JPH10174292A - Transforming device fitted with the capacitor for improvement of power factor contributing to countermeasure against higher harmonic waves - Google Patents

Transforming device fitted with the capacitor for improvement of power factor contributing to countermeasure against higher harmonic waves

Info

Publication number
JPH10174292A
JPH10174292A JP8326467A JP32646796A JPH10174292A JP H10174292 A JPH10174292 A JP H10174292A JP 8326467 A JP8326467 A JP 8326467A JP 32646796 A JP32646796 A JP 32646796A JP H10174292 A JPH10174292 A JP H10174292A
Authority
JP
Japan
Prior art keywords
power factor
voltage
circuit
command
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8326467A
Other languages
Japanese (ja)
Inventor
Hiroyuki Inoue
寛之 井上
Kenji Yamamoto
健司 山本
Ichiro Kasama
一郎 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP8326467A priority Critical patent/JPH10174292A/en
Publication of JPH10174292A publication Critical patent/JPH10174292A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Abstract

PROBLEM TO BE SOLVED: To perform power factor control at low cost by outputting an opening/closing command for the low-voltage switch of a capacitor unit for improvement of power factor, on the basis of the command of a power factor control circuit and the secondary voltage of a transformer detected with a voltage detecting circuit. SOLUTION: In case the power factor measured by a power factor measuring circuit 4 is, for example, 98% or under in lagging power factor, a power factor control circuit 5 outputs an ON command to a capacitor unit for improvement of power factor. At this point, a voltage detecting circuit 6a detects the secondary voltage of a low-voltage transformer 31. When the secondary voltage is 218V or over, there is no output from the terminal of the voltage detector 6a, and the AND condition of an AND circuit does not materialize, and an ON command is not outputted to the power factor adjusting circuit 61. When the secondary voltage of the low-voltage transformer 31 is 216V or over, it is outputted from the terminal of the voltage detector 6a, and the AND condition of the AND circuit materializes, and a Tb timer outputs it after set time, and 10 seconds later, a T4 timer outputs an ON command. As a result, the low-voltage switch SW1 of the capacitor unit for power factor improvement of the power factor adjusting circuit 61 is turned on to make and connect a phase-advanced capacitor C1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高調波対策に寄与す
る力率改善用コンデンサ付き変電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substation with a power factor improving capacitor which contributes to harmonic countermeasures.

【0002】[0002]

【従来の技術】従来、高圧母線に力率改善用のコンデン
サ設備を設け、受電点における力率を極力1に近づける
ようにコンデンサの入切を制御するようにした装置が広
く用いられている。このような力率改善用コンデンサ付
き装置においては、構内の負荷から流出する高調波を抑
制するために力率改善用コンデンサと直列にリアクトル
を設置する方法が取られており、高調波含有率が高い場
合には直列リアクトルの容量を力率改善用コンデンサの
容量の6%、8%、13%に増量したり、耐量を大きく
する方法が取られている。直列リアクトルを増量しても
対応できない場合は高調波吸収フィルタ(LC共振の受
動型やインバータ応用の能動型)を別途設置して対応す
る方法もあるが、この種のフィルタは高価である。
2. Description of the Related Art Heretofore, there has been widely used a device in which a capacitor facility for improving a power factor is provided on a high-voltage bus and the on / off of the capacitor is controlled so that the power factor at a power receiving point approaches 1 as much as possible. In such a device with a power factor improving capacitor, a method of installing a reactor in series with the power factor improving capacitor to suppress harmonics flowing out of the load on the premises has been adopted. When it is high, a method of increasing the capacity of the series reactor to 6%, 8%, or 13% of the capacity of the power factor improving capacitor or increasing the withstand capacity is adopted. If the increase in the number of series reactors is not sufficient, a method of separately installing a harmonic absorption filter (passive type of LC resonance or active type of inverter application) may be used. However, this type of filter is expensive.

【0003】[0003]

【発明が解決しようとする課題】一方、高調波抑制対策
のガイドラインも出されており、それによれば力率改善
用コンデンサ設備を小容量に細分化して各負荷用変圧器
の低圧側に設置する方法が提案されているが、この方法
はコストアップとなり、構内の変圧器(高圧/低圧)の
デルタ巻線により高圧側では相殺される第3次高調波が
低圧側では顕在化するために通常の6%の直列リアクト
ルでは第3次高調波が増大するという問題があった。ま
たこの方法は力率改善という観点から見ると、各変圧器
の2次側に個別に力率制御装置が必要になり、一括した
力率制御がやりにくいという問題がある。
On the other hand, guidelines for measures to suppress harmonics have also been issued. According to the guidelines, power factor improving capacitor equipment is subdivided into small capacities and installed on the low voltage side of each load transformer. Although a method has been proposed, this method increases the cost, and the third harmonic, which is canceled on the high voltage side by the delta winding of the transformer (high voltage / low voltage) in the premises, appears on the low voltage side, so that it is usually used. The 6% series reactor has a problem that the third harmonic increases. Also, from the viewpoint of power factor improvement, this method requires a separate power factor control device on the secondary side of each transformer, and has a problem that it is difficult to perform power factor control collectively.

【0004】本発明は、電源系統側から流入する高調波
や構内負荷から流出する高調波に対する対策を実施しな
がら簡潔な回路構成で安価に力率制御を行う変電装置を
提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a substation apparatus which performs power factor control at a low cost with a simple circuit configuration while taking measures against harmonics flowing in from a power supply system side and harmonics flowing out of an in-house load. I do.

【0005】[0005]

【課題を解決するための手段】本発明は上記の目的を達
成するために、外部の電源系統から変圧器を介して受電
する変電装置において、各々が低圧スイッチを介した直
列リアクトル付きの進相コンデンサによりなる複数個の
力率改善用コンデンサユニットにより力率調整回路を構
成し、受電点における力率を計測する力率計測回路と、
受電点における力率が所定の遅れ力率以下のときは前記
力率改善用コンデンサユニットの投入指令を出力し、所
定の進み力率以上のときは該力率改善用コンデンサの開
放指令を出力する力率制御回路とを設けるとともに、各
負荷ごとに、負荷に給電される変圧器2次側電圧を検出
する電圧検出回路と、前記力率制御回路からの指令と前
記電圧検出回路により検出された変圧器2次側電圧とに
基づいて前記力率改善用コンデンサユニットの低圧スイ
ッチの開閉指令を出力する開閉指令回路とを設けた。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a substation apparatus which receives power from an external power supply system via a transformer, each of which has a phase advance with a series reactor through a low voltage switch. A power factor adjustment circuit configured by a plurality of power factor improvement capacitor units composed of capacitors, and a power factor measurement circuit that measures a power factor at a power receiving point;
When the power factor at the receiving point is equal to or less than a predetermined delay power factor, a command to turn on the power factor improving capacitor unit is output, and when the power factor is equal to or more than a predetermined leading power factor, a command to open the power factor improving capacitor is output. A power factor control circuit is provided, and for each load, a voltage detection circuit that detects a transformer secondary voltage supplied to the load, a command from the power factor control circuit, and a voltage detected by the voltage detection circuit. An open / close command circuit for outputting a command for opening / closing a low-voltage switch of the power factor improving capacitor unit based on the secondary voltage of the transformer.

