防止するためである。加温するために、
呼気採取管の周囲や内部に発熱体を配置するか又はそれ
自体が発熱性を有する素材でチューブを構成し、その外
周を断熱材で被覆した構造にするとよい。また、調温機
構を組み込んでもよい。尚、呼気採取管の内径は細過ぎ
ると呼気の吹込に抵抗感が生じるし、太過ぎると内部で
乱流が生じて死腔部分の呼気が終末呼気に混ざったり秤
量弁路が短くなり過ぎる。従って、呼気採取管の内径は
4〜20mmφ程度、より好ましくは6〜10mmφに
するとよい。また外径は、保温材等により内径よりも3
〜10mm程度大きくなる。呼気採取管に取り付けるマ
ウスピースは、ディスポ(使い捨て)タイプのものにす
ると、衛生的である。
Next, the inside of the breath collection tube of the breath measurement path is equal to or higher than the body temperature, for example, 36 to 100.
C., more preferably about 40 to 50.degree. This is to prevent the moisture in the exhaled breath from condensing and adhering to the inner wall of the exhalation collection tube and dissolving and adsorbing the gas component there. To warm up,
A heating element may be arranged around or inside the breath collection tube, or the tube itself may be formed of a material having heat generation, and the outer periphery thereof may be covered with a heat insulating material. Further, a temperature control mechanism may be incorporated. If the inner diameter of the exhalation collection tube is too small, a feeling of resistance to inhalation of exhalation occurs, and if it is too large, turbulence occurs inside and the exhalation in the dead space mixes with the end exhalation or the weighing valve path becomes too short. Therefore, the inner diameter of the breath collection tube is preferably about 4 to 20 mmφ, more preferably 6 to 10 mmφ. In addition, the outer diameter is 3
About 10 to 10 mm. If the mouthpiece attached to the breath collection tube is of a disposable type, it is sanitary.

【0013】呼気排出管は、呼気採取管とほぼ同じ内径
で秤量バルブを介して呼気採取管に連結されており、そ
の内部に流量センサを組み込んでいる。流量センサは、
自然呼出される呼気量を測定するもので、呼気量が直接
計れるものでも、呼気の流出速度が測定されるものでも
よい。後者の場合、呼気排出管の断面積から、呼気量が
求められる。
The exhalation discharge tube is connected to the exhalation collection tube via a weighing valve at substantially the same inside diameter as the exhalation collection tube, and incorporates a flow sensor therein. The flow sensor is
It measures the volume of expiration that is spontaneously exhaled, and may be a device that can directly measure the volume of expiration or a device that measures the outflow rate of exhalation. In the latter case, the expiratory volume is determined from the cross-sectional area of the exhalation discharge tube.

【0014】秤量バルブは、呼気排出経路と呼気測定経
路に交互に切り換えられる秤量弁路を備えており、この
秤量弁路によって呼気サンプルが分取される。秤量弁路
の切替えは、スライド式や回転式など各種の形式の駆動
形式により行なわれる。秤量弁路の内径は呼気採取管の
内径と同じ程度が好ましいが、呼気サンプルの容量(0.
5〜10ml)によっては幾分細く或いは太くしてもよ
い。ちなみに、秤量弁路の内径が6mmの場合、長さを
17.7mmにすると内容量が約0.5mlになる。ただ、
この内径で内容量を10mlにするには35cmもの長
い弁路が必要になるので、容量が大きい場合には内径を
大きくするとか、バルブ外部に秤量弁路に連なる試料ル
ープを設けるとよい。尚、秤量弁路を呼気排出経路から
呼気測定経路に切り換えると、呼気採取管と呼気排出管
の連結が絶たれて呼気の吹込ができなくなり、被検者に
ショックを与える。これを避けるためには、秤量弁路が
呼気測定経路に切り替わった時点で、元の秤量弁路の位
置に同様なバイパスを設けておくとよい。
The weighing valve is provided with a weighing valve path that is alternately switched between an exhalation discharge path and an exhalation measurement path, and a bleeding sample is collected by the weighing valve path. Switching of the weighing valve path is performed by various types of driving methods such as a sliding type and a rotary type. The inner diameter of the weighing valve is preferably about the same as the inner diameter of the breath collection tube, but the volume of the breath sample (0.
(5 to 10 ml) may be slightly thinner or thicker. Incidentally, when the inner diameter of the weighing valve path is 6 mm, if the length is set to 17.7 mm, the internal capacity becomes about 0.5 ml. However,
In order to make the internal capacity 10 ml with this inner diameter, a valve path as long as 35 cm is required. Therefore, when the capacity is large, the inner diameter may be increased or a sample loop connected to the weighing valve path may be provided outside the valve. When the weighing valve path is switched from the exhalation discharge path to the exhalation measurement path, the connection between the exhalation collection pipe and the exhalation discharge pipe is cut off, so that exhalation cannot be inhaled, and the subject is shocked. In order to avoid this, when the weighing valve path is switched to the breath measurement path, a similar bypass may be provided at the original weighing valve path position.

【0015】一方、呼気測定経路は、キャリアガス供給
部と秤量バルブの秤量弁路、カラム、検出器、及びこれ
らを連結する管路から構成される。キャリアガス供給部
は、呼気サンプルを分離カラムに送り込むキャリアガス
を送出するもので、供給源としては本検査装置の携帯性
から考えて小型ガスボンベが好ましい。但し、本検査装
置を一定の箇所に据えつけて使用するような場合には、
大型のガスボンベも使用可能である。キャリアガスとし
て安価な清浄空気やチッソガスを使用できるが、ヘリウ
ムその他通常用いられるガスはいずれも使用できる。清
浄空気の場合、ガスボンベに詰めずに、雰囲気空気を圧
縮ポンプで供給するようにしてもよい。但し、雰囲気中
の微量のガス成分の影響を排除するために、吸着材等を
組み込んだエアフィルターで清浄化する必要がある。
On the other hand, the breath measurement path includes a carrier gas supply section, a weighing valve path of a weighing valve, a column, a detector, and a pipe connecting these. The carrier gas supply unit sends out a carrier gas for sending the breath sample to the separation column, and a small gas cylinder is preferable as a supply source in view of the portability of the present inspection apparatus. However, in the case where this inspection device is installed and used in a certain place,
Large gas cylinders can also be used. Inexpensive clean air or nitrogen gas can be used as the carrier gas, but helium or any other commonly used gas can be used. In the case of clean air, atmospheric air may be supplied by a compression pump without packing in a gas cylinder. However, in order to eliminate the influence of a trace amount of gas components in the atmosphere, it is necessary to clean the air with an air filter incorporating an adsorbent or the like.

