JPH10160951A - Optical multiplexing and demultiplexing circuit - Google Patents

Optical multiplexing and demultiplexing circuit

Info

Publication number
JPH10160951A
JPH10160951A JP32243996A JP32243996A JPH10160951A JP H10160951 A JPH10160951 A JP H10160951A JP 32243996 A JP32243996 A JP 32243996A JP 32243996 A JP32243996 A JP 32243996A JP H10160951 A JPH10160951 A JP H10160951A
Authority
JP
Japan
Prior art keywords
waveguide
optical
input
mmi
demultiplexing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32243996A
Other languages
Japanese (ja)
Inventor
Osamu Mitomi
修 三冨
Hiroshi Miyazawa
弘 宮沢
Kazuto Noguchi
一人 野口
Yasuo Shibata
泰夫 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32243996A priority Critical patent/JPH10160951A/en
Publication of JPH10160951A publication Critical patent/JPH10160951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized optical multiplexing and damutiplexing circuit which multiplexes or demultiplexes a light wave propagated in a light guide with low loss. SOLUTION: The optical multiplexing and demultiplexing circuit is composed of at least light input/output parts 13 and 14 or a multi-mode interference waveguide(MMI) 15 with a light output part so that the intervals d1 and d3 from the input/output waveguide 16 which is arranged as the outermost one to the edge along the same direction with the waveguide direction of the multi- mode interference waveguide are made narrower than the interval d2 of the light input/output waveguide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光導波路を伝わる
光波を低損失で合波あるいは分波する小形の光合分波回
路の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a small optical multiplexing / demultiplexing circuit for multiplexing or demultiplexing lightwaves transmitted through an optical waveguide with low loss.

【0002】[0002]

【従来の技術】光スイッチ、あるいは複数の半導体レー
ザダイオード(LD)からの光波を一本あるいは複数の
導波路や光ファイバに光結合をとるために、光合分波回
路が用いられる。この光合分波回路として、方向性結合
器や、あるいはX形合分波器、強結合形方向性結合器等
がこれまで多く使用されてきた。これらの光合分波回路
は、動作原理として光導波路の基本モード(対称モー
ド)と一次モード(反対称モード)との干渉効果を用い
ている。このために、デバイス特性に対するデバイス構
造・材質・寸法の依存性が大きく、必要とされるこれら
の製作トレランスが極めて厳しいことから、製品の製作
歩留りが悪い等の大きな問題を抱えていた。
2. Description of the Related Art An optical multiplexing / demultiplexing circuit is used to optically couple light waves from an optical switch or a plurality of semiconductor laser diodes (LDs) to one or more waveguides or optical fibers. As the optical multiplexing / demultiplexing circuit, a directional coupler, an X-type multiplexing / demultiplexing device, a strong coupling directional coupler, and the like have been often used. These optical multiplexing / demultiplexing circuits use an interference effect between a fundamental mode (symmetric mode) and a first-order mode (antisymmetric mode) of the optical waveguide as an operation principle. For this reason, the device structure, material, and dimensions greatly depend on the device characteristics, and the required manufacturing tolerances thereof are extremely strict. Therefore, there have been serious problems such as a low product manufacturing yield.

【0003】これに対して、光合分波回路の一つとし
て、さらに高次モードが伝搬可能な多モード導波路を用
い、導波路内の各モード間の干渉を利用して光波の合分
波機能を持たせた多モード干渉導波路(以下では「MM
I」(:Multi-Mode Interferometer)と記す。)がある。
このMMI光合分波回路は、その低損失性や製作の容易
性等の特長を有することから、最近広く用いられるよう
になった。
On the other hand, as one of the optical multiplexing / demultiplexing circuits, a multi-mode waveguide through which higher-order modes can propagate is used, and the multiplexing / demultiplexing of light waves is performed by utilizing interference between modes in the waveguide. Multimode interference waveguides with functions (hereinafter referred to as “MM
I "(: Multi-Mode Interferometer). ).
The MMI optical multiplexing / demultiplexing circuit has recently been widely used because of its features such as low loss and ease of manufacture.

