JPH10180048A - Immersion type membrane separator - Google Patents

Immersion type membrane separator

Info

Publication number
JPH10180048A
JPH10180048A JP8350058A JP35005896A JPH10180048A JP H10180048 A JPH10180048 A JP H10180048A JP 8350058 A JP8350058 A JP 8350058A JP 35005896 A JP35005896 A JP 35005896A JP H10180048 A JPH10180048 A JP H10180048A
Authority
JP
Japan
Prior art keywords
hollow tubular
membranes
membrane
aeration means
tubular membranes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8350058A
Other languages
Japanese (ja)
Inventor
Isamu Kato
勇 加藤
Kunihiro Iwasaki
邦博 岩崎
Masayoshi Oinuma
正芳 老沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP8350058A priority Critical patent/JPH10180048A/en
Publication of JPH10180048A publication Critical patent/JPH10180048A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the deterioration of the function to separate solid from liquid of hollow tubular membranes by immersing aeration means which are connected to air feed pipes for aeration and eject air bubbles into the water in a treating vessel and enclosing the aeration means by the hollow tubular membranes constituting membrane modules. SOLUTION: Many pieces of the hollow tubular membranes 11 of a water collecting device 12 consisting of the hollow annular bodies of the membrane modules are bent to a U shape by each piece and both ends are plunged and fixed into the hollow water collecting parts 12' of the annular bodies. These membranes exist in the diametral direction of the annular bodies. The aeration means 20 of a resembling shape having the external shape slightly smaller than the internal shape of the cage shapes formed by interlinkage of the U-shaped parts of the many hollow tubular membranes 11 under the annular bodies are concentrically fitted into the cages to prevent the adhesion of SS by uniformly ejecting the air bubbles to all the hollow tubular membranes 11 and applying vibrations thereto. As a result, the long-term and continuous collecting of the permeated liquid P permeating the hollow tubular membranes 11 is made possible and the occurrence of the deterioration in the function to separate solid from the liquid is eliminated. The attachment and detachment of the membranes are facilitated and the washing of the membranes by taking the deteriorated membranes outside the system is facilitated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、アルミナセラミ
ック等からなる無機材質や、有機材質からなる逆浸透
膜、限外濾過膜、精密濾過膜の多数本の外圧型中空糸膜
やチューブラー型膜を有する中空管状の膜モジュールを
処理槽の水中に浸漬し、水頭差や吸引ポンプにより生じ
る負圧作用で各中空管状膜を外側から中空部に透過した
透過液を採水する固液分離用の浸漬型膜分離装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plurality of external pressure type hollow fiber membranes and tubular type membranes such as a reverse osmosis membrane, an ultrafiltration membrane and a microfiltration membrane made of an inorganic material such as alumina ceramic or an organic material. For solid-liquid separation by immersing a hollow tubular membrane module with water into the treatment tank and collecting permeated liquid that has passed through each hollow tubular membrane from the outside to the hollow part due to the head difference and the negative pressure generated by the suction pump. The present invention relates to a submerged membrane separation device.

【0002】[0002]

【従来の技術】このような浸漬型膜分離装置では、固液
分離を行うに伴い各中空管状膜の表面にSSが細長いス
パゲッティ状に付着、生長して膜の表面を閉塞させるた
め、従来は処理槽内の膜モジュールの下方に曝気装置を
設置し、曝気装置から浮上する気泡により中空管状膜を
上下、或いは左右に浮遊、振動させて中空管状膜の表面
に付着、生長するSSを払い落とし、膜の表面の閉塞を
防止している。特に処理槽の液中に好気微生物を存在さ
せて有機性廃水を生物処理しながら固液分離を行う場合
は、曝気した空気が好気性微生物を活性化するため、処
理効果が極めて高い。
2. Description of the Related Art In such an immersion type membrane separation apparatus, SS adheres to the surface of each hollow tubular membrane in an elongated spaghetti-like manner and grows on the surface of each hollow tubular membrane as the solid-liquid separation is performed. An aeration device is installed below the membrane module in the treatment tank, and the air bubbles floating from the aeration device cause the hollow tubular membrane to float up and down or left and right, vibrate, and remove SS that adheres to and grows on the surface of the hollow tubular membrane. In addition, blocking of the surface of the membrane is prevented. In particular, when solid-liquid separation is performed while biologically treating organic wastewater by allowing aerobic microorganisms to be present in the liquid in the treatment tank, the aerated air activates the aerobic microorganisms, so that the treatment effect is extremely high.