【0006】さらに、各負荷ごとに設ける開閉指令回路
は、(a)前記電圧検出回路により検出した変圧器2次
側電圧が所定値以下でかつ前記力率制御回路から投入指
令が出力している間は、力率調整回路を構成する複数の
改善用コンデンサユニットを所定の順序で順次遅らせて
投入していき、前記投入指令の出力が停止したときは力
率改善用コンデンサユニットの投入状態を維持し、
(b)前記電圧検出回路により検出した変圧器2次側の
電圧が前記所定値以上または前記力率制御回路から開放
指令が出力している間は、力率改善用コンデンサユニッ
トを前記変圧器2次側電圧の増加につれてまたは所定の
順序で順次遅らせて開放していき、変圧器2次側電圧が
前記所定値以下に低下するかまたは前記開放指令の出力
が停止したときは力率改善用コンデンサユニットの低圧
スイッチの開放状態をそのまま維持するように構成し
た。
Further, the switching command circuit provided for each load includes: (a) the secondary voltage of the transformer detected by the voltage detection circuit is equal to or lower than a predetermined value, and the power factor control circuit outputs a closing command. In the meantime, a plurality of improvement capacitor units constituting the power factor adjustment circuit are sequentially and sequentially delayed in a predetermined order, and when the output of the injection command is stopped, the on state of the power factor improvement capacitor unit is maintained. And
(B) While the voltage on the secondary side of the transformer detected by the voltage detection circuit is equal to or more than the predetermined value or while the open command is being output from the power factor control circuit, the power factor improving capacitor unit is connected to the transformer 2 When the secondary voltage of the transformer decreases below the predetermined value or when the output of the release command stops, the power factor improving capacitor is opened as the secondary voltage increases or in a predetermined order. The unit is configured to keep the open state of the low-voltage switch as it is.

【0007】[0007]

【発明の実施の形態】以下本発明を図面に基づいて説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0008】図1は本発明による受電装置の回路構成を
示す。図示した例では2個の構内負荷に給電している場
合を示したが、負荷の数はそれ以上であってもよい。
FIG. 1 shows a circuit configuration of a power receiving device according to the present invention. In the illustrated example, power is supplied to two local loads, but the number of loads may be more.

【0009】受電装置は電源系統1から特別高圧(66
kV)で受電し、特高受電変圧器2により6kVに降圧
し、構内の低圧変圧器31、32でさらに105Vまた
は210Vに降圧してそれぞれ構内負荷101、102
に給電している。4は受電点Aにおける電圧および電流
の位相から受電点Aの力率を計測する力率計測回路、5
は力率計測回路4で計測された力率に基づいて受電点A
における力率をできるだけ1に近くなるように各負荷に
設けられた力率調整回路61、62を制御する力率制御
回路であり、構内の負荷全体の力率が遅れ力率98%以
下ならば力率改善用コンデンサの「投入指令」を出力
し、進み力率99%以上ならば力率改善用コンデンサの
「開放指令」を出力するように設定されている。次に負
荷101の力率調整回路61および負荷102の力率調
整回路62について説明するが、両回路の回路構成はま
ったく同じなので負荷101の力率調整回路61につい
てのみ説明する。
[0009] The power receiving device receives an extra high voltage (66
kV), the voltage is reduced to 6 kV by the extra high voltage receiving transformer 2, and further reduced to 105V or 210V by the low voltage transformers 31 and 32 in the premises, and the loads 101 and 102 in the premises, respectively.
Powering. Reference numeral 4 denotes a power factor measurement circuit that measures the power factor at the receiving point A from the voltage and current phases at the receiving point A.
Is the power receiving point A based on the power factor measured by the power factor measurement circuit 4.
Is a power factor control circuit that controls the power factor adjustment circuits 61 and 62 provided for each load so that the power factor in the load is as close to 1 as possible. If the power factor of the entire load in the premises is 98% or less of the delay power factor, It is set so as to output an "injection command" of the power factor improving capacitor, and to output an "opening command" of the power factor improving capacitor if the advance power factor is 99% or more. Next, the power factor adjustment circuit 61 of the load 101 and the power factor adjustment circuit 62 of the load 102 will be described. However, since the circuit configurations of both circuits are exactly the same, only the power factor adjustment circuit 61 of the load 101 will be described.

【0010】いま、構内負荷101が単相105Vまた
は210Vの照明負荷であるとすると、低圧変圧器31
は、図2(a)に示すように、高圧1次側には三相デル
タ巻線、低圧2次側には三相変則スター巻線を採用し、
力率調整回路61は、低圧変圧器31の2次側電圧を検
出する電圧検出器6aと、2次側スター巻線の各端子に
負荷101と並列に接続された3つの力率改善用コンデ
ンサユニット、すなわち(1)低圧スイッチSW1と、
直列リアクトルL1と、進相コンデンサC1とを直列に
接続して成る第1の力率改善用コンデンサユニット、
(2)低圧スイッチSW2と、直列リアクトルL2と、
進相コンデンサC2とを直列に接続して成る第2の力率
改善用コンデンサユニットと、(3)低圧スイッチSW
3と、直列リアクトルL3と、進相コンデンサC3とを
直列に接続して成る第3の力率改善用コンデンサユニッ
トと、力率制御回路5からの指令(「投入指令」または
「開放指令」)と電圧検出回路6aからの出力とに基づ
いて低圧スイッチSW1、SW2、SW3を開閉する開
閉指令回路6bとにより構成されている。
Now, assuming that the premises load 101 is a single-phase 105V or 210V illumination load, the low-voltage transformer 31
Adopts a three-phase delta winding on the high voltage primary side and a three-phase irregular star winding on the low voltage secondary side, as shown in FIG.
The power factor adjusting circuit 61 includes a voltage detector 6a for detecting a secondary voltage of the low-voltage transformer 31, and three power factor improving capacitors connected in parallel with the load 101 to each terminal of the secondary star winding. Unit, that is, (1) low-voltage switch SW1,
A first power factor improving capacitor unit formed by connecting a series reactor L1 and a phase advance capacitor C1 in series;
(2) low-voltage switch SW2, series reactor L2,
A second power factor improving capacitor unit formed by connecting a phase-advancing capacitor C2 in series, and (3) a low-voltage switch SW.
3, a series reactor L3 and a third phase-advancing capacitor C3 connected in series, a third power factor improving capacitor unit, and a command from the power factor control circuit 5 ("make command" or "open command"). And an open / close command circuit 6b for opening / closing the low-voltage switches SW1, SW2, SW3 based on the output from the voltage detection circuit 6a.