【0016】本発明で用いる検出器は、金属酸化物半導
体センサや接触燃焼式センサ等のガスセンサである。こ
れらのガスセンサは、感度が幾分低いために比較的多量
の試料を必要とする。試料量は、呼気中のガス成分の種
類や濃度、ガスセンサの種類によもよるが、0.5〜10
ml程度あればよい。また、これらのガスセンサは非選
択性であるため、カラムで分別すれば、種々の呼気ガス
成分、例えば水素、アセトン、メタン等の低級飽和炭化
水素、エチルアルコール、アセトアルデヒドなどが測定
できる。カラムは呼気サンプル量が比較的多いため、通
常パックドカラムが使用されるが、サンプル量やガス成
分によってはキャピラリーカラムも使用できる。カラム
で複数の呼気ガス成分が分別できれば、複数の検出対象
ガスの測定も可能である。尚、分離カラムも含めて、秤
量バルブ、呼気排出管、検出器、これらの連結管路は、
呼気中の水分の凝縮を防止するために恒温槽内に収納し
て呼気採取管と同様36〜100℃より好ましくは40
〜50℃程度に保温するとよい。
The detector used in the present invention is a gas sensor such as a metal oxide semiconductor sensor or a contact combustion type sensor. These gas sensors require a relatively large amount of sample due to their somewhat low sensitivity. The amount of the sample depends on the type and concentration of the gas component in the expiration and the type of the gas sensor.
It may be about ml. Further, since these gas sensors are non-selective, if they are separated by a column, various exhaled gas components, for example, lower saturated hydrocarbons such as hydrogen, acetone and methane, ethyl alcohol, acetaldehyde and the like can be measured. Since the column has a relatively large amount of breath sample, a packed column is usually used, but a capillary column can also be used depending on the sample amount and gas components. If a plurality of exhaled gas components can be separated by the column, a plurality of gases to be detected can be measured. In addition, including the separation column, the weighing valve, the exhalation discharge pipe, the detector, these connecting conduits,
It is stored in a constant temperature bath to prevent condensation of moisture in the exhaled breath and, like the exhalation collection tube, 36 to 100 ° C, more preferably 40 to 40 ° C.
It is better to keep the temperature at about 50 ° C.

【0017】演算処理装置の主要部はマイクロコンピュ
ータであり、検出器から出力される測定信号を受け入れ
て演算処理し、予め記憶させている検量線から検出対象
ガス成分の濃度を算出し、臨床検査データとして記憶す
る。また、流量センサの監視と秤量弁路の切替え、更に
は表示装置(ディスプレイ)や記録装置(プリンター)
などの出力装置に信号を出力したり、キーボードからの
入力信号を受け入れるなど装置全体の作動プログラムを
管理する。
A main part of the arithmetic processing unit is a microcomputer, which receives a measurement signal output from the detector, performs an arithmetic process, calculates a concentration of a gas component to be detected from a calibration curve stored in advance, and performs a clinical test. Store as data. In addition, monitoring of the flow sensor and switching of the weighing valve path, furthermore, display device (display) and recording device (printer)
It manages the operation program of the entire device, such as outputting a signal to an output device or accepting an input signal from a keyboard.

【0018】次に、分析装置の感度較正(キャリブレー
ション)について説明する。本発明の分析装置は、ガス
体を測定対象にするため、測定値は恒温槽に収納されて
いてもなお他の変動因子に左右されることがある。即
ち、カラムや検出器の経時変化や検出器の動作のバラツ
キ等、種々な要因によって測定値が真の値から振れるこ
とがある。そのため、毎日の測定開始時や適時に感度調
整を行なうことが望ましい。このうち零点調整は、呼気
測定経路にキャリアガスを供給して行なう。一方感度調
整は、測定対象のガス成分を所定濃度含む高純度窒素ガ
ス(標準ガス)を用いて行なう。即ち、秤量バルブの秤
量弁路を標準ガス供給部に連なる標準ガス供給経路に組
み込んで秤量弁路に濃度既知の標準ガスを吸引充填した
のち、秤量弁路を標準ガス供給経路から切り離して呼気
測定経路に組み込みんで標準ガス濃度を測定し、分析値
の較正を行なうものである。標準ガスは、低高2種類の
濃度のものを用いて3点補正をおこなってもよい。その
ため、秤量バルブはその秤量弁路が呼気排出経路と呼気
測定経路及び標準ガス供給経路に相互切り換えられるよ
うになっており、その切り換えは演算処理装置の指示で
行なう。標準ガスを、呼気排出経路に吹き込むこともで
きるが、標準ガスを大量に消費する難点がある。
Next, the sensitivity calibration of the analyzer will be described. Since the analyzer of the present invention targets a gas body for measurement, the measured value may be influenced by other variables even if the measured value is housed in a thermostat. That is, the measured value may fluctuate from the true value due to various factors such as a change over time of the column or the detector or a variation in the operation of the detector. Therefore, it is desirable to adjust the sensitivity at the start of measurement every day or at an appropriate time. Of these, the zero point adjustment is performed by supplying a carrier gas to the breath measurement path. On the other hand, sensitivity adjustment is performed using a high-purity nitrogen gas (standard gas) containing a predetermined concentration of a gas component to be measured. That is, the weighing valve path of the weighing valve is incorporated into a standard gas supply path connected to the standard gas supply unit, and the weighing valve path is suction-filled with a standard gas having a known concentration, and then the weighing valve path is separated from the standard gas supply path to measure breath. The standard gas concentration is measured by incorporating it in the path, and the analytical value is calibrated. The three-point correction may be performed using two kinds of standard gases having low and high concentrations. Therefore, the weighing valve is configured such that the weighing valve path can be switched between an exhalation discharge path, an exhalation measurement path, and a standard gas supply path, and the switching is performed according to an instruction of the arithmetic processing unit. Although the standard gas can be blown into the exhalation discharge path, there is a drawback that the standard gas is consumed in large quantities.