【0003】[0003]

【発明が解決しようとする課題】しかし、曝気による空
気は、膜モジュールを構成する中空管状膜の1本宛に均
一に接触しないため、部分的にSSが中空管状膜の表面
を閉塞したり、膜の表面に付着、生長するSSの粘着性
によって数10本、数100本の規模で中空管状膜が固
着するブロック化現象が生じることがあった。更に、中
空管状膜の1本の外径は0.2〜1.0mm、膜モジュ
ールを構成するための採水装置に対する埋込み密度は数
10本/cm2 であるため、曝気による浮遊、振動で1
本宛の中空管状膜に伸縮の差が発生すると、中空管状膜
が絡み合い、部分的に張力が加わるとその個所で切断し
てしまい、固液分離機能が劣化するという事態がたまに
生じていた。
However, since air generated by aeration does not uniformly contact one of the hollow tubular membranes constituting the membrane module, the SS partially blocks the surface of the hollow tubular membrane, Due to the stickiness of the SS which adheres to and grows on the surface of the membrane, a blocking phenomenon in which the hollow tubular membrane adheres on the scale of several tens or several hundreds may occur. Furthermore, since the outer diameter of one hollow tubular membrane is 0.2 to 1.0 mm and the embedding density in a water sampling device for forming a membrane module is several tens / cm 2 , the floating and vibration caused by aeration may cause 1
When a difference in expansion and contraction occurs in the hollow tubular membrane of the book, the hollow tubular membrane is entangled, and if tension is partially applied, the hollow tubular membrane is cut at that location, and the situation where the solid-liquid separation function is deteriorated sometimes occurs.

【0004】[0004]

【課題を解決するための手段】本発明は、上述した問題
点を解消するために開発されたもので、処理槽の水中に
多数本の外圧型中空管状膜を有する膜モジュールを浸漬
し、上記各中空管状膜の膜を透過した透過液を採水する
浸漬型膜分離装置において、上記処理槽の水中に、曝気
用給気管に接続して気泡を水中に噴出する曝気手段を浸
漬し、前記膜モジュールを構成する中空管状膜によって
上記曝気手段を囲んだことを特徴とする。
DISCLOSURE OF THE INVENTION The present invention has been developed to solve the above-mentioned problems, and comprises immersing a membrane module having a large number of external pressure type hollow tubular membranes in water in a treatment tank, In an immersion type membrane separation device for sampling a permeated liquid that has passed through the membrane of each hollow tubular membrane, in the water of the treatment tank, immersing an aeration means connected to an aeration pipe for air supply and ejecting bubbles into the water, The aeration means is surrounded by a hollow tubular membrane constituting the membrane module.

【0005】[0005]

【実施例】図示の各実施例において、11は1本宛の外
圧型中空管状膜、12は中空集水部12´を有し、多数
本の中空管状膜の1本宛の端部を固定し、図1(B)に
拡大して示したように、各中空管状膜の中空部が前記中
空集水部に連通した採水装置であって、上記採水装置1
2と、これに端部を固定された多数本の中空管状膜11
とによって処理槽1の水中に浸漬した膜モジュール10
が構成される。そして、採水装置の中空集水部には処理
槽の水面上に突出して吸引ポンプPに接続した採水管1
3が連結し、吸引ポンプの運転により採水装置の中空集
水部を経て各1本宛の中空管状膜の中空部に生じる減圧
吸引作用で処理槽内の液は中空管状膜の膜を外側から中
空部に透過して採水装置の中空集水部12´で合流し、
採水管13、吸引ポンプPを経て採水される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In each of the illustrated embodiments, reference numeral 11 designates an external pressure type hollow tubular membrane, and reference numeral 12 designates a hollow water collecting portion 12 ', and fixes one end of a large number of hollow tubular membranes. Then, as shown in an enlarged manner in FIG. 1 (B), a water sampling device in which the hollow portion of each hollow tubular membrane communicates with the hollow water collecting portion,
2 and a number of hollow tubular membranes 11 fixed at their ends
And the membrane module 10 immersed in the water of the treatment tank 1
Is configured. A water sampling pipe 1 protruding above the water surface of the treatment tank and connected to the suction pump P is provided in the hollow water collecting part of the water sampling apparatus.
3, the liquid in the treatment tank is moved outside the hollow tubular membrane by the reduced pressure suction effect generated in the hollow portion of the hollow tubular membrane for each one through the hollow water collecting section of the water sampling device by the operation of the suction pump. From the water collecting unit 12 ′ of the water sampling device,
Water is sampled via the water sampling pipe 13 and the suction pump P.