【0011】電圧検出器6aは低圧変圧器31の2次側
電圧すなわち負荷への給電電圧を検出し、開閉指令回路
6bの詳細な回路構成を示した図3に示すように、2次
側電圧がたとえば222V以上のときは端子aから、2
20V以上のときは端子bから、218V以上のときは
端子cから、そして216V以下のときは端子dからそ
れぞれ出力するようになっている。また3つの力率調整
回路の直列リアクトルL1、L2、L3の容量はそれぞ
れ13%、8%、6%とし、力率改善用コンデンサC
1、C2、C3の各容量は低圧変圧器31の容量の約1
0%である。低圧変圧器31の容量がたとえば1000
kVAであるとすると、力率改善用コンデンサC1、C
2、C3の各容量は100kVAである。
The voltage detector 6a detects the secondary voltage of the low-voltage transformer 31, that is, the supply voltage to the load, and as shown in FIG. 3 showing a detailed circuit configuration of the switching command circuit 6b, Is 222 V or more, for example,
When the voltage is 20 V or more, the signal is output from the terminal b. When the voltage is 218 V or more, the signal is output from the terminal c. When the voltage is 216 V or less, the signal is output from the terminal d. The capacity of the series reactors L1, L2, and L3 of the three power factor adjusting circuits is 13%, 8%, and 6%, respectively.
Each capacity of C1, C2 is approximately 1 capacity of the capacity of the low voltage transformer 31.
0%. If the capacity of the low-voltage transformer 31 is, for example, 1000
kVA, power factor improving capacitors C1, C
2. Each capacity of C3 is 100 kVA.

【0012】これに対して構内負荷101が一般動力の
場合には、低圧変圧器31は、図2(b)に示すよう
に、高圧1次側にも低圧2次側にも三相デルタ巻線を採
用し、力率調整回路61の力率改善用コンデンサユニッ
トを構成する直列リアクトルL1、L2、L3の容量は
それぞれ8%、6%、6%とする。
On the other hand, when the in-plant load 101 is a general power, the low-voltage transformer 31 has a three-phase delta winding on both the high-voltage primary side and the low-voltage secondary side, as shown in FIG. The capacity of the series reactors L1, L2, and L3 constituting the power factor improving capacitor unit of the power factor adjusting circuit 61 is 8%, 6%, and 6%, respectively.

【0013】図3は開閉指令回路6bの回路構成を示
す。
FIG. 3 shows a circuit configuration of the open / close command circuit 6b.

【0014】この開閉指令回路6bは、力率制御回路5
からの「開放指令」を受けるTaタイマ71と、このT
aタイマ71からの出力を受けると、例えば200秒後
に出力するT1タイマ72と、同じくたとえば100秒
後に出力するT2タイマ73と、同じく10秒後に出力
するT3タイマ74と、力率制御回路5からの[投入指
令]と電圧検出器6aの端子dからの出力との論理積を
とるAND回路81と、AND回路81の出力を受ける
Tbタイマ82と、このTbタイマ82からの出力を受
けると、例えば10秒後に出力するT4タイマ83と、
同じくたとえば100秒後に出力するT5タイマ84
と、同じく200秒後に出力するT6タイマ85と、T
1タイマ72からの出力と電圧検出器6aのa端子から
の出力との論理和をとるOR回路91と、T2タイマ7
3からの出力と電圧検出器6aのb端子からの出力との
論理和をとるOR回路92と、T3タイマ74からの出
力と電圧検出器6aのc端子からの出力との論理和をと
るOR回路93とにより構成されている。なお、本実施
例では、Taタイマ71およびTbタイマ82はいずれ
も信号を受けてから出力するまでの時間を最大100秒
以下(たとえば10秒)に設定されている。さらに、も
うひとつの構内負荷102に対する力率改善用コンデン
サユニット62の開閉指令回路6d(図1参照)に設け
られるTaタイマおよびTbタイマは、上で説明した力
率調整回路61の開閉指令回路6b(図3参照)に設け
られるTaタイマ71およびTbタイマ82の設定時間
よりたとえば10秒長く設定されている。その他の構内
負荷に対しても同様に、力率改善用コンデンサユニット
の開閉指令回路に設けられるTaタイマおよびTbタイ
マの設定時間はそれぞれたとえば10秒の時間差をつけ
て順次長くなるように設定されている。
The open / close command circuit 6b includes a power factor control circuit 5
Timer 71 that receives an “open command” from the
When the output from the timer 71 is received, for example, a T1 timer 72 that outputs 200 seconds later, a T2 timer 73 that also outputs 100 seconds later, a T3 timer 74 that also outputs 10 seconds later, and a power factor control circuit 5 An AND circuit 81 which takes the logical product of the [input command] of the above and the output from the terminal d of the voltage detector 6a, a Tb timer 82 receiving the output of the AND circuit 81, and an output from the Tb timer 82 For example, a T4 timer 83 that outputs after 10 seconds,
Similarly, for example, a T5 timer 84 that outputs after 100 seconds
And a T6 timer 85 that is also output after 200 seconds,
An OR circuit 91 for performing an OR operation on the output from the timer 72 and the output from the terminal a of the voltage detector 6a;
An OR circuit 92 for performing an OR operation on the output from the terminal 3 and the output from the terminal b of the voltage detector 6a, and an OR circuit for performing an OR operation on the output from the T3 timer 74 and the output from the terminal c of the voltage detector 6a And a circuit 93. In the present embodiment, the time from when the signal is received to when the signal is output to both the Ta timer 71 and the Tb timer 82 is set to a maximum of 100 seconds or less (for example, 10 seconds). Further, the Ta timer and the Tb timer provided in the opening / closing command circuit 6d (see FIG. 1) of the power factor improving capacitor unit 62 for the other local load 102 are provided with the opening / closing command circuit 6b of the power factor adjusting circuit 61 described above. The time is set, for example, 10 seconds longer than the set time of the Ta timer 71 and the Tb timer 82 provided in (see FIG. 3). Similarly, the setting times of the Ta timer and the Tb timer provided in the opening / closing command circuit of the power factor improving capacitor unit are set so as to be sequentially increased with a time difference of, for example, 10 seconds for other in-plant loads. I have.

【0015】次に上記受電装置の力率制御と高調波抑制
の動作について説明する。
Next, the operation of the power receiving apparatus for controlling the power factor and suppressing harmonics will be described.

【0016】いま受電装置が電源系統1から特高受電を
受けている場合、力率計測回路4は受電点Aにおける力
率を計測している。
When the power receiving device is receiving extraordinary power from the power supply system 1, the power factor measuring circuit 4 measures the power factor at the power receiving point A.

【0017】まず遅れ力率の場合について説明する。First, the case of a delayed power factor will be described.