【0019】以上の構成による本発明の検査装置を使用
するに当たっては、まず呼気採取管に装着したマウス
ピースを口にくわえ、測定可能状態を確認のうえ或いは
測定開始ボタンを押して、被検者が呼気を呼出する。
呼気は、呼気排出管を通って系外に排出されるが、ほぼ
死腔容量(約150〜200ml)に該当する量以上の
呼気が排出された段階で、秤量バルブの秤量弁路が呼気
排出経路から呼気測定経路に切り換えられる。秤量弁
路内の呼気サンプルは、キャリアガスとともにカラムに
送り込まれて特定ガス成分を分離し、検出器で特定ガス
成分が検出される。検出器の出力は演算処理装置で演
算処理され、ここで、予め記憶させている検量線から検
出対象の特定ガス成分の濃度を算出し、臨床検査データ
として記憶し或いは出力装置に信号を出力する。1回の
測定は、検出対象ガスの種類にもよるが数分で完了し、
呼気中の単独或いは複数の特定ガス成分の濃度が迅速且
つ正確に測定できる。分析装置のキャリブレーション
は、秤量バルブの秤量弁路を呼気測定経路に組み込んで
キャリアガスを流し、その時の測定値を零点とする。ま
た、秤量バルブの秤量弁路を標準ガス供給経路に組み込
んで濃度既知の標準ガスを分取し、その時の測定値を標
準ガスの濃度に較正する。
In using the test apparatus of the present invention having the above-described configuration, the subject first puts a mouthpiece attached to the breath collection tube into his / her mouth and confirms a measurable state or presses a measurement start button. Inhale exhalation.
Exhaled air is discharged out of the system through an exhalation discharge pipe. At the stage when the amount of exhaled air substantially equal to or greater than the dead space volume (about 150 to 200 ml) is exhaled, the weighing valve path of the weighing valve exhales. The path is switched to the breath measurement path. The breath sample in the weighing valve path is sent to the column together with the carrier gas to separate the specific gas component, and the specific gas component is detected by the detector. The output of the detector is subjected to arithmetic processing by an arithmetic processing unit. Here, the concentration of the specific gas component to be detected is calculated from a calibration curve stored in advance and stored as clinical test data or a signal is output to an output device. . One measurement is completed in a few minutes, depending on the type of gas to be detected.
The concentration of one or a plurality of specific gas components in exhaled air can be measured quickly and accurately. In the calibration of the analyzer, the weighing valve path of the weighing valve is incorporated into the breath measurement path, and the carrier gas flows, and the measured value at that time is set to zero. In addition, the weighing valve path of the weighing valve is incorporated in the standard gas supply path, a standard gas having a known concentration is sampled, and the measured value at that time is calibrated to the standard gas concentration.

【0020】[0020]

【発明の実施の形態】次に、本発明を図面に示す好適な
実施例に基づいて更に詳細に説明する。但し、本発明は
図示のものに何ら限定されるものではない。図1は、本
発明に係る呼気中の特定ガス成分の分析装置1のブロッ
ク図の一例を示す。この分析装置1は、呼気排出経路2
と呼気測定経路3、演算処理装置4、及び入出力装置等
から構成される。呼気排出経路2と呼気測定経路3の大
部分は、恒温槽5内に収納されている。また、図2は秤
量バルブを含む呼気排出経路の一例を部分的に示す模式
図、図3は秤量バルブを含む呼気排出経路の他の例を部
分的に示す模式図である。
Next, the present invention will be described in more detail with reference to the preferred embodiments shown in the drawings. However, the present invention is not limited to those shown in the drawings. FIG. 1 shows an example of a block diagram of an apparatus 1 for analyzing a specific gas component in breath according to the present invention. This analyzer 1 has an expiratory discharge path 2
, A breath measurement path 3, an arithmetic processing unit 4, an input / output device, and the like. Most of the exhalation discharge path 2 and the exhalation measurement path 3 are housed in the thermostat 5. FIG. 2 is a schematic view partially showing an example of an exhalation discharge path including a weighing valve, and FIG. 3 is a schematic view partially showing another example of an exhalation discharge path including a weighing valve.

【0021】呼気排出経路2は、内壁加温機能を備え先
端にマウスピースホルダー6が固設された呼気採取管7
と、秤量バルブ8の秤量弁路9及び流量センサ10を組
み込んだ呼気排出管11から構成される。符号12は、
ディスポタイプのマウスピースである。呼気採取管7
は、内径が3〜8mm程度長さが1m前後のテフロン管の
外周にヒータと保温材を被せたもので、その内部を加温
して呼気中の水分の付着を防止する。加温は、コントロ
ーラで36〜100℃の任意の温度例えば50℃に調節
して行なう。
The exhalation discharge passage 2 is provided with an exhalation collection tube 7 having an inner wall heating function and a mouthpiece holder 6 fixed at the end.
And an exhalation discharge pipe 11 incorporating a weighing valve passage 9 of a weighing valve 8 and a flow sensor 10. Symbol 12 is
It is a disposable mouthpiece. Breath collection tube 7
Is a Teflon tube having an inner diameter of about 3 to 8 mm and a length of about 1 m covered with a heater and a heat insulating material. The inside of the Teflon pipe is heated to prevent adhesion of moisture in the exhaled breath. The heating is performed by adjusting an arbitrary temperature of 36 to 100 ° C., for example, 50 ° C. by a controller.

【0022】秤量バルブ8は、秤量弁路9がスライドし
て呼気排出経路2と呼気測定経路3に交互に切り換えら
れるようになっている。呼気サンプルの量によっては、
バルブの外部に試料ループを設けてもよい。秤量弁路の
内径は、呼気採取管の内径と同様4〜20mm程度にする
が、呼気サンプルの容量によっては幾分細く或いは太く
してもよい。秤量弁路の内径を5mm、長さ50mmに
すると、約1mlの呼気サンプルが採取できる。尚、秤
量バルブ8はスライド式に限らず、回転式その他秤量弁
路9が自在に切り換えられるものであれば何れも使用で
きる。
The weighing valve 8 is configured such that the weighing valve passage 9 slides and is alternately switched between the exhalation discharge path 2 and the exhalation measurement path 3. Depending on the volume of the breath sample,
A sample loop may be provided outside the valve. The inner diameter of the weighing valve path is about 4 to 20 mm like the inner diameter of the breath collection tube, but may be somewhat thinner or thicker depending on the volume of the breath sample. When the inner diameter of the weighing valve path is 5 mm and the length is 50 mm, about 1 ml of a breath sample can be collected. The weighing valve 8 is not limited to a slide type, and any type can be used as long as the weighing valve path 9 is freely switchable.

【0023】呼気排出管11は、呼気採取管7とほぼ同
じ内径で秤量バルブを介して呼気採取管に連結されてお
り、その内部に流量センサ10を組み込んでいる。この
流量センサ10により、呼気が150〜200ml程度
排出されたことが検知されると、上記呼気排出経路2と
呼気測定経路3の切り換えが行なわれる。これは、被検
者の死腔部分の呼気の除去のためであるが、直前に測定
した他の被検者の呼気とのコンタミネーションを防ぐ意
味もある。
The exhalation discharge tube 11 is connected to the exhalation collection tube through a weighing valve at substantially the same inside diameter as the exhalation collection tube 7, and incorporates the flow sensor 10 therein. When it is detected by the flow rate sensor 10 that about 150 to 200 ml of exhaled air has been exhausted, the exhalation discharge path 2 and the exhaled air measurement path 3 are switched. This is for the purpose of removing exhaled breath from the dead space of the subject, but also has the meaning of preventing contamination with the exhaled breath of another subject measured immediately before.