【0006】20は処理槽1の水中に浸漬し、曝気用給
気管21に接続して気泡を水中に噴出する曝気手段で、
気泡を均一に噴出できれば曝気手段の壁面を不織布や、
ポーラスな多孔質材料で構成してもよいし、細孔や、ス
リットを有する金属板で構成してもよく、構造は任意で
ある。
An aeration means 20 is immersed in the water of the treatment tank 1 and connected to an aeration pipe 21 for jetting bubbles into the water.
If air bubbles can be blown out uniformly, the wall of the aeration means can be made of non-woven fabric,
It may be made of a porous material or may be made of a metal plate having pores or slits, and the structure is arbitrary.

【0007】図1の実施例では膜モジュールの採水装置
12は中空の環状体からなり、多数本の中空管状膜11
は1本宛U形に曲がり、その両端部を環状体の中空集水
部12´に下から突入して固定され、環状体の直径方向
に位置する。これにより環状体の下には多数本の中空管
状膜のU形に曲がった折返し部分が交錯して底を形成す
る籠形になる。そして、この多数本の中空管状膜で構成
された籠の内部に、籠の内形よりも外形が少し小さい相
似形の曝気手段20が同心状に嵌入し、籠を構成する多
数本の中空管状膜の全部に対して均一に気泡を噴出する
ようになっている。
In the embodiment shown in FIG. 1, a water sampling device 12 for a membrane module is formed of a hollow annular body, and a plurality of hollow tubular membranes 11 are provided.
Is bent in a U-shape, one end of which is fixed by projecting from below into the hollow water collecting portion 12 ′ of the annular body, and is located in the diameter direction of the annular body. As a result, a plurality of hollow tubular membranes having a U-shaped folded portion intersect under the annular body to form a cage shape forming a bottom. A similar aeration means 20 whose outer shape is slightly smaller than the inner shape of the basket is concentrically fitted into the inside of the basket formed by the plurality of hollow tubular membranes, and the plurality of hollow tubular Bubbles are blown out uniformly to all of the film.

【0008】曝気手段の上面は上壁20´により閉じ、
その中央からは環状体の中心を貫いて、給気管21に上
端を接続した連絡管22が起立し、曝気手段の内部は連
絡管22で給気管21と連通する。
The upper surface of the aeration means is closed by an upper wall 20 ',
From the center thereof, a communication pipe 22 having an upper end connected to the air supply pipe 21 stands through the center of the annular body, and the inside of the aeration means communicates with the air supply pipe 21 through the communication pipe 22.

【0009】採水装置12の環状体も、上端を採水管1
3に接続した連通管14を有し、この連通管14により
環状体の中空集水部12´は採水管13と連通する。
[0009] The annular body of the water sampling device 12 also has a water sampling pipe 1 at the upper end.
3, the annular water collecting portion 12 ′ communicates with the water sampling pipe 13 through the communication pipe 14.

【0010】給気管21から連絡管22で下がる曝気手
段20を、多数本の中空管状膜からなる籠の内部に同心
状に位置させ、曝気手段を多数本の中空管状膜で囲むた
め、採水装置の環状体は複数の上向きの取付部材15に
よって採水管13に固定されている。
The aeration means 20 descending from the air supply pipe 21 by the communication pipe 22 is concentrically positioned inside a basket composed of a number of hollow tubular membranes, and the aeration means is surrounded by a number of hollow tubular membranes. The annular body of the apparatus is fixed to the water sampling pipe 13 by a plurality of upward mounting members 15.