【0004】従来の半導体を用いたMMIの基本構成例
を図10及び11に示す。この従来技術の場合では、2
×2の合分波回路を示しており、図10は斜視図、図1
1はその上面図である。これらの図面中、符号01は半
導体基板、02は導波路コア層、07はクラッド層、0
3は入力導波路、04は出力導波路05はMMI領域及
び06は入出力導波路を各々図示する。本構成の場合、
導波路はリッジ構造をとっているが、この他に導波路側
面図を保護するために、誘電体膜を覆うように構成す
る、あるいはエピタキシャル成長法によって半導体層
(クラッド層)を導波路側面い埋め込むように構成して
いる。ここで、MMIの入出力導波路03,04は、M
MI領域05にハイブリッド集積、もしくは少なくとも
半導体基板01を共用したモノリシック集積されて接続
される光スイッチ等の機能デバイス部導波路の導波光と
同じ大きさのスポットサイズを与える構造をとる。例え
ば、波長1.55μm帯の半導体MMIの場合、通常、
半導体基板01とクラッド層07にはInPが、コア層
02にはInGaAsPあるいはモノリシック集積され
る半導体機能デバイス部の導波路材料・構造が用いられ
る。
FIGS. 10 and 11 show examples of the basic configuration of an MMI using a conventional semiconductor. In the case of this prior art, 2
FIG. 10 shows a perspective view and FIG.
1 is a top view thereof. In these drawings, reference numeral 01 denotes a semiconductor substrate, 02 denotes a waveguide core layer, 07 denotes a cladding layer, and 0 denotes a cladding layer.
3 is an input waveguide, 04 is an output waveguide 05 is an MMI area, and 06 is an input / output waveguide. In this configuration,
The waveguide has a ridge structure. In addition to this, in order to protect the waveguide side view, the waveguide is configured to cover a dielectric film, or a semiconductor layer (cladding layer) is buried in the waveguide side by an epitaxial growth method. It is configured as follows. Here, the input / output waveguides 03 and 04 of the MMI are
A structure is adopted in which a spot size of the same size as the guided light of the functional device waveguide such as an optical switch connected to the MI region 05 by hybrid integration or at least monolithically integrated with the semiconductor substrate 01 is used. For example, in the case of a semiconductor MMI having a wavelength band of 1.55 μm,
For the semiconductor substrate 01 and the cladding layer 07, InP is used, and for the core layer 02, InGaAsP or a waveguide material / structure of a semiconductor functional device portion to be monolithically integrated is used.

【0005】上記半導体機能デバイス部導波光のスポッ
トサイズ(半径)は、通常、0.1μm〜2μm程度に
なるために、入力導波路幅(wi (=w0 ))=0.5
〜3μm、MMI幅(wg )=5〜20μm,コア厚
(tg )=0.1〜1μm程度の大きさが選ばれる。M
MIの損失・クロストークを低減し、また、MMI領域
05の導波路長Lを短くするために、図10及び11に
示す2×2構成の場合、入出力導波路06の各位置は、
1 =d2 =d3 =wg /3の関係で設定されていた。
[0005] The semiconductor feature spot size of the device portion guided light (radius) is generally to be about 0.1-2 .mu.m, input waveguide width (w i (= w 0) ) = 0.5
33 μm, MMI width (w g ) = 5-20 μm, and core thickness (t g ) = 0.1-1 μm. M
In order to reduce the loss and crosstalk of MI and to shorten the waveguide length L of the MMI region 05, in the case of the 2 × 2 configuration shown in FIGS.
It was set in the relationship of d 1 = d 2 = d 3 = w g / 3.

【0006】このようなMMIを用いた合分波回路は、
方向性結合器を用いた合分波回路と比較して、デバイス
製作時において、導波路の寸法や屈折率の偏差による特
性バラツキが小さく、特にクロストークの劣化が小さい
ことが明らかになり、近年多くの半導体デバイスに使用
されるようになった。このような特長を持つMMI光合
分波回路が、LiNbO3 やLiTaO3 あるいはガラ
スや有機材料等の誘電体を用いた光デバイスにも適用さ
れることが期待される。
A multiplexing / demultiplexing circuit using such an MMI is as follows.
Compared to a multiplexing / demultiplexing circuit using a directional coupler, it has been clarified that characteristic variations due to deviations of waveguide dimensions and refractive indexes are small and especially deterioration of crosstalk is small during device manufacturing. It is used in many semiconductor devices. The MMI optical multiplexing / demultiplexing circuit having such features is expected to be applied to an optical device using a dielectric such as LiNbO 3 or LiTaO 3 or glass or an organic material.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これら
の非半導体系材料の光導波路は、そのコアとクラッドと
の屈折率Δnが1%程度以下になるために、その導波光
スポットサイズが半導体(:Δn=数%以上)のスポッ
トサイズの数倍の大きさになる。このことから、MMI
の低損失性、低クロストーク性の制約から、MMI導波
路幅wg も大きくする必要が生ずる。
However, since the refractive index Δn between the core and the clad of these non-semiconductor-based optical waveguides is about 1% or less, the size of the guided light spot of the semiconductor (: Δn = several% or more), which is several times the spot size. From this, MMI
Due to the low loss and low crosstalk characteristics described above, the MMI waveguide width w g also needs to be increased.

【0008】しかしながら、最適なMMIデバイス長L
は、原理的にコア幅wg に対して、下記式(1)に示す
ような関係があるので、コア幅wg を大きくするにした
がって、Lが著しく長くなり、MMI光合分波回路が大
形になるという、問題がある。
However, the optimum MMI device length L
Has a relationship as shown in the following equation (1) with respect to the core width w g in principle. Therefore, as the core width w g is increased, L becomes significantly longer, and the MMI optical multiplexing / demultiplexing circuit becomes large. There is a problem that it takes shape.