【0024】尚、人の1呼吸は大人で約1リットル程度
であるので、秤量弁路を突然切り換えると、図2に示す
ように、呼気採取管と呼気排出管の連結が絶たれて呼気
の吹込ができなくなり、被検者にショックを与える可能
性がある。尚、図2(a)は呼気排出時の状態、図2
(b)は呼気測定時の状態を示す。この問題を避けるた
めに、例えば図3に示すように秤量弁路9が呼気測定経
路3に切り替わった時点で、元の秤量弁路の位置にくる
バイパス弁路13を設けておくとよい。図3(a)は呼
気排出時の状態、図3(b)は呼気測定時の状態を示
す。或いは、呼気の排出抵抗が大きくなった時点(図2
(b))で、呼出を止めるように被検者に指示しておく
ようにしてもよい。
Since one adult breaths about 1 liter in an adult, if the weighing valve is suddenly switched, as shown in FIG. Insufflation may not be possible, and the subject may be shocked. FIG. 2A shows a state at the time of exhalation discharge, and FIG.
(B) shows the state at the time of breath measurement. In order to avoid this problem, for example, as shown in FIG. 3, when the weighing valve path 9 is switched to the breath measurement path 3, it is preferable to provide a bypass valve path 13 that comes to the original position of the weighing valve path. FIG. 3A shows a state at the time of exhalation discharge, and FIG. 3B shows a state at the time of exhalation measurement. Alternatively, when the expiratory discharge resistance increases (see FIG. 2).
In (b)), the subject may be instructed to stop the call.

【0025】次に呼気測定経路3は、キャリアガス供給
部14と秤量バルブ8の秤量弁路9、カラム15、検出
器16、及びこれらを連結する管路17、18から構成
される。キャリアガス供給部14は、呼気サンプルを分
離カラムに送り込むキャリアガスを送出するもので、清
浄空気などを入れた小型のガスボンベ19とキャリアガ
ス送出管20からなり、キャリアガス送出管は電磁バル
ブ21に連なっている。秤量弁路9は、呼気排出経路2
と共通である。
Next, the breath measurement path 3 includes a carrier gas supply section 14, a weighing valve path 9 of a weighing valve 8, a column 15, a detector 16, and pipes 17 and 18 connecting these. The carrier gas supply unit 14 sends out a carrier gas for sending a breath sample to a separation column, and includes a small gas cylinder 19 containing clean air and the like and a carrier gas delivery pipe 20. The carrier gas delivery pipe is connected to an electromagnetic valve 21. It is connected. The weighing valve path 9 is used for the exhalation discharge path 2.
And is common.

【0026】検出器16は、金属酸化物半導体センサや
接触燃焼式センサなど、測定を必要とする呼気中の微量
成分、例えば水素、アセトン、メタンなどの測定ができ
る汎用性ガスセンサを用いる。そのため、呼気サンプル
をカラム(パックドカラム、キャピラリーカラム)で分
離して検出器16に供給する。尚、カラム14も含め
て、秤量バルブ8、呼気排出管11、検出器16、これ
らの連結管路17、18は、呼気中の水分の凝縮を防止
するために恒温槽5内に収納して40〜50℃程度に保
温する。
As the detector 16, a general-purpose gas sensor, such as a metal oxide semiconductor sensor or a contact combustion type sensor, capable of measuring a trace component in the breath requiring measurement, for example, hydrogen, acetone, methane or the like is used. Therefore, the breath sample is separated by a column (packed column, capillary column) and supplied to the detector 16. The weighing valve 8, the exhalation discharge pipe 11, the detector 16, and the connecting lines 17 and 18, including the column 14, are housed in the thermostat 5 to prevent condensation of moisture in the exhaled air. Keep the temperature at about 40-50 ° C.

【0027】標準ガス供給経路22は、分析装置の感度
較正のためのもので、図1、図2に示すように、標準ガ
ス供給部23と秤量バルブ8の秤量弁路9及び該秤量弁
路9に標準ガスを吸引分取する吸引ポンプ24からな
る。標準ガス供給部23は、標準ガスボンベ25と標準
ガス送出管26からなり、標準ガス送出管26は電磁バ
ルブ27に連なっている。即ち、秤量バルブ8はその秤
量弁路9が呼気排出経路2と呼気測定経路3及び標準ガ
ス供給経路22に相互切り換えられるようになってい
る。この切り換えは演算処理装置の指示により行なわれ
る。
The standard gas supply path 22 is for calibrating the sensitivity of the analyzer, and as shown in FIGS. 1 and 2, the standard gas supply section 23, the weighing valve path 9 of the weighing valve 8, and the weighing valve path. 9 comprises a suction pump 24 for sucking and dispensing the standard gas. The standard gas supply unit 23 includes a standard gas cylinder 25 and a standard gas delivery pipe 26, and the standard gas delivery pipe 26 is connected to an electromagnetic valve 27. That is, the weighing valve 8 is configured such that the weighing valve path 9 is switched between the exhalation discharge path 2, the exhalation measurement path 3, and the standard gas supply path 22. This switching is performed according to an instruction from the arithmetic processing unit.

【0028】演算処理装置4の主要部はマイクロコンピ
ュータ41であり、検出器16から出力される測定信号
を受け入れて演算処理し、予め記憶させている検量線か
ら検出対象ガス成分の濃度を算出し、臨床検査データと
して記憶する。また、流量センサ10の監視と秤量弁路
9の切替え、キャリアガス送出用の電磁バルブ21の開
閉を指示する。更に、表示装置(ディスプレイ)28、
や記録装置(プリンター)29などの出力装置に信号を
出力したり、キーボード30からの入力信号を受け入れ
るなど装置全体の作動プログラムを管理する。
The main part of the arithmetic processing unit 4 is a microcomputer 41, which receives the measurement signal output from the detector 16, performs an arithmetic processing, and calculates the concentration of the gas component to be detected from a previously stored calibration curve. And store it as clinical test data. Further, it instructs the monitoring of the flow rate sensor 10, the switching of the weighing valve path 9, and the opening and closing of the electromagnetic valve 21 for delivering the carrier gas. Further, a display device (display) 28,
It manages an operation program of the entire apparatus, such as outputting a signal to an output device such as a printer or a recording device (printer) 29 and accepting an input signal from the keyboard 30.