【0011】前述したように曝気手段20の外形は、多
数本の中空管状膜が構成する籠の内形より少し小さい。
このため中空管状膜と曝気手段の外面との間には間隙1
6が保たれている。従って、固液分離を行うため吸引ポ
ンプPを運転し、且つ給気管21にブロワーなどから空
気を給気すると、曝気手段20は上壁20´を除く外面
全体から空気を噴出し、籠を構成している多数本の中空
管状膜の1本宛の全長に気泡を均一に浴びせ、振動させ
る。これにより、SSが中空管状膜の膜の表面に付着し
ようとしても振動によって払い落とされ、付着できな
い。こうして、吸引ポンプの吸引作用で処理槽中の液
の、中空管状膜を透過できた透過液を環状体、連通管1
4、採水管13を経て長時間、連続的に採水できる。そ
して、SSが中空管状膜の表面に付着しないので中空管
状膜同志が固着するブロック化現象が生じないと共に、
1本宛の中空管状膜は一様に振動するため絡み合いによ
る切断も生じない。
As described above, the outer shape of the aeration means 20 is slightly smaller than the inner shape of a basket formed by a number of hollow tubular membranes.
Therefore, there is a gap 1 between the hollow tubular membrane and the outer surface of the aeration means.
6 is kept. Therefore, when the suction pump P is operated to perform solid-liquid separation and air is supplied to the air supply pipe 21 from a blower or the like, the aeration means 20 blows air from the entire outer surface except the upper wall 20 'to form a basket. Bubbles are evenly poured and vibrated over the entire length of one of the many hollow tubular membranes. As a result, even if SS tries to adhere to the surface of the hollow tubular membrane, it is removed by vibration and cannot adhere. Thus, the permeated liquid, which can permeate through the hollow tubular membrane, of the liquid in the processing tank by the suction action of the suction pump is transferred to the annular body and the communication pipe 1.
4. Water can be taken continuously for a long time via the water sampling pipe 13. And since SS does not adhere to the surface of the hollow tubular membrane, a blocking phenomenon in which the hollow tubular membranes adhere to each other does not occur, and
Since one hollow tubular membrane vibrates uniformly, cutting by entanglement does not occur.

【0012】図1の実施例では多数本の中空管状膜の1
本宛をU字形に曲げ、その両端を環状体に固定して膜モ
ジュールを底を有する籠形にしたが、多数本の中空管状
膜を平らなメッシュ状に編み、これを袋状に変形させて
中空管状膜の1本宛の両端を環状体に固定して膜モジュ
ールにしても同じ作用効果を有する。
In the embodiment of FIG. 1, one of a plurality of hollow tubular membranes is used.
The book was bent into a U-shape, and both ends were fixed to an annular body to make the membrane module into a cage shape with a bottom.However, a number of hollow tubular membranes were knitted into a flat mesh shape, and this was deformed into a bag shape. The same operation and effect can be obtained by fixing both ends of one hollow tubular membrane to an annular body by using a membrane module.

【0013】図2の実施例は、採水装置12として2つ
の中空の環状体を上下に配置し、上下の環状体に対して
多数本の中空管状膜11の1本宛が上端部と下端部を突
入して固定され、上下の環状体と、これに上端部と下端
部を固定された直線状の多数本の中空管状膜により膜モ
ジュール10を円筒形の底が無い籠形にした場合のもの
である。この籠の内部に、多数本の中空管状膜が囲む内
径よりも外径が少し小さい円筒形で、上面と底が塞がれ
た曝気手段20を同心状に嵌入し、曝気手段の外周面の
全体から均一に気泡を噴出するようにしてある。
In the embodiment shown in FIG. 2, two hollow annular bodies are vertically arranged as a water sampling device 12, and one of a plurality of hollow tubular membranes 11 is connected to an upper end and a lower end of the upper and lower annular bodies. When the membrane module 10 is formed into a cylindrical bottomless cage shape by the upper and lower annular bodies fixed to the upper portion and the upper and lower ends thereof, and a plurality of linear hollow tubular membranes fixed to the upper and lower portions thereof. belongs to. Inside the basket, aeration means 20 of a cylindrical shape whose outer diameter is slightly smaller than the inner diameter surrounded by a number of hollow tubular membranes and whose top and bottom are closed are fitted concentrically, and the outer peripheral surface of the aeration means is Bubbles are blown out uniformly from the whole.