【数1】 L〜C・wg 2 (C:定数) ・・・(1)## EQU1 ## L to C.w g 2 (C: constant) (1)

【0009】同様に、入出力導波路の分岐数がM×Nの
従来の光合分波回路では、デバイス製作時の導波路加工
あるいはクロストーク等の特性の制約から、入出力導波
路幅wi ,w0 ,導波路間隔dを無制限に小さくは出来
ない。したがって、分岐数M,Nが多くなるほど、MM
I導波路幅wg を大きくする必要が生じ、これに伴っ
て、デバイス長Lも長くなるという、問題がある。
Similarly, in the conventional optical multiplexing / demultiplexing circuit in which the number of branches of the input / output waveguide is M × N, the input / output waveguide width w i is limited due to the limitations on characteristics such as waveguide processing or crosstalk during device fabrication. , W 0 , and the waveguide distance d cannot be reduced without limit. Therefore, as the number of branches M and N increases, MM
There is a problem that it is necessary to increase the I waveguide width w g , and accordingly, the device length L also increases.

【0010】また、従来の半導体MMIデバイスにおい
ても、入出力導波路における導波路間隔とMMI導波路
間隔との関係が、d1 =d2 =d3 =wg /3の関係で
設定されるために、接続若しくはモノリシック集積され
る機能デバイス構造との関わりにおいて、設計自由度が
制約されデバイス全体の最適構造設計に支障を来すとい
う問題がある。本発明は、小形で構成できる低損失な光
合分波回路を提供することを課題とする。
Further, also in the conventional semiconductor MMI device, the relationship between the waveguide spacing in the input / output waveguide and the MMI waveguide spacing is set by the relationship d 1 = d 2 = d 3 = w g / 3. Therefore, there is a problem that the degree of freedom in design is restricted in relation to the structure of the functional device which is connected or monolithically integrated, which hinders the optimal structure design of the entire device. An object of the present invention is to provide a low-loss optical multiplexing / demultiplexing circuit that can be configured in a small size.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する本発
明にかかる光合分波回路は、少なくとも単数若しくは複
数の光入力部もしくは光出力部を有する多モード干渉導
波路で構成された光合分波回路において、最も外側に配
置された光入出力導波路から、該多モード干渉導波路の
導波方向と同方向に沿った縁までの間隔を、該光入出力
導波路の間隔より狭く構成したことを特徴とする。
An optical multiplexing / demultiplexing circuit according to the present invention for solving the above-mentioned problems comprises an optical multiplexing / demultiplexing circuit constituted by a multimode interference waveguide having at least one or a plurality of optical input sections or optical output sections. In the circuit, the interval from the outermost optical input / output waveguide to the edge along the same direction as the waveguide direction of the multimode interference waveguide is configured to be smaller than the interval between the optical input / output waveguides. It is characterized by the following.

【0012】上記光合分波回路において、上記最も外側
に配置された光入出力導波路の縁を、上記多モード干渉
導波路の縁とほぼ一致させて構成したことを特徴とす
る。
In the above-mentioned optical multiplexing / demultiplexing circuit, the edge of the optical input / output waveguide disposed at the outermost position is substantially matched with the edge of the multimode interference waveguide.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態の原理・効果を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the principle and effects of an embodiment of the present invention will be described in detail with reference to the drawings.

【0014】[実施の形態1]本発明にかかる第1の実
施の形態を図1及び図2を参照して説明する。図1及び
図2は、基板として強誘導体材料であるLiNbO
3 (以下「LN」と記す。)を用いた場合、本発明によ
る2×2光合分波回路の一実施の形態である。 図1は
MMI部の斜視図、図2(a)はその上面図、図2
(b)は図1のII-II 線断面図を示す。これらの図面
中、符号11はLN基板であり光導波路のクラッド部、
12はチタン(Ti)あるいはプロトン等の不純物拡散
により形成したコア層、13は入力導波路、14は出力
導波路15はMMI領域(実効的コア領域)及び16は
入出力導波路を各々図示する。
[First Embodiment] A first embodiment according to the present invention will be described with reference to FIGS. FIGS. 1 and 2 show that LiNbO as a substrate is a strong derivative material.
3 (hereinafter referred to as “LN”) is an embodiment of a 2 × 2 optical multiplexing / demultiplexing circuit according to the present invention. FIG. 1 is a perspective view of the MMI unit, FIG.
(B) is a sectional view taken along the line II-II in FIG. In these drawings, reference numeral 11 denotes an LN substrate, which is a clad portion of an optical waveguide,
Reference numeral 12 denotes a core layer formed by diffusion of an impurity such as titanium (Ti) or proton, 13 denotes an input waveguide, 14 denotes an output waveguide, 15 denotes an MMI region (effective core region), and 16 denotes an input / output waveguide. .