【0029】次に、図2に基づいて本発明装置の分取動
作について説明する。まず測定可能状態(スタンバイ状
態)を確認のうえ、被検者にマウスピースをくわえさ
せ、呼気Bを呼出させる。呼気のうち死腔部分の容量に
該当する量の呼気が排出(呼出)される(図2(a)の
状態)と、秤量バルブ8の秤量弁路9が呼気排出経路2
から呼気測定経路3に切り換えられて呼気サンプルSの
秤量が行なわれる。秤量弁路内の呼気サンプルSは、キ
ャリアガスCとともにカラム15に送り込まれ、各成分
ガスの保持時間の違いにより分離分画されて順次検出器
16に至り、必要なガス成分の検出が行なわれる(図2
(b)の状態)。検出器16からの出力は演算処理装置
4で演算処理され、ここで、予め記憶させている検量線
から検出対象の特定ガス成分の濃度を測定する。測定
は、呼気の呼出開始後後、5分程度で終了する。分析装
置の感度較正は、図2(c)に示すように、秤量バルブ
8の秤量弁路9を標準ガス供給経路22に組み込み、標
準ガスStを秤量弁路9に吸引充填させる。ついで、秤
量弁路9を呼気測定経路3に切り換えて、測定を行なう
(図2(d)の状態)。
Next, the sorting operation of the apparatus of the present invention will be described with reference to FIG. First, after confirming the measurable state (standby state), the subject is caused to hold the mouthpiece and exhalation B is exhaled. When expiration is exhaled (exhaled) in an amount corresponding to the capacity of the dead space portion of the expiration (the state shown in FIG. 2A), the weighing valve path 9 of the weighing valve 8 changes the expiration discharge path 2.
Is switched to the breath measurement path 3, and the breath sample S is weighed. The breath sample S in the weighing valve path is sent to the column 15 together with the carrier gas C, is separated and fractionated by the difference in the retention time of each component gas, sequentially reaches the detector 16, and detects necessary gas components. (Figure 2
(State of (b)). The output from the detector 16 is subjected to arithmetic processing by the arithmetic processing device 4, and here, the concentration of the specific gas component to be detected is measured from a previously stored calibration curve. The measurement ends about 5 minutes after the start of exhalation. In the sensitivity calibration of the analyzer, as shown in FIG. 2C, the weighing valve path 9 of the weighing valve 8 is incorporated in the standard gas supply path 22, and the standard gas St is suction-filled into the weighing valve path 9. Next, the measurement is performed by switching the weighing valve path 9 to the breath measurement path 3 (the state shown in FIG. 2D).

【0030】但し、図2の構成の場合、呼気の排出は秤
量弁路9が切り換えられた時点でできなくなる。そこ
で、図3に示すように秤量弁路9が呼気測定経路3に切
り替わった時点で、元の秤量弁路の位置にくるバイパス
弁路13を秤量バルブ8に設けておくとよい。尚、図3
(a)は呼気排出時の状態、図3(b)は呼気測定時の
状態を示す。但し、説明を簡単にするために、標準ガス
供給経路は省略した。また、図2(c)、(d)に該当
する図も省略した。
However, in the case of the configuration shown in FIG. 2, the expiration cannot be discharged when the weighing valve line 9 is switched. Therefore, as shown in FIG. 3, when the weighing valve path 9 is switched to the expiration measurement path 3, a bypass valve path 13 that comes to the position of the original weighing valve path may be provided in the weighing valve 8. FIG.
(A) shows the state at the time of exhalation discharge, and FIG. 3 (b) shows the state at the time of exhalation measurement. However, the standard gas supply path is omitted for the sake of simplicity. The drawings corresponding to FIGS. 2C and 2D are also omitted.

【0031】次に図4は、呼気サンプル中の水素ガス濃
度を、検出器として金属酸化物半導体センサ(フィガロ
製、TGS−813)、キャリアガスとして清浄空気
(20ml/分)を用いて分析した結果を示す。この呼
気分析は、被検者(男性、45才)にラクチュロース水
溶液(ラクチュロース12.5g:水400ml)を摂取
させ、摂取直後から14時間にわたって30分毎に呼気
中の水素濃度(ppm )を測定した結果を示す(実線グラ
フ)。ラクチュロースは、高アンモニア血症の治療内服
薬であり、腸管で細菌との反応過程において、水素ガス
を発生する。従って、呼気中の水素ガス濃度が高いと言
うことは、ラクチュロースが腸内細菌叢で分解し、最終
産物としての酢酸が産生され、効能が出たと言う指標と
なりうる。尚、図中点線グラフは、同じ被検者に日を違
えて庶糖溶液(庶糖60g:水200ml)を摂取させ
(同時に、ベーコン、卵、紅茶を摂取)、摂取直後から
14時間にわたって30分毎に呼気中の水素濃度を測定
した結果を示す。この場合、呼気中の水素ガス濃度には
変動は殆ど見られない。尚、正常人の呼気中の水素ガス
濃度は、10ppm 程度である。
Next, FIG. 4 shows the analysis of the hydrogen gas concentration in the breath sample using a metal oxide semiconductor sensor (manufactured by Figaro, TGS-813) as a detector and clean air (20 ml / min) as a carrier gas. The results are shown. In this breath analysis, a test subject (male, 45 years old) was ingested with an aqueous lactulose solution (12.5 g of lactulose: 400 ml of water), and the hydrogen concentration (ppm) in the breath was measured every 30 minutes for 14 hours immediately after ingestion. The results obtained are shown (solid line graph). Lactulose is an oral medicine for the treatment of hyperammonemia, and generates hydrogen gas during the reaction with bacteria in the intestinal tract. Therefore, a high concentration of hydrogen gas in the breath can be an indicator that lactulose is degraded in the intestinal flora, acetic acid is produced as an end product, and the efficacy is obtained. The dotted line graph in the figure indicates that the same subject was taken on a different day and ingested a sucrose solution (60 g of sucrose: 200 ml of water) (simultaneously with bacon, eggs, and black tea), and every 30 minutes for 14 hours immediately after ingestion. Shows the results of measuring the hydrogen concentration in the exhaled air. In this case, there is almost no change in the hydrogen gas concentration in the breath. The concentration of hydrogen gas in the breath of a normal person is about 10 ppm.