【0014】膜モジュールの上の環状体の採水管13に
対する配管、固定、及び曝気手段20の給気管21に対
する配管は図1の実施例と同様で、同じ部材には同じ符
号を付して説明を省略する。この図2の実施例では採水
装置として下にも環状体を有するので、下の環状体から
の採水管13´を設け、下の採水管13´と上の採水管
13を連結して、1台の吸水ポンプPに接続する。
The piping and fixing of the annular body on the membrane module to the water sampling pipe 13 and the piping of the aeration means 20 to the air supply pipe 21 are the same as those in the embodiment of FIG. 1, and the same members are denoted by the same reference numerals. Is omitted. In the embodiment of FIG. 2, since the water sampling device also has an annular body below, a water sampling pipe 13 ′ from the lower annular body is provided, and the lower water sampling pipe 13 ′ and the upper water sampling pipe 13 are connected. Connect to one water suction pump P.

【0015】この実施例でも円筒形の曝気手段20の外
径は、多数本の中空管状膜が囲む内径より少し小さい。
このため中空管状膜と曝気手段の外周面との間には間隙
16が保たれている。従って、固液分離を行うため吸引
ポンプPを運転し、且つ給気管21にブロワーなどから
空気を給気すると、曝気手段20は外周面全体から空気
を噴出し、籠を構成している直線状の多数本の中空管状
膜の1本宛の全長に気泡を均一に浴びせ、振動させる。
これにより、SSが中空管状膜の膜の表面に付着しよう
としても振動によって払い落とされ、付着できない。こ
うして、吸引ポンプの吸引作用で処理槽中の液の、中空
管状膜を透過できた透過液を上下の環状体、連通管1
4、採水管13,13´を経て長時間、連続的に採水で
きる。そして、SSが中空管状膜の表面に付着しないの
で中空管状膜同志が固着するブロック化現象が生じない
と共に、1本宛の中空管状膜は一様に振動するため絡み
合いによる切断も生じない。
Also in this embodiment, the outer diameter of the cylindrical aeration means 20 is slightly smaller than the inner diameter surrounded by a number of hollow tubular membranes.
Therefore, a gap 16 is maintained between the hollow tubular membrane and the outer peripheral surface of the aeration means. Therefore, when the suction pump P is operated to perform solid-liquid separation and air is supplied to the air supply pipe 21 from a blower or the like, the aeration means 20 ejects air from the entire outer peripheral surface to form a straight line forming a basket. Air bubbles uniformly over the entire length of one of the multiple hollow tubular membranes, and vibrates.
As a result, even if SS tries to adhere to the surface of the hollow tubular membrane, it is removed by vibration and cannot adhere. In this manner, the permeated liquid, which can permeate through the hollow tubular membrane, of the liquid in the processing tank by the suction action of the suction pump is transferred to the upper and lower annular bodies and the communication pipe 1.
4. Water can be continuously taken for a long time via the water sampling pipes 13 and 13 '. Further, since the SS does not adhere to the surface of the hollow tubular membrane, a blocking phenomenon in which the hollow tubular membranes adhere to each other does not occur. In addition, since the hollow tubular membranes of one piece vibrate uniformly, cutting by entanglement does not occur.