【0015】本実施の形態では、この場合、入出力導波
路16の構造は、基本的には従来のLN基板を用いた光
デバイスと同じ構造をとる。例えば、入力あるいは出力
導波路にモノリシック集積あるいはハイブリッド集積に
よって接続される光機能処理デバイス部(例えばEO効
果を利用した変調電極が配置された屈折率変調部、ある
いは第2次高調波発生等の非線形効果を利用した光波長
制御部等)や、接続される光ファイバ等の導波光と同程
度の大きさのスポットサイズを与える構造をとり、入力
側の導波路16幅(wi ),出力側の導波路16幅(w
0 )、コア12厚(tg )(不純物の拡散長)の寸法な
らびにそれら不純物の拡散濃度が設定される。
In this embodiment, in this case, the structure of the input / output waveguide 16 basically has the same structure as an optical device using a conventional LN substrate. For example, an optical function processing device unit connected to an input or output waveguide by monolithic integration or hybrid integration (for example, a refractive index modulation unit in which a modulation electrode using the EO effect is arranged, or a nonlinear function such as second harmonic generation) effect light wavelength controller, etc.) and using, takes a structure that gives it connected thereto size spot size of guided light as much, such as an optical fiber, the input side of the waveguide 16 width (w i), the output side Waveguide 16 width (w
0 ), the size of the core 12 thickness (t g ) (diffusion length of impurities) and the diffusion concentration of those impurities are set.

【0016】ここで、図2(a)に示すように、入出力
導波路間隔d2 (ここで、各d2 は導波路16,16の
軸芯間の距離をいう。)は接続される光機能処理部等の
構造を勘案して設定され、本実施の形態では、実効的コ
ア幅(wg )= d1 +d2+d3 の関係を有してい
る。ここで、d1 及びd3 は最も外側に配置された光入
出力導波路から、該多モード干渉導波路の導波方向と同
方向に沿った縁までの間隔をいう。 よって、本実施の
形態では、入出力導波路16軸芯からMMI領域15の
縁部までの寸法d1 ,d3 は、それぞれd1 ,d3 <d
2 なる関係で設定される。なお、d1 とd3 とは同じ大
きさでも異なった大きさでもいずれでもよい。
Here, as shown in FIG. 2A, an input / output waveguide interval d 2 (here, each d 2 is a distance between the axes of the waveguides 16, 16) is connected. This is set in consideration of the structure of the optical function processing unit and the like. In the present embodiment, the effective core width (w g ) = d 1 + d 2 + d 3 . Here, d 1 and d 3 refers to the distance from the most arranged optical input and output waveguides on the outside, to the edge along the waveguide in the same direction as the direction of the multi-mode interference waveguide. Therefore, in the present embodiment, the dimensions d 1 and d 3 from the axis of the input / output waveguide 16 to the edge of the MMI region 15 are d 1 and d 3 <d, respectively.
It is set by the relationship of 2 . Note that d 1 and d 3 may have the same size or different sizes.

【0017】[実施の形態2]図3は他の実施の形態を
示す。図3は、図1及び図2の実施の形態において、入
出力導波路16の外側の縁とMMI領域15の縁部とを
ほぼ一致させた構造をとるものであり、d4 =〜0(d
1 =d3 =〜wi /2)の関係で設定した光合分波回路
の一例を示す。すなわち、本実施の形態では、実効的コ
ア幅(wg )= d2 +d4 +d4 の関係を有してい
る。
[Second Embodiment] FIG. 3 shows another embodiment. FIG. 3 shows a structure in which the outer edge of the input / output waveguide 16 substantially coincides with the edge of the MMI region 15 in the embodiment of FIGS. 1 and 2, and d 4 == 0 ( d
1 = d 3 = showing an example of an optical multiplexing and demultiplexing circuit set in relation ~w i / 2). That is, in the present embodiment, there is a relationship of effective core width (w g ) = d 2 + d 4 + d 4 .

【0018】[本実施の形態の原理・効果]図4乃至図
7は、第1及び第2の実施の形態の原理・効果を説明す
るための図であり、1.55μm帯2×2MMI光合分
波回路について、固有モード展開法を用いた計算結果を
示す。ここででは、図1及び図2及び図3の実施の形態
において、通常の熱拡散法によりLN基板にTiを拡散
して形成した光導波路で構成した場合を解析している。
計算を簡単化するために、拡散導波路をコア層・クラッ
ド部がそれぞれ一様な大きさの屈折率を持つものとし
て、等価屈折率法によるスラブ導波路モデル解析を行っ
ている。入出力導波路幅は、wi =6μmを例として計
算した。
[Principle and Effect of the Embodiment] FIGS. 4 to 7 are diagrams for explaining the principle and effect of the first and second embodiments, and show a 1.55 μm band 2 × 2 MMI optical system. The calculation results using the eigenmode expansion method for the demultiplexer are shown. Here, in the embodiment of FIG. 1, FIG. 2, and FIG. 3, the case where the optical waveguide is formed by diffusing Ti into the LN substrate by the ordinary thermal diffusion method is analyzed.
In order to simplify the calculation, the slab waveguide model analysis by the equivalent refractive index method is performed, assuming that the core layer and the cladding part have a uniform refractive index for the diffusion waveguide. The input / output waveguide width was calculated using w i = 6 μm as an example.