【0032】[0032]

【発明の効果】以上説明したように、本発明は、マウス
ピースから吹き込んだ呼気を呼気排出経路の出口側に設
けた流量センサで計量しながら排出し、排出量が死腔容
量を越えた段階で、秤量バルブの秤量弁路を呼気排出経
路から切り離して呼気測定経路に組み込むことにより呼
気サンプルを採取し、測定対象の微量な呼気ガス成分を
カラムで分離してガスセンサで検出して濃度測定するも
のである。従って、以下のような特徴を有する。 1)測定操作は、スタンバイの状態でマウスピースから
呼気を自然に呼出させるだけであるので、慣れない被検
者でも誤作動無しで測定できる。また、施術者に特別な
教育訓練を施す必要は無いし特別な操作担当者も不要と
なり、新しい検査としてルーチン化されても医療従事者
の負担にならない。しかも、短時間に測定結果が判明
し、そのデータが自動記録されるので診療にすぐ対応で
きる。 2)呼気は、死腔容量を越えた段階で自動的にサンプリ
ングされるので、呼気サンプルから死腔部分が確実に排
除され、精確な分析が可能となる。 3)秤量バルブの秤量弁路を呼気排出経路から呼気測定
経路に切り換えるだけでサンプリングが行なわれるの
で、機構が簡便であるとともに、呼気サンプルの分取が
正確且つ確実に行え、精確な分析が可能となる。 4)標準ガス供給経路を組み込むことにより、分析装置
のキャリブレーションが正確且つ確実に行なえる。 5)呼気採取管の内壁を加温しておくので、呼気中の微
量成分の損失が無く、精度の良い測定値が再現性よく得
られる。 6)装置が小型化するため、ベッドサイド機器として、
また救急車などの車載機器として、場所を選ばず使用で
きる。更に、測定結果は迅速(数分程度)に判明し且つ
記録されるので即時に診療データとして活用できるな
ど、実地診療上での応用範囲を広げるものである。 7)装置は部品構成が簡単であるので、低価格で製作で
きる。また消耗品としてはカラムの充填剤程度であるの
で、測定コストは極めて安価となる。 8)尚、呼気は無侵襲的な検体であり、被検者に肉体
的、精神的苦痛や恐怖感、圧迫感を与えない。また、血
液による感染も危惧する必要がなくなる。そのため、負
荷試験などの繰り返し測定や治療中のモニターなどの連
続観察において、被検者の負担が完全に解消する。しか
も、即時に検査結果が得られるため、必然的に病気の早
期発見ができる。 9)呼気は、血液に比べて遥かに手軽且つ迅速に測定結
果が得られるし、尿や唾液、汗などの非観血無侵襲臨床
検査方法に比べて正確な情報が多いため、臨床報告例が
急速に増加する可能性がある。その結果、いままで不明
であったある特定ガスの測定が新たな疾病の診断などに
役立ち、また、現時点では予測できない未知の現象が解
明されるなど、医学上に大きな貢献をなすと思われる。
As described above, according to the present invention, the exhalation inhaled from the mouthpiece is discharged while being measured by the flow rate sensor provided at the outlet side of the exhalation discharge path, and the exhaled amount exceeds the dead space capacity. Then, the weighing valve path of the weighing valve is separated from the exhalation discharge path and incorporated into the exhalation measurement path to collect an exhalation sample, and a small amount of exhalation gas component to be measured is separated by a column and detected by a gas sensor to measure the concentration. Things. Therefore, it has the following features. 1) Since the measurement operation only causes the mouthpiece to spontaneously exhale in the standby state, even an unfamiliar subject can measure without malfunction. Also, there is no need to provide special training to the practitioner, and no special operator is required. Even if a new test is routinely performed, there is no burden on medical staff. In addition, since the measurement result is determined in a short time and the data is automatically recorded, it is possible to immediately respond to medical treatment. 2) Since the exhaled breath is automatically sampled at a stage beyond the dead space volume, the dead space portion is reliably excluded from the exhaled breath sample, and accurate analysis is possible. 3) Since sampling is performed simply by switching the weighing valve path of the weighing valve from the exhalation discharge path to the exhalation measurement path, the mechanism is simple and accurate and reliable sampling of the exhalation sample can be performed, enabling accurate analysis. Becomes 4) By incorporating the standard gas supply path, calibration of the analyzer can be performed accurately and reliably. 5) Since the inner wall of the exhalation collection tube is heated, there is no loss of trace components in the exhalation, and accurate measurement values can be obtained with good reproducibility. 6) As the device is downsized, as a bedside device,
In addition, it can be used anywhere, as an on-board device such as an ambulance. Further, the measurement result is quickly (approximately several minutes) determined and recorded, so that it can be used immediately as medical data, thereby expanding the application range in practical medical care. 7) Since the device has a simple component configuration, it can be manufactured at low cost. Also, since the consumables are about the same as the column packing material, the measurement cost is extremely low. 8) Exhaled breath is a non-invasive sample, and does not give the subject any physical, mental pain, fear, or oppression. Also, there is no need to worry about infection by blood. Therefore, the burden on the subject can be completely eliminated in repeated measurement such as a load test or continuous observation using a monitor during treatment. Moreover, since the test results can be obtained immediately, it is inevitable that the disease can be detected early. 9) In the case of exhaled breath, measurement results can be obtained much more easily and quickly than in blood, and there is more accurate information than in non-invasive non-invasive clinical test methods such as urine, saliva, and sweat. May increase rapidly. As a result, the measurement of a specific gas, which was unknown until now, will be useful for diagnosis of new diseases, etc. In addition, it is expected that it will make a great contribution to medicine, such as elucidating unknown phenomena that cannot be predicted at this time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る呼気中の特定ガス成分の分析装置
の一例を示す、ブロック図である。
FIG. 1 is a block diagram showing an example of an apparatus for analyzing a specific gas component in breath according to the present invention.

【図2】秤量バルブを含む呼気排出経路の一例を部分的
に示す模式図で、(a)は呼気排出時の状態、(b)は
呼気測定時の状態を示す。また(c)は、標準ガス吸引
時の状態、(b)は呼気測定時の状態を示す。
FIGS. 2A and 2B are schematic diagrams partially showing an example of an exhalation discharge path including a weighing valve. FIG. 2A shows a state at the time of exhalation discharge, and FIG. 2B shows a state at the time of exhalation measurement. (C) shows a state at the time of standard gas suction, and (b) shows a state at the time of breath measurement.

【図3】秤量バルブを含む呼気排出経路の他の例を部分
的に示す模式図で、(a)は呼気排出時の状態、(b)
は呼気測定時の状態を示す。
FIGS. 3A and 3B are schematic diagrams partially showing another example of the exhalation discharge path including a weighing valve, wherein FIG.
Indicates the state at the time of breath measurement.

【図4】摂取物の差異による、呼気中水素ガスレベルの
変動を示すグラフである。
FIG. 4 is a graph showing fluctuations in exhaled hydrogen gas level due to differences in intake.