【0016】図3の実施例は、採水装置12が左右2本
の横置き筒体からなり、多数本の中空管状膜11の1本
宛をアーチ形に曲げ、その下向きの左右各端部を上記左
右の横置き筒体12,12に上から突入して固定し、一
列のトンネル状に膜モジュールを構成した場合を示す。
そして、曝気手段20は左右の横置き筒体の間に入り、
一列のトンネル状に配列されている多数本の中空管状膜
11との間に間隙16を保った中空のかまぼこ形で、底
と両端を除くアーチ形の表面から均一に気泡を噴出する
ようにしてある。
In the embodiment shown in FIG. 3, the water sampling device 12 is composed of two left and right horizontal cylinders, and one of a large number of hollow tubular membranes 11 is bent into an arch shape, and the left and right ends thereof are directed downward. Are fixed to the left and right laterally mounted cylinders 12 and 12 from above from above to form a membrane module in a row of tunnels.
And the aeration means 20 enters between the left and right horizontal cylinders,
It is a hollow cylinder having a gap 16 between a plurality of hollow tubular membranes 11 arranged in a row in a tunnel shape, and air bubbles are uniformly ejected from an arch-shaped surface excluding the bottom and both ends. is there.

【0017】膜モジュールの採水装置12である左右2
本の横置き筒体は、例えば処理槽1の底面上に設置し、
曝気手段20は横置き筒体の間で、多数本の中空管状膜
が構成する一列のトンネルの下に位置するように処理槽
の底面上に設置する。そして、2本の横置き筒体の端面
に夫々採水管13,13を接続し、この2本の採水管を
連結して1本にし、吸引ポンプに接続する。又、曝気手
段の端面には給気管21を接続する。
The left and right 2 which are the water sampling devices 12 of the membrane module
The horizontal cylinder of the book is installed on the bottom surface of the processing tank 1, for example,
The aeration means 20 is installed on the bottom surface of the processing tank so as to be located below a row of tunnels constituted by a large number of hollow tubular membranes between the horizontal cylinders. Then, water sampling pipes 13 and 13 are connected to the end faces of the two horizontal cylinders, respectively, and the two water sampling pipes are connected to one to be connected to a suction pump. An air supply pipe 21 is connected to the end face of the aeration means.

【0018】この状態で多数本の中空管状膜が構成する
トンネルと、曝気手段のアーチ形の表面との間には間隙
16が保たれる。従って、固液分離を行うため吸引ポン
プPを運転し、且つ給気管21にブロワーなどから空気
を給気すると、曝気手段20はアーチ形の表面全体から
空気を噴出し、トンネルを構成している多数本の中空管
状膜の1本宛の全長に気泡を均一に浴びせて振動させ
る。これにより、SSが中空管状膜の膜の表面に付着し
ようとしても振動によって払い落とされ、付着できな
い。こうして、吸引ポンプの吸引作用で処理槽中の液
の、中空管状膜を透過できた透過液を横置き筒体、採水
管13,13を経て長時間、連続的に採水できる。そし
て、SSが中空管状膜の表面に付着しないので中空管状
膜同志が固着するブロック化現象が生じないと共に、1
本宛の中空管状膜は一様に振動するため絡み合いによる
切断も生じない。
In this state, a gap 16 is maintained between the tunnel formed by the plurality of hollow tubular membranes and the arc-shaped surface of the aeration means. Therefore, when the suction pump P is operated to perform solid-liquid separation and air is supplied to the air supply pipe 21 from a blower or the like, the aeration means 20 blows air from the entire arch-shaped surface to form a tunnel. Bubbles are evenly poured over the entire length of one of the multiple hollow tubular membranes and vibrated. As a result, even if SS tries to adhere to the surface of the hollow tubular membrane, it is removed by vibration and cannot adhere. In this way, the permeated liquid of the liquid in the processing tank, which has been able to permeate through the hollow tubular membrane by the suction action of the suction pump, can be continuously sampled for a long time through the horizontal cylinder and the water sampling pipes 13, 13. Further, since SS does not adhere to the surface of the hollow tubular membrane, a blocking phenomenon in which the hollow tubular membranes adhere to each other does not occur, and 1
Since the hollow tubular membrane destined for the book vibrates uniformly, no cut due to entanglement occurs.

【0019】図1,2の実施例では膜モジュールと曝気
手段を処理槽内に上下方向に設置し、図3の実施例では
膜モジュールと曝気手段を処理槽内に横方向に設置した
が、設置する向き、ないし方向は上記に限定されず任意
である。
In the embodiment shown in FIGS. 1 and 2, the membrane module and the aeration means are installed vertically in the processing tank. In the embodiment shown in FIG. 3, the membrane module and the aeration means are installed horizontally in the processing tank. The installation direction or direction is not limited to the above, and is arbitrary.