【0019】図4は、図1及び図2において入出力導波
路間隔をd2 =33μm一定として、d1 =d3 とした
時、MMI導波路幅wg に対する2×2光合分波回路の
長さLとその時に得られる過剰損失との関係を示してい
る。この図では、wg (μm)とL(mm)の大きさを
対数スケールで表示している。
[0019] Figure 4, the input and output waveguides distance as d 2 = 33 .mu.m constant in FIGS. 1 and 2, when the d 1 = d 3, of the 2 × 2 optical demultiplexing circuit for MMI waveguide width w g The relationship between the length L and the excess loss obtained at that time is shown. In this figure, the magnitudes of w g (μm) and L (mm) are displayed on a logarithmic scale.

【0020】図4において、wg =99μmの時、すな
わちd1 =d2 =d3 =33μmとして、波線(黒丸)
で示したデバイス長の構成(:Lが約10mm)が従来
例になり、損失を相対的に小さくできることが分かる。
しかし、wg が99μmからずれる(d1 ,d3 が33
μmより小さくなるか、若しくは大きくなる。)と、損
失が急激に大きくなってしまい、MMI導波路幅(実効
的コア幅)wg の許容範囲が比較的小さく、構造設計の
自由度が小さいことが判る。これは、従来例で配置され
た入力導波路からの入力光によってMMI導波路に励振
される光波モードが比較的低次で、しかも少数のモード
を利用していることに起因している。
In FIG. 4, when w g = 99 μm, that is, when d 1 = d 2 = d 3 = 33 μm, a wavy line (black circle)
It can be seen that the configuration of the device length (: L is about 10 mm) shown in FIG.
However, w g deviates from 99 μm (d 1 and d 3 are 33
It becomes smaller or larger than μm. ), The loss increases sharply, the allowable range of the MMI waveguide width (effective core width) w g is relatively small, and the degree of freedom in structural design is small. This is due to the fact that the lightwave mode excited in the MMI waveguide by the input light from the input waveguide arranged in the conventional example has a relatively low order and uses a small number of modes.

【0021】一方、図4において、ある大きさのMMI
導波路幅(実効的コア幅)wg に対して低損失特性を得
ることのできるLの大きさとして、波線で示した以外に
実線(白丸)で示した長さ、あるいはその整数倍の大き
さで与えられるデバイス構造があることが判る。この実
線で示した長さでデバイスを構成すると、MMI導波路
幅(実効的コア幅)wg の大きさを99μmより狭くし
た場合も、この幅wgに合わせて適当なデバイス長Lを
設定すると、実線で示した比較的低損失な特性が得られ
る。
On the other hand, in FIG.
As the size of the L capable of obtaining a low-loss characteristics for the waveguide width (effective core width) w g, at the indicated lengths solid line (open circles) other than that shown by the broken line, or the integral multiple thereof magnitude It can be seen that there is a device structure given by: When configuring a device with a length indicated by the solid line, even when narrower than 99μm size of the MMI waveguide width (effective core width) w g, set an appropriate device length L to fit the width w g Then, a relatively low loss characteristic shown by the solid line is obtained.

【0022】しかも、MMI導波路幅wg が小さくなる
程、デバイス長Lは短くなり、該MMI導波路幅wg
約60μm以下にするとLは10mm以下の大きさにで
き、従来例より小型にできる。
[0022] Moreover, as the MMI waveguide width w g is reduced, the device length L is shortened, when less than about 60μm The MMI waveguide width w g L can the following dimensions 10 mm, smaller than the conventional example Can be.

【0023】この場合、上記の実施の形態と比較して、
MMI導波路内では、次数がより高次でしかも多数のモ
ードが励振され、これらのモードを利用することによっ
て低損失特性が得られている。本発明はこの原理・効果
を基本的に用いているものである。
In this case, compared to the above embodiment,
In the MMI waveguide, a higher order and a large number of modes are excited, and a low loss characteristic is obtained by using these modes. The present invention basically uses this principle and effect.