【0018】力率計測回路4により計測した力率が遅れ
力率98%以下であるときは、力率制御回路5から力率
改善用コンデンサユニットに「投入指令」が出力され
る。一方、このとき電圧検出器6aにより低圧変圧器3
1の2次側電圧が検出されている。2次側電圧が218
V以上であるときは電圧検出器6aの端子dからの出力
がないので、AND回路81のAND条件が成立せず、
したがって力率調整回路61には投入指令は出力されな
い。ところが低圧変圧器31の2次側電圧が216V以
下であるときは、電圧検出器6aの端子dから出力する
ので、AND回路81のAND条件が成立し、Tbタイ
マ82が設定時間後に出力する。その結果、まず10秒
後にT4タイマ83が「投入指令」を出力するので、力
率調整回路61の第1の力率改善用コンデンサユニット
の低圧スイッチSW1がオンし、進相コンデンサC1が
投入接続される。これでも力率が遅れ力率98%以上に
改善されないときは、その10秒後に次の負荷102に
対する力率調整回路62の変圧器2次側の電圧が216
V以下であれば、第1の力率改善用コンデンサユニット
の低圧スイッチSW1´がオンされ、進相コンデンサC
1´が投入される。その結果、力率が改善されて遅れ力
率98%を上回るようになると、力率制御回路5から
「投入指令」が出力しなくなるのでAND回路81のA
ND条件が不成立となり、Tbタイマ82はリセットさ
れ、この状態で落ち着くことになる。
When the power factor measured by the power factor measuring circuit 4 is equal to or less than 98% of the delayed power factor, the "input command" is output from the power factor control circuit 5 to the power factor improving capacitor unit. On the other hand, at this time, the low voltage transformer 3 is detected by the voltage detector 6a.
1 secondary-side voltage is detected. Secondary voltage is 218
When the voltage is equal to or higher than V, there is no output from the terminal d of the voltage detector 6a, and the AND condition of the AND circuit 81 is not satisfied.
Therefore, no closing command is output to the power factor adjusting circuit 61. However, when the secondary voltage of the low-voltage transformer 31 is 216 V or less, the voltage is output from the terminal d of the voltage detector 6a, so that the AND condition of the AND circuit 81 is satisfied, and the Tb timer 82 outputs after a set time. As a result, first, after 10 seconds, the T4 timer 83 outputs the "input command", so that the low-voltage switch SW1 of the first power factor improving capacitor unit of the power factor adjustment circuit 61 is turned on, and the phase advance capacitor C1 is turned on. Is done. If the power factor still does not improve to 98% or more of the delayed power factor, the voltage on the secondary side of the transformer of the power factor adjustment circuit 62 for the next load 102 is increased to 216 after 10 seconds.
V, the low voltage switch SW1 'of the first power factor improving capacitor unit is turned on, and the phase advance capacitor C
1 'is input. As a result, when the power factor is improved to exceed the delayed power factor of 98%, the "input command" is no longer output from the power factor control circuit 5;
The ND condition is not satisfied, the Tb timer 82 is reset, and the state calms down in this state.

【0019】ところがそれでも力率の改善が見られない
場合は、この変電装置から給電され変圧器2次側電圧が
216V以下である他の負荷に対して設けられている力
率調整回路の第1の力率改善用コンデンサユニットの低
圧スイッチを10秒遅れて順次オンし、進相コンデンサ
を投入していく。電圧条件が投入可能であるすべての負
荷に対してこのような動作を順次行っていき、なお力率
が遅れ力率98%以上にならないときは、今度はTbタ
イマ82の出力後100秒経過したときに最初の負荷1
01の力率調整回路61の開閉指令回路6bのT5タイ
マ84が出力する。その結果、今度は第2の力率改善用
コンデンサユニットの低圧スイッチSW2がオンされ、
進相コンデンサC2が投入される。ここで接続される直
列リアクトルL2(8%)の方が先に接続されている直
列リアクトルL1(13%)よりリアクタンス値は小さ
い。
However, if the power factor is still not improved, the first power factor adjusting circuit of the power factor adjusting circuit provided from the substation and provided to another load having a transformer secondary voltage of 216 V or less is provided. The low-voltage switches of the power factor improving capacitor unit are sequentially turned on with a delay of 10 seconds, and the phase-advancing capacitors are turned on. Such an operation is sequentially performed for all loads to which the voltage condition can be applied, and when the power factor does not become 98% or more of the delay power factor, 100 seconds have elapsed after the output of the Tb timer 82. Sometimes the first load 1
The T5 timer 84 of the open / close command circuit 6b of the power factor adjustment circuit 61 of FIG. As a result, the low-voltage switch SW2 of the second power factor improving capacitor unit is turned on,
The phase advance capacitor C2 is turned on. The series reactor L2 (8%) connected here has a smaller reactance value than the series reactor L1 (13%) connected earlier.

【0020】以下受電点Aにおける力率が遅れ力率98
%以上になるまで同様な動作が繰り返される。なお、上
述の動作により力率は改善されなくても、低圧変圧器3
1の2次側電圧が216V以上になると、電圧検出器6
aの端子dからの出力がなくなるので、AND回路81
のAND条件が成立しなくなり、力率調整回路の動作は
ここで停止する。
Hereafter, the power factor at the receiving point A is delayed by a power factor of 98.
The same operation is repeated until the value reaches% or more. In addition, even if the power factor is not improved by the above operation, the low-voltage transformer 3
When the secondary side voltage of the first signal becomes 216 V or more, the voltage detector 6
Since there is no output from the terminal d of a, the AND circuit 81
Is not satisfied, and the operation of the power factor adjusting circuit stops here.

【0021】次に、進み力率の場合について説明する。Next, the case of the advance power factor will be described.

【0022】力率計測回路4による計測の結果、受電点
Aにおける力率が進み力率99%以上であるときは、力
率制御回路5から力率改善用コンデンサユニットの「開
放指令」が出力される。「開放指令」が出力するとTa
タイマ71が始動し、設定時間後に出力する。その結
果、T1タイマ72、T2タイマ73、T3タイマ74
が同時に始動するが、まず10秒後にT3タイマ74が
出力する。その結果、OR回路93のOR条件が成立す
るので、第1の力率改善用コンデンサユニットの低圧ス
イッチSW3がオフされ、進相コンデンサC3が開放さ
れる。それでも進み力率が99%以下にならないとき
は、その10秒後に次の負荷102に並列に接続されて
いる第1の力率改善用コンデンサユニット進相コンデン
サが開放される。
As a result of the measurement by the power factor measuring circuit 4, when the power factor at the receiving point A is advanced and the power factor is 99% or more, the power factor control circuit 5 outputs an "open command" of the power factor improving capacitor unit. Is done. When "open command" is output, Ta
The timer 71 starts and outputs after a set time. As a result, T1 timer 72, T2 timer 73, T3 timer 74
Are started at the same time, but the T3 timer 74 outputs first after 10 seconds. As a result, the OR condition of the OR circuit 93 is satisfied, so that the low-voltage switch SW3 of the first power factor improving capacitor unit is turned off and the phase advance capacitor C3 is opened. If the leading power factor still does not become 99% or less, the first power factor improving capacitor unit phase leading capacitor connected in parallel to the next load 102 is opened 10 seconds after that.