【符号の説明】[Explanation of symbols]

1 呼気中の特定ガス成分分析装置 12 マウ
スピース 2 呼気排出経路 14 キャ
リアガス供給部 3 呼気測定経路 15 カラ
ム 4 演算処理装置 16 検出
器 7 呼気採取管 22 標準
ガス供給経路 8 秤量バルブ B 呼気 9 秤量弁路 S 呼気
サンプル 10 流量センサ C キ
ャリアガス 11 呼気排出管 St 標
準ガス
DESCRIPTION OF SYMBOLS 1 Specific gas component analyzer in exhalation 12 Mouthpiece 2 Exhalation discharge path 14 Carrier gas supply unit 3 Exhalation measurement path 15 Column 4 Arithmetic processing unit 16 Detector 7 Exhalation collection tube 22 Standard gas supply path 8 Weighing valve B Exhalation 9 Weighing Valve path S Breath sample 10 Flow sensor C Carrier gas 11 Breath discharge pipe St Standard gas

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被検者が呼出する呼気を体温或いはそれ
以上の温度に加温した状態で秤量し、該秤量した呼気サ
ンプルをキャリアガスとともに検出器に供給して呼気サ
ンプル中の特定ガス成分の濃度を測定する場合におい
て、マウスピースから吹き込んだ呼気を、呼気排出経路
の出口側に設けた流量センサで計量しながら排出し、排
出量が死腔容量を越えた段階で、呼気排出経路の一部を
なす秤量バルブの秤量弁路を呼気排出経路から切り離し
てキャリアガス供給部に連なる呼気測定経路に組み込む
とともに、秤量弁路内の呼気サンプルをキャリアガスと
ともにカラムに送り込んで特定ガス成分を分離し、次い
で非選択性で多量の試料を必要とする検出器で特定ガス
成分を検出し、その信号を演算処理部で演算処理して予
め記憶させている検量線から特定ガス成分の濃度を算出
し、臨床検査データとして記憶し或いは出力装置に信号
を出力することを特徴とする、呼気中の特定ガス成分を
分析する方法。
An exhaled breath exhaled by a subject is weighed in a state where the exhaled breath is heated to a body temperature or a higher temperature, and the weighed exhaled breath sample is supplied to a detector together with a carrier gas, and a specific gas component in the breath sample is measured. In the case of measuring the concentration of exhaled breath, the exhaled breath blown from the mouthpiece is discharged while being measured by a flow sensor provided on the outlet side of the exhaled discharge path. The weighing valve path of the weighing valve that forms a part is separated from the exhalation discharge path and incorporated into the exhalation measurement path connected to the carrier gas supply unit, and the exhalation sample in the weighing valve path is sent to the column together with the carrier gas to separate specific gas components. Then, a specific gas component is detected by a detector that requires a large amount of sample in a non-selective manner, and the signal is arithmetically processed by an arithmetic processing unit and stored in advance. A method for analyzing a specific gas component in expiration, comprising calculating a concentration of a specific gas component from a line, storing the concentration as a clinical test data, or outputting a signal to an output device.
【請求項2】 必要に応じて、秤量バルブの秤量弁路を
標準ガス供給部に連なる標準ガス供給経路に組み込んで
秤量弁路に濃度既知の標準ガスを吸引充填したのち、秤
量弁路を標準ガス供給経路から切り離して呼気測定経路
に組み込んで標準ガス濃度を測定してキャリブレーショ
ンを行なうものである請求項1記載の呼気中の特定ガス
成分を分析する方法。
2. If necessary, a weighing valve line of a weighing valve is incorporated into a standard gas supply path connected to a standard gas supply section, and the weighing valve path is filled with a standard gas having a known concentration by suction. 2. The method for analyzing a specific gas component in expiration according to claim 1, wherein the calibration is performed by measuring the standard gas concentration by incorporating the gas into the expiration measurement path separately from the gas supply path.
【請求項3】 死腔容量は、150〜200mlである
請求項1記載の呼気中の特定ガス成分を分析する方法。
3. The method according to claim 1, wherein the dead space volume is 150 to 200 ml.
【請求項4】 呼気サンプルの容量は、0.5〜10ml
である請求項1記載の呼気中の特定ガス成分を分析する
方法。
4. The volume of the breath sample is 0.5 to 10 ml.
The method for analyzing a specific gas component in exhaled breath according to claim 1, wherein:
【請求項5】 マウスピースから吹き込んだ呼気を自
然に排出する呼気排出経路と、秤量した呼気サンプルを
分析する呼気測定経路及び演算処理装置を含むものであ
って、呼気排出経路は、内壁加温機能を備え先端にマウ
スピースが装着される呼気採取管と、秤量バルブの秤量
弁路及び流量センサを組み込んだ呼気排出管から構成さ
れ、呼気測定経路は、キャリアガス供給部と秤量バルブ
の秤量弁路、カラム、検出器、及びこれらを連結する管
路から構成され、秤量バルブはその秤量弁路が呼気排出
経路と呼気測定経路に交互に切り換えられるようになっ
ており、且つ秤量バルブ、排出管、カラム、検出器及び
これらを連結する管路は恒温槽内に収納されるととも
に、演算処理装置で流量センサの監視と秤量弁路の切替
え、検量線の記憶と特定ガス成分の濃度の算出や記憶等
を行なうことを特徴とする呼気中の特定ガス成分分析装
置。
5. An exhalation discharge path for naturally exhaling exhaled air blown from a mouthpiece, an exhalation measurement path for analyzing a weighed exhaled breath sample, and an arithmetic processing unit, wherein the exhalation discharge path includes an inner wall heating. It is composed of an exhalation collection tube equipped with a function and a mouthpiece attached to the tip, and an exhalation discharge tube incorporating a weighing valve path and a flow rate sensor of a weighing valve. The exhalation measurement path is a weighing valve of a carrier gas supply unit and a weighing valve. Channel, a column, a detector, and a line connecting them, and the weighing valve is configured such that the weighing valve line is alternately switched to an exhalation discharge path and an exhalation measurement path. , Columns, detectors and the pipeline connecting them are housed in a thermostat, and the processing unit monitors the flow sensor, switches the weighing valve path, and stores and specifies the calibration curve. An apparatus for analyzing a specific gas component in exhaled air, which calculates or stores the concentration of a gas component.
【請求項6】 秤量バルブはその秤量弁路が呼気排出経
路と呼気測定経路及び標準ガス供給経路に相互切り換え
られるようになっており、標準ガス供給経路は、標準ガ
ス供給部と秤量バルブの秤量弁路及び該秤量弁路に標準
ガスを吸引する吸引装置から構成されるものである請求
項5記載の呼気中の特定ガス成分分析装置。
6. The weighing valve has a weighing valve path that can be switched between an exhalation discharge path, an exhalation measurement path, and a standard gas supply path, and the standard gas supply path is weighed by the standard gas supply unit and the weighing valve. 6. The apparatus for analyzing a specific gas component in expiration according to claim 5, comprising a valve path and a suction device for suctioning a standard gas into the weighing valve path.
【請求項7】 秤量バルブは、スライド式或いは回転式
のものであり、秤量弁路は、バルブの外部に設けた試料
ループを含むものである請求項5記載の呼気中の特定ガ
ス成分分析装置。
7. The apparatus according to claim 5, wherein the weighing valve is a slide type or a rotary type, and the weighing valve path includes a sample loop provided outside the valve.
【請求項8】 検出器は、金属酸化物半導体センサ或い
は接触燃焼式センサである請求項5記載の呼気中の特定
ガス成分分析装置。
8. The apparatus according to claim 5, wherein the detector is a metal oxide semiconductor sensor or a catalytic combustion type sensor.
JP8177437A 1996-06-17 1996-06-17 Method and device of analyzing specified gas component in expired air Pending JPH10186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8177437A JPH10186A (en) 1996-06-17 1996-06-17 Method and device of analyzing specified gas component in expired air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8177437A JPH10186A (en) 1996-06-17 1996-06-17 Method and device of analyzing specified gas component in expired air