【0024】なお、図2中の、wg が39μmのとき、
図1及び図2並びに図3において、d1 =d3 =3μ
m、d4 =0の場合に相当する。ただし、MMI導波路
幅wgが39μmより小さくなると、入出力導波路とM
MI導波路との結合損失が顕著になって、放射による損
失が急激に大きくなる。
When w g in FIG. 2 is 39 μm,
1, 2 and 3, d 1 = d 3 = 3 μ
This corresponds to the case where m and d 4 = 0. However, when the MMI waveguide width w g is smaller than 39 μm, the input / output waveguide and M
The coupling loss with the MI waveguide becomes remarkable, and the loss due to radiation increases rapidly.

【0025】また、図3の実施例のように、d4 を0よ
り僅かに大きくする(この場合MMI導波路幅wg =4
3μm(d4 =2μm,d1 =d3 =5μm))と、図
4で示したように、損失を極めて小さく出来る。これ
は、Ti厚をデバイス内全体で一定の大きさにして熱拡
散させる通常のデバイス構成をとった場合、入出力導波
路がMMI部より光閉じ込め効果が相対的に弱くなって
いることに起因する。このために、最も外側に配置され
た入出力導波路の縁部に対して、MMIの縁部を僅かに
外側にくるように構成することにより、入出力導波路部
の導波光とMMI部の導波光とを効率よく光結合でき
る。
Further, as in the embodiment of FIG. 3, d 4 is made slightly larger than 0 (in this case, the MMI waveguide width w g = 4).
3 μm (d 4 = 2 μm, d 1 = d 3 = 5 μm), and the loss can be extremely reduced as shown in FIG. This is due to the fact that the optical confinement effect of the input / output waveguide is relatively weaker than that of the MMI part when a normal device configuration is adopted in which the thickness of Ti is made constant throughout the device and thermal diffusion is performed. I do. For this reason, by configuring the edge of the MMI to be slightly outward with respect to the edge of the outermost input / output waveguide, the guided light of the input / output waveguide and the MMI Optical coupling with guided light can be performed efficiently.

【0026】図5は、第1及び第2の実施の形態におい
てwi =6μm,d1 =d3 =3μm,d4 =0に設定
した場合、入出力導波路間隔d2 に対するMMI導波路
長Lとその時の過剰損失、クロストークの関係を示す。
Lの大きさはd2 のほぼ二乗に比例する関係がある。
FIG. 5 shows the MMI waveguide with respect to the input / output waveguide spacing d 2 when w i = 6 μm, d 1 = d 3 = 3 μm, and d 4 = 0 in the first and second embodiments. The relationship between the length L and excess loss and crosstalk at that time is shown.
The magnitude of L has a relationship proportional to the square of d 2 .

【0027】図6及び図7は、図1及び図2並びに図3
の本発明の実施の形態において、MMI導波路の製作ト
レランスを示した例である。図6は、wi =6μm,w
g =39μm,d2 =33μmに設定した場合、MMI
導波路長Lの最適な長さからの偏差による過剰損失とク
ロストークの関係を示した。Lが最適な長さから±1.
5mmずれても、損失増加は1dB以下に抑えられ、ク
ロストークもそれ程劣化しないことが分かる。
FIGS. 6 and 7 correspond to FIGS. 1, 2 and 3 respectively.
5 is an example showing the manufacturing tolerance of the MMI waveguide in the embodiment of the present invention. FIG. 6 shows that w i = 6 μm, w
When g = 39 μm and d 2 = 33 μm, the MMI
The relationship between the excess loss and the crosstalk due to the deviation of the waveguide length L from the optimum length is shown. L is ± 1.
It can be seen that even if the distance is shifted by 5 mm, the increase in loss is suppressed to 1 dB or less, and the crosstalk does not deteriorate much.

【0028】図7は、wi =6μm,MMI導波路の長
さL=5.3mm,d2 =33μmに設定した場合、M
MI導波路wg の偏差Δwによる過剰損失とクロストー
クの関係を示した。Δwが±0.5μm程度になって
も、損失増加は1dB以下に抑えられ、通常のフォトリ
ソグラフィ技術を用いて導波路形成を行えば問題なくデ
バイスを製作できる。
FIG. 7 shows that when w i = 6 μm, the length of the MMI waveguide L = 5.3 mm, and d 2 = 33 μm, M
Shows the relationship between the excess loss and crosstalk caused by deviation Δw of MI waveguide w g. Even if Δw is about ± 0.5 μm, the increase in loss can be suppressed to 1 dB or less, and a device can be manufactured without any problem if a waveguide is formed using ordinary photolithography technology.