【0023】こうして他の負荷に対しても順次力率改善
用コンデンアユニットの進相コンデンサとが開放されて
いくが、それでもなお進み力率の改善が見られないとき
は、今度はTaタイマ71の始動後100秒(T2タイ
マ73の設定時間)経過した時点でT2タイマ73が出
力し、OR回路92のOR条件が成立して今度は最初の
負荷101の第2の力率改善用コンデンサユニットの低
圧スイッチSW2がオフされ、進相コンデンサC2が開
放される。この動作は進み力率が99%以下になるまで
他の負荷に対して行われていき、その間に進み力率が改
善されればその状態で落ち着くが、なお改善が見られな
いときは、今度は200秒(T1タイマ72の設定時
間)後にT1タイマ72が出力し、それによりOR回路
91のOR条件が成立し、再び最初の負荷101の第1
の力率改善用コンデンサユニットの低圧スイッチSW1
がオフされて進相コンデンサC1が開放される。
In this way, the phase-advancing capacitor of the power factor improving condenser unit is sequentially opened for other loads. If the progressing power factor is still not improved, the Ta timer 71 is used. 100 seconds (set time of the T2 timer 73) after the start of the T2 timer 73, the T2 timer 73 outputs, the OR condition of the OR circuit 92 is satisfied, and the second power factor improving capacitor unit of the first load 101 is now provided. Is turned off, and the phase advance capacitor C2 is opened. This operation is performed for other loads until the advance power factor becomes 99% or less. During that time, if the advance power factor is improved, the state is settled down. Is output by the T1 timer 72 after 200 seconds (the set time of the T1 timer 72), whereby the OR condition of the OR circuit 91 is satisfied, and the first load 101 again returns to the first state.
Switch SW1 of the power factor improving capacitor unit
Is turned off, and the phase advance capacitor C1 is opened.

【0024】なお、力率制御回路5からの「開放指令」
の有無にかかわらず、低圧変圧器31の2次側電圧の電
圧値すなわち電圧検出器6aの端子a、b、c、dから
の出力状態によってOR回路91、92、93のOR条
件が成立し、電圧値が高くなるにつれて第3、第2、第
1の力率改善用コンデンサユニットの低圧スイッチSW
3、SW2、SW1の順にオフしていくので、負荷の進
み力率による電圧上昇を防止するとともに、これによっ
ても進み力率の改善が図られる。
The "open command" from the power factor control circuit 5
Irrespective of the presence or absence of the condition, the OR condition of the OR circuits 91, 92, and 93 is satisfied according to the voltage value of the secondary voltage of the low-voltage transformer 31, that is, the output state from the terminals a, b, c, and d of the voltage detector 6a. , The low-voltage switch SW of the third, second, and first power factor improving capacitor units as the voltage value increases
3, SW2, and SW1 are turned off in this order, so that a voltage rise due to a leading power factor of the load is prevented, and the leading power factor is also improved.

【0025】以上説明したように、本発明においては、
受電変圧器の2次側に進相コンデンサと直列リアクトル
とを接続して成る力率改善用コンデンサユニットを複数
個並列に接続し、力率改善用コンデンサユニットのリア
クトル容量に差をつけ、遅れ力率改善時にはリアクトル
容量の大きい力率改善用コンデンサユニット順に投入し
ていき、進み力率改善時にはリアクトル容量の小さい力
率改善用コンデンサユニット順に開放していくように力
率調整回路の入開を制御するようにタイマーのシーケン
ス回路を構成したものであるが、以下では、この回路に
おける高調波の抑制効果を考察する。
As described above, in the present invention,
Connect a plurality of power factor improvement capacitor units connected in parallel with a phase-advancing capacitor and a series reactor to the secondary side of the receiving transformer, and make a difference in the reactor capacity of the power factor improvement capacitor unit. When the power factor is improved, the power factor adjustment circuit unit is turned on in order of the reactor capacity, and when the power factor is improved, the power factor adjustment circuit is controlled so that it is opened in order of the reactor capacity, which is smaller. In this case, the effect of suppressing harmonics in this circuit will be considered.

【0026】単相回路で従来特に問題であった第3次高
調波は優先的に投入される13%程度の直列リアクトル
と進相コンデンサとから成る力率改善用コンデンサユニ
ットにより吸収できる。また第5次高調波が大きい場合
でも8%程度の直列リアクトルを含む力率改善用コンデ
ンサユニットによりある程度吸収でき、直列リアクトル
が異常過熱せず、安定的に第5次高調波を吸収できる。
The third harmonic, which has been a particular problem in a single-phase circuit, can be absorbed by a power factor improving capacitor unit comprising a series reactor of about 13% and a phase-advancing capacitor which are preferentially supplied. Even when the fifth harmonic is large, it can be absorbed to some extent by the power factor improving capacitor unit including the series reactor of about 8%, and the fifth harmonic can be stably absorbed without abnormal heating of the series reactor.

【0027】ここで本発明者らは、図4(a)および
(b)に示すような2つのモデルについて構内負荷が発
生する高調波に対する本発明による抑制効果を確認し
た。
Here, the present inventors have confirmed the effect of the present invention on suppressing harmonics generated in the premises for two models as shown in FIGS. 4 (a) and 4 (b).

【0028】特高受電の例として、系統側短絡容量が
2,857MVAの特別高圧66kVを容量10,00
0kVA、インピーダンス7%の変圧器2で6.6kV
に降圧し、さらに容量1,000kVA、インピーダン
ス7%の低圧変圧器2により降圧するが、図4(a)に
示すモデル1は、低圧変圧器2の2次低圧側に、直列リ
アクトルL1と進相コンデンサC1とから成る第1の力
率改善用コンデンサユニットと、直列リアクトルL2と
進相コンデンサC2とから成る第2の力率改善用コンデ
ンサユニットと、直列リアクトルL3と進相コンデンサ
C3とから成る第3の力率改善用コンデンサユニットを
接続するとともに、高調波電流発生源100を接続した
モデルであり、図4(b)に示すモデル2は、直列リア
クトルと進相コンデンサとから成る第1、第2、第3の
力率改善用コンデンサユニットは低圧変圧器31の1次
高圧側に接続し、高調波電流発生源100は2次低圧側
に接続したモデルである。モデル1では、直列リアクト
ルL1の容量は13%、L2の容量は8%、L3の容量
は6%、モデル2では直列リアクトルL1、L2、L3
はすべて6%、コンデンサC1、C2、C3の容量はモ
デル1、2とも低圧変圧器31の容量の10%に当たる
100kVAである。
As an example of the extra-high power reception, an extra-high voltage of 66 kV having a system-side short-circuit capacity of 2,857 MVA and a capacity of 10,000
6.6 kV for transformer 2 with 0 kVA and 7% impedance
In the model 1 shown in FIG. 4A, the series reactor L1 is connected to the secondary low-voltage side of the low-voltage transformer 2 by a low-voltage transformer 2 having a capacity of 1,000 kVA and an impedance of 7%. A first power factor improving capacitor unit including a phase capacitor C1, a second power factor improving capacitor unit including a series reactor L2 and a phase advance capacitor C2, and a series reactor L3 and a phase advance capacitor C3. A model in which a third power factor improving capacitor unit is connected and a harmonic current generation source 100 is connected, and a model 2 shown in FIG. The second and third power factor improving capacitor units are connected to the primary high voltage side of the low voltage transformer 31, and the harmonic current source 100 is connected to the secondary low voltage side. A. In model 1, the capacity of series reactor L1 is 13%, the capacity of L2 is 8%, and the capacity of L3 is 6%. In model 2, series reactors L1, L2, L3
Are 6%, and the capacities of the capacitors C1, C2 and C3 are 100 kVA, which is 10% of the capacity of the low-voltage transformer 31 in both the models 1 and 2.

【0029】次の表1は上記2つのモデルの高調波吸収
率(%)を示す。
Table 1 below shows the harmonic absorption (%) of the above two models.