【0020】[0020]

【発明の効果】以上で明らかなように、本発明によれば
膜モジュールを構成している多数本の中空管状膜の1本
宛の全長に気泡を均一に浴びせて振動させ、中空管状膜
の膜の表面に付着しようとするSSを振動によって払い
落とし、付着を防止する。従って、吸引ポンプの吸引作
用で処理槽中の液の、中空管状膜を透過できた透過液を
長時間、連続的に採水できる。そして、SSが中空管状
膜の表面に付着しないので中空管状膜同志が固着するブ
ロック化現象が生じないと共に、1本宛の中空管状膜は
一様に振動するため、固液分離機能の劣化を来す絡み合
いによる切断も生じない。又、脱着が容易なため、膜の
交換や劣化した膜を系外に取り出しての洗浄が容易にな
る。
As is apparent from the above description, according to the present invention, air bubbles are evenly applied to the entire length of one of the plurality of hollow tubular membranes constituting the membrane module and vibrated to form the hollow tubular membrane. The SS that is to adhere to the surface of the film is wiped off by vibration to prevent the adhesion. Therefore, the permeated liquid of the liquid in the treatment tank, which can permeate through the hollow tubular membrane, can be continuously sampled for a long time by the suction action of the suction pump. Since the SS does not adhere to the surface of the hollow tubular membrane, a blocking phenomenon in which the hollow tubular membranes adhere to each other does not occur, and the hollow tubular membrane of one piece vibrates uniformly. No cutting due to the entanglement that occurs. Further, since the desorption is easy, it is easy to replace the membrane or to take out the deteriorated membrane out of the system and to clean it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)はこの発明の第1実施例の膜モジュール
と、曝気手段の分解斜視図、(B)は上記膜モジュール
と、曝気手段によって構成した浸漬型膜分離装置の断面
図である。
FIG. 1A is an exploded perspective view of a membrane module according to a first embodiment of the present invention and aeration means, and FIG. 1B is a cross-sectional view of the membrane module and an immersion type membrane separation device constituted by the aeration means. is there.

【図2】(A)はこの発明の第2実施例の膜モジュール
と、曝気手段の分解斜視図、(B)は上記膜モジュール
と、曝気手段によって構成した浸漬型膜分離装置の断面
図である。
FIG. 2 (A) is an exploded perspective view of a membrane module according to a second embodiment of the present invention and aeration means, and FIG. 2 (B) is a cross-sectional view of the membrane module and an immersion type membrane separation device constituted by the aeration means. is there.

【図3】(A)はこの発明の第3実施例の膜モジュール
と、曝気手段の斜視図、(B)は上記膜モジュールと、
曝気手段によって構成した浸漬型膜分離装置の断面図で
ある。
FIG. 3A is a perspective view of a membrane module according to a third embodiment of the present invention and aeration means, and FIG.
It is sectional drawing of the immersion type | mold membrane separation apparatus comprised by the aeration means.

【符号の説明】[Explanation of symbols]

1 処理槽 10 膜モジュール 11 膜モジュールの中空管状膜 12 膜モジュールの採水装置 13 採水管 20 曝気手段 21 曝気手段への給気管 DESCRIPTION OF SYMBOLS 1 Processing tank 10 Membrane module 11 Hollow tubular membrane of membrane module 12 Sampling device of membrane module 13 Sampling pipe 20 Aeration means 21 Aeration pipe to aeration means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 3/12 C02F 3/12 S ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 3/12 C02F 3/12 S