【0029】[実施の形態3及び4]図8及び図9は、
本発明による他の一実施の形態の上面図であり、1×2
光分波回路の構成(実施の形態3)もしくは1×3光分
波回路の構成(実施の形態4)を示している。入出力導
波路構造wi や導波路間隔d2 の大きさに対して、図8
の実施の形態のように本発明の原理を用いて、d1 ,d
3 等の大きさを適当な大きさに設定し、MMI導波路幅
g を狭くすれば、導波路長Lを短く構成できる。ただ
し、図4に示すように、wg を必要以上に狭くし過ぎる
と、損失が大きくなるので、この損失増加を考慮して構
造を決定すればよい。
Embodiments 3 and 4 FIG. 8 and FIG.
FIG. 4 is a top view of another embodiment of the present invention, showing a 1 × 2
The configuration of an optical demultiplexing circuit (Embodiment 3) or the configuration of a 1 × 3 optical demultiplexing circuit (Embodiment 4) is shown. FIG. 8 shows the relationship between the input / output waveguide structure w i and the waveguide spacing d 2 .
Using the principle of the present invention as in the above embodiment, d 1 , d
If the size such as 3 is set to an appropriate size and the MMI waveguide width w g is reduced, the waveguide length L can be reduced. However, as shown in FIG. 4, if w g is made too narrow as necessary, the loss increases. Therefore, the structure may be determined in consideration of the increase in the loss.

【0030】以上本実施の形態では、2×2もしくは1
×2,1×3の光合分波回路構成を示したが、此れ以外
に、n×m光合分波回路(n,m:任意の整数)や光波
長フィルタ、光モードフィルタ、あるいは異なる波長の
光を合分波する光デバイス等、MMI導波路の特性を利
用したあらゆる光デバイスに本発明を適用できる。
As described above, in the present embodiment, 2 × 2 or 1
Although a × 2, 1 × 3 optical multiplexing / demultiplexing circuit configuration is shown, other than this, an nxm optical multiplexing / demultiplexing circuit (n, m: any integer), an optical wavelength filter, an optical mode filter, or a different wavelength The present invention can be applied to any optical device using the characteristics of the MMI waveguide, such as an optical device that multiplexes and demultiplexes the light of the above.

【0031】また、本実施の形態では、動作波長が1.
55μm帯で、基板にLNを、コア層にTi 拡散導波路
を用いた場合を示したが、入出力導波路構造・間隔や、
動作波長や、モノリシック集積等によって接続される光
機能デバイス、あるいは光結合される光ファイバ等のス
ポットサイズに合わせて、導波路の材料・材質・構造・
寸法を適当に設定すれば、本発明の効果を同様に得るこ
とができるのは自明である。
In this embodiment, the operating wavelength is 1.
In 55μm band, the LN substrate, the case of using the T i diffused waveguide core layer, and input and output waveguide structure, intervals,
According to the operating wavelength, the spot size of the optical functional device connected by monolithic integration, or the spot size of the optical fiber to be optically coupled, the material, material, structure,
It is obvious that the effects of the present invention can be similarly obtained by appropriately setting the dimensions.

【0032】また、半導体MMIデバイスも本発明を適
用することができることは自明である。さらに、導波路
コア層として多層膜構造をとってもよい。MMI導波路
周辺部についても、誘電体や半導体材料で覆う、あるい
はリッジ構造や埋め込んだ構成にしてもよい。また、導
波路材料として、LiTaO3 やPLZT等の強誘電体
材料、あるいは半導体材料、ガラス、石英等の無機材
料、ポリイミド等の有機材料などあらゆる光導波路材料
を用いたデバイスい対して本発明を適用できる。
It is obvious that the present invention can be applied to a semiconductor MMI device. Further, the waveguide core layer may have a multilayer structure. The periphery of the MMI waveguide may be covered with a dielectric or a semiconductor material, or may have a ridge structure or a buried structure. Further, the present invention is applicable to devices using any optical waveguide material such as a ferroelectric material such as LiTaO 3 or PLZT, or a semiconductor material, an inorganic material such as glass or quartz, or an organic material such as polyimide as a waveguide material. Applicable.

【0033】以上本実施の形態では、MMI導波路の入
出力部に入出力導波路を配置した場合を示したが、MM
I入出力部に他の光導波路デバイスがそれぞれの導波路
端面で直接光結合をとる場合、あるいはレンズを介して
接続される場合も、それら接続される導波光のスポット
サイズに合わせるように、MMIの構造・材質・寸法を
適当に設定すれば本発明の効果を得ることができる。
In this embodiment, the case where the input / output waveguide is arranged at the input / output section of the MMI waveguide has been described.
When other optical waveguide devices are directly coupled to the I input / output section at their respective waveguide end faces or connected via lenses, the MMI is adjusted to match the spot size of the connected guided light. The effects of the present invention can be obtained by appropriately setting the structure, material, and dimensions of.