【0030】[0030]

【表1】 高調波次数 5次 7次 11次 13次 モデル 1 40.0 28.4 24.3 23.7 モデル 2 9.9 5.3 4.1 3.9 表1から、モデル1の方が高調波成分の吸収が大きいこ
とがわかる。
Table 1 Harmonic order 5th 7th 11th 13th order Model 1 40.0 28.4 24.3 23.7 Model 2 9.9 5.3 4.1 3.9 From Table 1, the model 1 It can be seen that the higher the harmonic component absorption.

【0031】表2は、受電点短絡容量が150MVAの
高圧受電の場合で、構内負荷から発生する高調波成分の
系統側への流出抑制効果を比較したものであり、%で示
す。この場合のモデルは、図4(a)および(b)に示
す同じモデルにおいて特高受電変圧器2がないものに相
当する。
Table 2 compares the effect of suppressing the outflow of the harmonic component generated from the in-plant load to the system side in the case of high-voltage power receiving with a receiving-point short-circuit capacity of 150 MVA, and is shown in%. The model in this case corresponds to the same model shown in FIGS. 4A and 4B without the extra high power receiving transformer 2.

【0032】[0032]

【表2】 高調波次数 5次 7次 11次 13次 モデル 1 39.8 28.2 24.1 23.5 モデル 2 9.1 4.8 3.72 3.6 表2から、モデル1のほうが流出抑制効果が大きいこと
がわかる。
Table 2 Harmonic order 5th 7th 11th 13th order Model 1 39.8 28.2 24.1 23.5 Model 2 9.1 4.8 3.72 3.6 From Table 2, the model 1 It can be seen that the outflow suppression effect is greater.

【0033】表3は同じ2つのモデルについて電源系統
側から流入する高調波成分の流入防止効果を比較したも
のであり、電源系統の第n次の電圧Vn のひずみ率を3
%とし、300kVAベースでコンデンサに流入する電
流の割合を%で示したものである)。
Table 3 compares the effect of preventing the inflow of harmonic components flowing from the power supply system side for the same two models, and shows the distortion rate of the n-th voltage Vn of the power supply system as 3
%, And the ratio of the current flowing into the capacitor on a 300 kVA basis is shown in%).

【0034】[0034]

【表3】 高調波次数 5次 7次 11次 13次 モデル 1 0.10 0.05 0.03 0.02 モデル 2 0.27 0.10 0.05 0.04 モデル2/モデル1 2.62 1.96 1.77 1.74 表3から、モデル1の方が電源系統側から力率改善用コ
ンデンサユニットへの高調波成分の流入が少ないことが
わかる。
Table 3 Harmonic order 5th 7th 11th 13th order Model 1 0.10 0.05 0.03 0.02 Model 2 0.27 0.10 0.05 0.04 Model 2 / Model 1 62 1.96 1.77 1.74 From Table 3, it can be seen that Model 1 has less inflow of harmonic components from the power supply system side to the power factor improving capacitor unit.

【0035】上記の実施の形態において、1つの負荷に
対する力率調整回路を構成する複数の力率改善用コンデ
ンサユニットの直列リアクトルの容量が異なることが重
要であり、遅れ力率を改善するときは直列リアクトルの
容量の大きいコンデンサユニットから優先的に投入し、
進み力率を改善するときは直列リアクトルの容量の小さ
いコンデンサユニットの順に優先的に開放するものであ
る。
In the above embodiment, it is important that the plurality of power factor improving capacitor units constituting the power factor adjusting circuit for one load have different series reactor capacities. Preferentially put in the capacitor unit with large capacity of series reactor,
In order to improve the lead power factor, the capacitor units with the smaller capacity of the series reactor are opened preferentially in order.

【0036】また上記実施の形態は、電源系統側から特
高受電する受電装置について説明したが、本発明は特高
受電に限らず、高圧受電の場合にも同様に適用すること
ができるし、自家発電を備えて系統電源との連系運転を
するたとえばコージェネのような受電装置としても実現
できる。
In the above-described embodiment, the power receiving device that receives extra-high power from the power supply system has been described. However, the present invention is not limited to extra-high power receiving, and can be similarly applied to high-voltage power receiving. For example, the present invention can also be realized as a power receiving device such as a cogeneration system that is provided with in-house power generation and performs an interconnected operation with a system power supply.

【0037】[0037]

【発明の効果】本発明によれば、直列リアクトルと進相
コンデンサとで構成した力率改善用コンデンサユニット
のコンデンサ単体容量をその負荷に対する低圧変圧器の
容量の約1/10程度の小容量に分割するので、力率を
遅れ98%から進み99%程度の範囲で精度よく細かく
制御できるようになる。また複数の負荷に対して力率制
御を行うのに1つ力率計測装置を用いればすみ、しかも
その力率計測装置は、複数の負荷に給電する変電装置に
対して受電点1点における力率を計測し、その受電装置
で給電するすべての負荷の力率改善コンデンサユニット
に対して一括して「投入指令」か「開放指令」かを出力
するだけでよいので、回路構成が簡潔になり、コスト上
も有利になるとともに、進み力率による電圧の上昇も防
止することができる。さらに本発明の力率制御方式によ
れば、すべての負荷に対して標準化した制御シーケンス
回路が利用できることになる。
According to the present invention, the unit capacity of the power factor improving capacitor unit composed of the series reactor and the phase advance capacitor is reduced to about 1/10 of the capacity of the low-voltage transformer for the load. Since the power factor is divided, the power factor can be controlled precisely and finely within a range of about 99% from 98% behind. In addition, one power factor measurement device may be used to perform power factor control for a plurality of loads, and the power factor measurement device may apply a power at one power receiving point to a substation that supplies power to a plurality of loads. The circuit configuration can be simplified because it is only necessary to measure the power factor and output the "input command" or "open command" to the power factor improving capacitor units of all the loads supplied by the power receiving device collectively. In addition to being advantageous in terms of cost, it is also possible to prevent an increase in voltage due to the advance power factor. Further, according to the power factor control method of the present invention, a control sequence circuit standardized for all loads can be used.

【0038】上記の効果に加えて、本発明による受電装
置では、単相回路において特に問題となる第3次高調波
は遅れ力率の改善時に優先的に投入される13%という
比較的容量の大きい直列リアクトルと進相コンデンサと
から成る力率改善用コンデンサユニットにより吸収され
る。これは、単相105Vまたは210Vの照明用電源
として構内変圧器の2次巻線に変則スター巻線を使用し
たときに有利である。また第5次高調波が大きい場合で
も8%程度の中容量の直列リアクトルと進相コンデンサ
とから成る力率改善用コンデンサユニットにより吸収さ
れる。力率改善用コンデンサユニットが異常過熱せずに
安定的に第5次高調波を吸収する。
In addition to the above effects, in the power receiving device according to the present invention, the third harmonic which is particularly problematic in the single-phase circuit has a relatively large capacity of 13% which is preferentially supplied when the delay power factor is improved. It is absorbed by a power factor improving capacitor unit consisting of a large series reactor and a phase advance capacitor. This is advantageous when an irregular star winding is used for the secondary winding of the premises transformer as a single phase 105V or 210V lighting power supply. Even when the fifth harmonic is large, it is absorbed by a power factor improving capacitor unit including a series capacitor having a medium capacity of about 8% and a phase advance capacitor. The power factor improving capacitor unit stably absorbs the fifth harmonic without overheating abnormally.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による高調波対策に寄与する力率改善用
コンデンサ付き変電装置の一実施の形態の回路図であ
る。
FIG. 1 is a circuit diagram of an embodiment of a substation with a power factor improving capacitor which contributes to harmonic countermeasures according to the present invention.