Publications (1)

Publication Number Publication Date
JPH10186A true JPH10186A (en) 1998-01-06

Family

ID=16030936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8177437A Pending JPH10186A (en) 1996-06-17 1996-06-17 Method and device of analyzing specified gas component in expired air

Country Status (1)

Country Link
JP (1) JPH10186A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538457A (en) * 1999-03-03 2002-11-12 サイラノ・サイエンスィズ・インコーポレーテッド Apparatus, system and method for detecting sensory data and transmitting it over a computer network
JP2008051787A (en) * 2006-08-28 2008-03-06 Meiji Milk Prod Co Ltd Method of evaluating effect of physiological active material
JP2009501927A (en) * 2005-07-19 2009-01-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Fluid analyzer
JP2009518654A (en) * 2005-12-06 2009-05-07 アプライド・ナノテック・ホールディングス・インコーポレーテッド Gas analysis
JP2010091502A (en) * 2008-10-10 2010-04-22 Ngk Spark Plug Co Ltd Alcohol detector
JP2010521243A (en) * 2007-03-15 2010-06-24 アールアイシー・インベストメンツ・エルエルシー End-breathing gas estimation system and method
JP2010249556A (en) * 2009-04-13 2010-11-04 Sharp Corp Gas component detecting device
JP2010540959A (en) * 2007-10-02 2010-12-24 オリン,アナ−キャリン Collection and measurement of exhaled particles
WO2017158846A1 (en) * 2016-03-18 2017-09-21 株式会社日立製作所 Expiration gas detection device and expiration gas detection method
CN106770738B (en) * 2016-12-03 2024-02-20 浙江大学 Expired gas multicomponent detector with corrected carbon dioxide concentration and detection method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538457A (en) * 1999-03-03 2002-11-12 サイラノ・サイエンスィズ・インコーポレーテッド Apparatus, system and method for detecting sensory data and transmitting it over a computer network
JP2009501927A (en) * 2005-07-19 2009-01-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Fluid analyzer
US8903474B2 (en) 2005-12-06 2014-12-02 Pen Inc. Analysis of gases
JP2009518654A (en) * 2005-12-06 2009-05-07 アプライド・ナノテック・ホールディングス・インコーポレーテッド Gas analysis
JP2008051787A (en) * 2006-08-28 2008-03-06 Meiji Milk Prod Co Ltd Method of evaluating effect of physiological active material
JP2010521243A (en) * 2007-03-15 2010-06-24 アールアイシー・インベストメンツ・エルエルシー End-breathing gas estimation system and method
JP2010540959A (en) * 2007-10-02 2010-12-24 オリン,アナ−キャリン Collection and measurement of exhaled particles
JP2010091502A (en) * 2008-10-10 2010-04-22 Ngk Spark Plug Co Ltd Alcohol detector
JP2010249556A (en) * 2009-04-13 2010-11-04 Sharp Corp Gas component detecting device
JP4744618B2 (en) * 2009-04-13 2011-08-10 シャープ株式会社 Gas component detector
WO2017158846A1 (en) * 2016-03-18 2017-09-21 株式会社日立製作所 Expiration gas detection device and expiration gas detection method
JPWO2017158846A1 (en) * 2016-03-18 2018-07-05 株式会社日立製作所 Exhalation gas detection device and expiration gas detection method
CN106770738B (en) * 2016-12-03 2024-02-20 浙江大学 Expired gas multicomponent detector with corrected carbon dioxide concentration and detection method

Similar Documents

Publication Publication Date Title
JP3838671B2 (en) Breath collection device
US5042501A (en) Apparatus and method for analysis of expired breath
US5425374A (en) Device and method for expiratory air examination
EP1480557B1 (en) Breath collection system
US5022406A (en) Module for determining diffusing capacity of the lungs for carbon monoxide and method
JP4402836B2 (en) Equipment for collecting, storing and / or transporting gas samples
KR20160047565A (en) Universal breath analysis sampling device
JP2000507462A (en) Condensate colorimetric nitric oxide analyzer
Dubowski Breath analysis as a technique in clinical chemistry
BG65874B1 (en) Device for measuring the temperature of exhaled air
JP2010537190A (en) Apparatus and method for analyzing gas and alveolar air components in the oral cavity
JPH07120463A (en) Concentration correction method for aspiration component and aspiration analysis device
JPH10186A (en) Method and device of analyzing specified gas component in expired air
JPH0658919A (en) Method and device for analyzing expiration
JP3525157B2 (en) Intestinal gas component measurement method and flatus detection method
White et al. Capturing and storing exhaled breath for offline analysis
JP2004077467A (en) Sampling method and device of end expiration
EP0574027A2 (en) Expired gas analytical method and device
JP4028006B2 (en) Analyzer for specific gas components in exhaled breath
JPH0647047A (en) Method for clinical inspection of expiration and device therefor
LT4159B (en) Blood gas probe
JP2003270242A (en) Method and apparatus for measurement of toxic gas in enteral gas
JP2004279228A (en) Method and apparatus for measuring concentration of component gas in exhalation
JP3238318B2 (en) Breath bag and gas measuring device
US20080275355A1 (en) Method For Diagnosing An Infectioin Condition