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 処理槽の水中に多数本の外圧型中空管状
膜を有する膜モジュールを浸漬し、上記各中空管状膜の
膜を透過した透過液を採水する浸漬型膜分離装置におい
て、上記処理槽の水中に、曝気用給気管に接続して気泡
を水中に噴出する曝気手段を浸漬し、前記膜モジュール
を構成する中空管状膜によって上記曝気手段を囲んだこ
とを特徴とする浸漬型膜分離装置。
1. A immersion type membrane separation apparatus for immersing a membrane module having a large number of external pressure type hollow tubular membranes in water of a treatment tank and collecting a permeate having passed through the membranes of the hollow tubular membranes. An immersion type membrane, characterized by immersing aeration means for discharging air bubbles into water by connecting to an air supply pipe for aeration in water of a treatment tank, and surrounding the aeration means by a hollow tubular membrane constituting the membrane module. Separation device.
JP8350058A 1996-12-27 1996-12-27 Immersion type membrane separator Pending JPH10180048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8350058A JPH10180048A (en) 1996-12-27 1996-12-27 Immersion type membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8350058A JPH10180048A (en) 1996-12-27 1996-12-27 Immersion type membrane separator

Publications (1)

Publication Number Publication Date
JPH10180048A true JPH10180048A (en) 1998-07-07

Family

ID=18407947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8350058A Pending JPH10180048A (en) 1996-12-27 1996-12-27 Immersion type membrane separator

Country Status (1)

Country Link
JP (1) JPH10180048A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022244A1 (en) * 2000-09-13 2002-03-21 Puron Ag Membrane filter for water treatment
US7481933B2 (en) * 2006-04-11 2009-01-27 Siemens Water Technologies Corporation Process to improve the efficiency of a membrane filter activated sludge system
US7510655B2 (en) * 2006-04-11 2009-03-31 Siemens Water Technologies Corp. Process to improve the efficiency of a membrane filter activated sludge system
US7713413B2 (en) * 2006-04-11 2010-05-11 Siemens Water Technologies Corp. Aerated anoxic membrane bioreactor
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296123C (en) * 2000-09-13 2007-01-24 科赫薄膜系统有限公司 Membrane filter for water treatment
WO2002022244A1 (en) * 2000-09-13 2002-03-21 Puron Ag Membrane filter for water treatment
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US7481933B2 (en) * 2006-04-11 2009-01-27 Siemens Water Technologies Corporation Process to improve the efficiency of a membrane filter activated sludge system
US7510655B2 (en) * 2006-04-11 2009-03-31 Siemens Water Technologies Corp. Process to improve the efficiency of a membrane filter activated sludge system
US7713413B2 (en) * 2006-04-11 2010-05-11 Siemens Water Technologies Corp. Aerated anoxic membrane bioreactor
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US10981949B2 (en) 2008-09-02 2021-04-20 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US11884701B2 (en) 2008-09-02 2024-01-30 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US10874990B2 (en) 2011-05-17 2020-12-29 Merck Millipore Ltd. Layered tubular membranes for chromatography, and methods of use thereof
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Similar Documents

Publication Publication Date Title
JPH10180048A (en) Immersion type membrane separator
JP4804599B2 (en) Cleaning method
KR100448963B1 (en) How to keep vertical hollow fiber membrane bundles and fiber surfaces clean
CA2227692E (en) Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
JP5561354B2 (en) Filtration device
JP4292153B2 (en) Ventilation method
JP4447457B2 (en) Filtration equipment, membrane bioreactors, and membrane bioreactor processes
WO2005037414A1 (en) Novel device for submerged ultrafiltration
JPH1066834A (en) Immersion type membrane separation apparatus
JP3608353B2 (en) Membrane module and water treatment apparatus using the same
JPH08243577A (en) Treatment of waste water
KR100626173B1 (en) Hollow fiber membrane module and water treating apparatus using the same
JP3418443B2 (en) Membrane module
AU2004203856C1 (en) Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
JP2592579Y2 (en) Wastewater treatment equipment using water treatment medium
JPH09155166A (en) Immersion type flat membrane separator
JP2646299B2 (en) Filtration and separation equipment
JP3020219U (en) Flat membrane filtration device
KR101860635B1 (en) Membrane module for membrane bioreactor
KR20000040752A (en) Hollow fiber type separation membrane for water treatment
JPH01245894A (en) Filter apparatus for treatment of water
AU2004203855B2 (en) Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
JPH04247287A (en) Hollow fiber filter module
JP2004081931A (en) Membrane separator
JP2004105800A (en) Membrane separation device, membrane-separation activated sludge treatment apparatus, and treatment method