【図2】構内の低圧変圧器の結線を示し、(a)は照明
用電源として用いる場合の結線、(b)は一般動力用電
源として用いる場合の結線を示す。
2A and 2B show connections of a low-voltage transformer in a premises, wherein FIG. 2A shows connections when used as a power source for lighting, and FIG. 2B shows connections when used as a power source for general power.

【図3】開閉指令回路の回路構成を示すブロック線図で
ある。
FIG. 3 is a block diagram illustrating a circuit configuration of an opening / closing command circuit.

【図4】本発明による変電装置の高調波抑制効果を確認
する2つのモデルを示し、(a)は力率改善用コンデン
サユニットを低圧変圧器の低圧側に接続したモデル、
(b)は同ユニットを低圧変圧器の高圧側に接続したモ
デルを示す。
FIG. 4 shows two models for confirming the harmonic suppression effect of the substation according to the present invention, wherein (a) shows a model in which a power factor improving capacitor unit is connected to the low voltage side of a low voltage transformer,
(B) shows a model in which this unit is connected to the high voltage side of a low voltage transformer.

【符号の説明】[Explanation of symbols]

1 外部電源系統 2 特高受電変圧器 31、32 構内の低圧変圧器 4 力率計測回路 5 力率制御回路 61、62 力率調整回路 6a、6c 電圧検出回路 6b、6d 開閉指令回路 71、72、73、74、82、83、84、85 タ
イマ 100 高調波電流発生源 101、102 構内負荷
DESCRIPTION OF SYMBOLS 1 External power supply system 2 Extra high voltage receiving transformer 31, 32 Low-voltage transformer in premises 4 Power factor measuring circuit 5 Power factor controlling circuit 61, 62 Power factor adjusting circuit 6a, 6c Voltage detecting circuit 6b, 6d Opening / closing command circuit 71, 72 , 73, 74, 82, 83, 84, 85 Timer 100 Harmonic current source 101, 102 Premise load

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 外部の電源系統から変圧器を介して受電
し、複数の負荷に給電するとともに各負荷ごとに力率調
整回路を有する変電装置において、 前記力率調整回路は、各々が直列リアクトルと進相コン
デンサとを直列に接続してなる複数の力率改善用コンデ
ンサユニットからなり、各力率改善用コンデンサユニッ
トは低圧スイッチを介して構内配電設備の変圧器2次側
に設置され、 受電点における力率を計測する力率計測回路と、 受電点における力率が所定の遅れ力率以下のときは前記
力率改善用コンデンサユニットの投入指令を出力し、所
定の進み力率以上のときは該力率改善用コンデンサの解
放指令を出力する力率制御回路と、を設け、 各負荷ごとに、負荷に給電される前記変圧器2次側の電
圧を検出する電圧検出回路と、前記力率制御回路からの
指令と前記電圧検出回路により検出された前記変圧器2
次側電圧とに基づいて前記低圧スイッチの開閉指令を出
力する開閉指令回路とを設けたことを特徴とする力率改
善用コンデンサ付き変電装置。
1. A substation apparatus that receives power from an external power supply system via a transformer, supplies power to a plurality of loads, and has a power factor adjustment circuit for each load, wherein each of the power factor adjustment circuits includes a series reactor. And a phase-advancing capacitor connected in series, comprising multiple power factor improving capacitor units. Each power factor improving capacitor unit is installed on the transformer secondary side of the on-premise power distribution equipment via a low-voltage switch. A power factor measuring circuit for measuring the power factor at the point, and when the power factor at the power receiving point is equal to or less than a predetermined delay power factor, outputs a command to turn on the power factor improving capacitor unit, and when the power factor is equal to or greater than a predetermined lead power factor A power factor control circuit that outputs a release command of the power factor improving capacitor, a voltage detection circuit that detects a voltage of the transformer secondary supplied to the load for each load, rate The detected by the command and the voltage detection circuit from the control circuit transformer 2
And a switching command circuit for outputting a switching command for the low-voltage switch based on the secondary voltage.
【請求項2】 前記力率調整回路を構成する複数の力率
改善用コンデンサユニットの直列リアクトルの容量を異
なる値とした請求項1に記載の力率改善用コンデンサ付
き変電装置。
2. The power transformer with a power factor improving capacitor according to claim 1, wherein the series reactors of the plurality of power factor improving capacitor units constituting the power factor adjusting circuit have different values.
【請求項3】前記力率調整回路を構成する複数の力率改
善用コンデンサユニットの直列リアクトルの容量を進相
コンデンサの容量の数%から10数%とした請求項1に
記載の力率改善用コンデンサ付き変電装置。
3. The power factor improving device according to claim 1, wherein the capacity of the series reactor of the plurality of power factor improving capacitor units constituting the power factor adjusting circuit is set to several to ten and several ten percent of the capacity of the phase-advancing capacitor. Substation with condenser for
【請求項4】前記力率調整回路を構成する複数の力率改
善用コンデンサユニットの進相コンデンサの単体容量が
前記構内配電設備の変圧器の容量の約1/10である請
求項1に記載の力率改善用コンデンサ付き変電装置。
4. The power factor adjusting circuit according to claim 1, wherein the single phase capacitor of the plurality of power factor improving capacitor units constituting the power factor adjusting circuit is about 1/10 of the capacity of the transformer of the on-premise distribution equipment. Substation with a power factor improving capacitor.
【請求項5】各負荷ごとに設けられた前記開閉指令回路
は、(a)前記電圧検出回路により検出した負荷への給
電電圧が所定値以下でかつ前記力率制御回路から投入指
令が出力している間は、前記力率調整回路を構成する複
数の力率改善用コンデンサユニットを所定の順序で順次
遅らせて投入していき、前記投入指令の出力が停止した
ときは力率改善用コンデンサユニットの投入状態を維持
し、(b)前記電圧検出回路により検出した負荷への給
電電圧が前記所定値以上または前記力率制御回路から開
放指令が出力している間は、力率改善用コンデンサユニ
ットを前記変圧器2次側電圧の増加につれてまたは所定
の順序で順次遅らせて開放していき、前記変圧器2じ側
電圧が前記所定値以下に低下するかまたは前記開放指令
の出力が停止したときは力率改善用コンデンサユニット
の開放状態をそのまま維持するように構成した請求項1
ないし5に記載の力率改善用コンデンサ付き変電装置。
5. The switching command circuit provided for each load, wherein: (a) a supply command to the load detected by the voltage detection circuit is equal to or less than a predetermined value and a power-on command is output from the power factor control circuit; During the power factor adjustment circuit, a plurality of power factor improving capacitor units constituting the power factor adjusting circuit are sequentially turned on in a predetermined order, and when the output of the turn-on command is stopped, the power factor improving capacitor unit is turned off. And (b) a power factor improving capacitor unit while the supply voltage to the load detected by the voltage detection circuit is equal to or greater than the predetermined value or while the power factor control circuit outputs an open command. As the transformer secondary-side voltage increases or sequentially delayed in a predetermined order to release the voltage, and the transformer 2-side voltage drops below the predetermined value or the output of the release command is stopped. Can the claim 1 configured to maintain the open state of the capacitor unit power factor correction
6. The substation with a power factor improving capacitor according to any one of items 5 to 5.
【請求項6】複数の負荷の各々に設けられた開閉指令回
路は、前記力率制御回路からの投入指令または開放指令
を受けて力率調整回路の力率改善用コンデンサユニット
を最初に投入または開放するまでの時間が負荷ごとに順
次遅れるように設定されている請求項1ないし5に記載
の力率改善用コンデンサ付き変電装置。
6. An opening / closing command circuit provided for each of a plurality of loads, receives a closing command or an opening command from the power factor control circuit, and first turns on or off a power factor improving capacitor unit of the power factor adjusting circuit. 6. The substation with a power factor improving capacitor according to claim 1, wherein a time until opening is set to be sequentially delayed for each load.
【請求項7】力率改善用コンデンサユニットに接続され
た低圧スイッチの開閉の時間間隔をタイマにより設定す
る請求項5または6に記載の力率改善用コンデンサ付き
変電装置。
7. The substation with a power factor improving capacitor according to claim 5, wherein a time interval for opening and closing the low voltage switch connected to the power factor improving capacitor unit is set by a timer.
JP8326467A 1996-12-06 1996-12-06 Transforming device fitted with the capacitor for improvement of power factor contributing to countermeasure against higher harmonic waves Withdrawn JPH10174292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8326467A JPH10174292A (en) 1996-12-06 1996-12-06 Transforming device fitted with the capacitor for improvement of power factor contributing to countermeasure against higher harmonic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8326467A JPH10174292A (en) 1996-12-06 1996-12-06 Transforming device fitted with the capacitor for improvement of power factor contributing to countermeasure against higher harmonic waves

Publications (1)

Publication Number Publication Date
JPH10174292A true JPH10174292A (en) 1998-06-26

Family

ID=18188141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8326467A Withdrawn JPH10174292A (en) 1996-12-06 1996-12-06 Transforming device fitted with the capacitor for improvement of power factor contributing to countermeasure against higher harmonic waves

Country Status (1)

Country Link
JP (1) JPH10174292A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082095A1 (en) * 2003-03-10 2004-09-23 Kinoshita, Masaaki Power receiving facility power factor adjusting system
JP2009089510A (en) * 2007-09-28 2009-04-23 Nichicon Corp Ac filter and method of controlling the same
CN103208806A (en) * 2013-04-11 2013-07-17 中国振华电子集团百智科技有限公司 High-voltage permanent magnet zero passage switch control device
CN103296687A (en) * 2013-06-08 2013-09-11 田安振 High-efficiency intelligent duplicate voltage compensation power saver
CN103326372A (en) * 2013-05-21 2013-09-25 国家电网公司 Low-voltage capacitor intelligent synchronous zero passage switch and method for controlling capacitor bank switching
CN104466962A (en) * 2014-11-05 2015-03-25 西安百溪电子信息技术有限公司 Intelligent harmonic elimination device
CN104917192A (en) * 2015-06-15 2015-09-16 广西大学 Intelligent power-saving compensation controller
KR101598474B1 (en) * 2015-05-22 2016-03-02 (주)에스엔 Power factor multi-controling of switching board
KR101598475B1 (en) * 2015-05-22 2016-03-02 (주)에스엔 Multi-power factor controller

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082095A1 (en) * 2003-03-10 2004-09-23 Kinoshita, Masaaki Power receiving facility power factor adjusting system
JP2009089510A (en) * 2007-09-28 2009-04-23 Nichicon Corp Ac filter and method of controlling the same
CN103208806A (en) * 2013-04-11 2013-07-17 中国振华电子集团百智科技有限公司 High-voltage permanent magnet zero passage switch control device
CN103326372A (en) * 2013-05-21 2013-09-25 国家电网公司 Low-voltage capacitor intelligent synchronous zero passage switch and method for controlling capacitor bank switching
CN103296687A (en) * 2013-06-08 2013-09-11 田安振 High-efficiency intelligent duplicate voltage compensation power saver
CN104466962A (en) * 2014-11-05 2015-03-25 西安百溪电子信息技术有限公司 Intelligent harmonic elimination device
KR101598474B1 (en) * 2015-05-22 2016-03-02 (주)에스엔 Power factor multi-controling of switching board
KR101598475B1 (en) * 2015-05-22 2016-03-02 (주)에스엔 Multi-power factor controller
WO2016190492A1 (en) * 2015-05-22 2016-12-01 (주)에스엔 Multi-power factor controller
US20170149245A1 (en) * 2015-05-22 2017-05-25 Sn Co., Ltd. Multi-power factor controller
US10027117B2 (en) * 2015-05-22 2018-07-17 Sn Co., Ltd. Multi-power factor controller
CN104917192A (en) * 2015-06-15 2015-09-16 广西大学 Intelligent power-saving compensation controller

Similar Documents

Publication Publication Date Title
Nuutinen et al. Short-circuit protection in a converter-fed low-voltage distribution network
US20190157982A1 (en) Device and method for premagnetization of a power transformer in a converter system
CA2687696C (en) Dynamic voltage sag correction
CA2235776C (en) An ac-dc power supply
EP1454407B1 (en) VOLTAGE SAG AND OVER−VOLTAGE COMPENSATION DEVICE WITH PULSE−WIDTH MODULATED TRANSFORMER
US20060164782A1 (en) Control system, method and product for uninterruptible power supply
JPS63253833A (en) Non-interrupted electric source
JPH0866039A (en) Module type electric power feeder
JP2997782B1 (en) Power supply equipment by quality
JPH10174292A (en) Transforming device fitted with the capacitor for improvement of power factor contributing to countermeasure against higher harmonic waves
US11527910B2 (en) Uninterruptible power supply
JP3523017B2 (en) Power supply
Patil et al. Hysteresis voltage control technique in Dynamic Voltage Restorer for power quality improvement
KR20160053563A (en) Three-Phase Line-Interactive Uninterruptible Power Supply System
JPH0832132B2 (en) Instantaneous voltage drop compensator
JP2909820B2 (en) Load starting method using AC uninterruptible power supply
JP2001005541A (en) Automatic voltage adjusting device
AU2018281528A1 (en) Power supply system and control device
JPH0865917A (en) Uninterruptible power supply
US11936238B2 (en) Uninterruptible power apparatus and magnetic flux compensation method thereof
JP2003070165A (en) Power supply
JP2003513603A (en) Static regulator
JPH09191577A (en) Self-excited reactive power compensation device
JP4782651B2 (en) Method and apparatus for controlling power conversion device connected to power distribution system
GB2290636A (en) Line conditioner for the reduction or elimination of disturbances

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040302