【0034】[0034]

【発明の効果】以上説明したように、本発明による光合
分波回路は、少なくとも入出力導波路の縁部とMMI導
波路の縁部をほぼ一致させた構成をとることによって小
形の光合分波回路を実現できる。
As described above, the optical multiplexing / demultiplexing circuit according to the present invention has a small optical multiplexing / demultiplexing circuit by adopting a configuration in which at least the edges of the input and output waveguides and the edges of the MMI waveguide are substantially matched. A circuit can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による第1の実施の形態にかかる光合分
波回路の斜視図である。
FIG. 1 is a perspective view of an optical multiplexing / demultiplexing circuit according to a first embodiment of the present invention.

【図2】本発明による第1の実施の形態にかかる光合分
波回路の上面図(a)、断面図(b)である。
FIG. 2 is a top view (a) and a cross-sectional view (b) of the optical multiplexing / demultiplexing circuit according to the first embodiment of the present invention.

【図3】本発明による第2の実施の形態にかかる光合分
波回路の斜視図である。
FIG. 3 is a perspective view of an optical multiplexing / demultiplexing circuit according to a second embodiment of the present invention.

【図4】本発明の原理・効果を説明するための図。FIG. 4 is a diagram for explaining the principle and effect of the present invention.

【図5】本発明の原理・効果を説明するための図。FIG. 5 is a diagram for explaining the principle and effect of the present invention.

【図6】本発明の原理・効果を説明するための図。FIG. 6 is a diagram for explaining the principle and effect of the present invention.

【図7】本発明の原理・効果を説明するための図。FIG. 7 is a diagram for explaining the principle and effect of the present invention.

【図8】本発明による第3の実施の形態にかかる光合分
波回路の上面図である。
FIG. 8 is a top view of an optical multiplexing / demultiplexing circuit according to a third embodiment of the present invention.

【図9】本発明による第4の実施の形態にかかる光合分
波回路の上面図である。
FIG. 9 is a top view of an optical multiplexing / demultiplexing circuit according to a fourth embodiment of the present invention.

【図10】従来の光合分波回路の斜視図である。FIG. 10 is a perspective view of a conventional optical multiplexing / demultiplexing circuit.

【図11】従来の光合分波回路の上面図。FIG. 11 is a top view of a conventional optical multi / demultiplexing circuit.

【符号の説明】[Explanation of symbols]

11 基板 12 導波路コア層 13 入力導波路 14 出力導波路 15 MMI領域(実効的コア) 16 入出力導波路 17 クラッド層 DESCRIPTION OF SYMBOLS 11 Substrate 12 Waveguide core layer 13 Input waveguide 14 Output waveguide 15 MMI area (effective core) 16 Input / output waveguide 17 Cladding layer

フロントページの続き (72)発明者 柴田 泰夫 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内Continuation of front page (72) Inventor Yasuo Shibata Nippon Telegraph and Telephone Corporation, 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも単数若しくは複数の光入力部
もしくは光出力部を有する多モード干渉導波路で構成さ
れた光合分波回路において、 最も外側に配置された光入出力導波路から、該多モード
干渉導波路の導波方向と同方向に沿った縁までの間隔
を、該光入出力導波路の間隔より狭く構成したことを特
徴とする光合分波回路。
1. An optical multiplexing / demultiplexing circuit comprising a multi-mode interference waveguide having at least one or a plurality of optical input sections or optical output sections, wherein an optical input / output waveguide arranged at the outermost side is used for multi-mode interference. An optical multiplexing / demultiplexing circuit, wherein an interval to an edge of the interference waveguide along the same direction as the waveguide direction is narrower than an interval between the optical input / output waveguides.
【請求項2】 請求項1記載の光合分波回路において、 上記最も外側に配置された光入出力導波路の縁を、上記
多モード干渉導波路の縁とほぼ一致させて構成したこと
を特徴とする光合分波回路。
2. The optical multiplexing / demultiplexing circuit according to claim 1, wherein an edge of the outermost optical input / output waveguide is made substantially coincident with an edge of the multimode interference waveguide. Optical multiplexing / demultiplexing circuit.
JP32243996A 1996-12-03 1996-12-03 Optical multiplexing and demultiplexing circuit Pending JPH10160951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32243996A JPH10160951A (en) 1996-12-03 1996-12-03 Optical multiplexing and demultiplexing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32243996A JPH10160951A (en) 1996-12-03 1996-12-03 Optical multiplexing and demultiplexing circuit

Publications (1)

Publication Number Publication Date
JPH10160951A true JPH10160951A (en) 1998-06-19

Family

ID=18143693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32243996A Pending JPH10160951A (en) 1996-12-03 1996-12-03 Optical multiplexing and demultiplexing circuit

Country Status (1)

Country Link
JP (1) JPH10160951A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332530B1 (en) * 2000-03-24 2002-04-17 안병엽 Switching device using a multi-mode interference waveguide
KR100424606B1 (en) * 2001-09-10 2004-03-27 이두환 Adaptive optical attenuator using multi-mode interference
JP2006323135A (en) * 2005-05-19 2006-11-30 Nippon Telegr & Teleph Corp <Ntt> Multi-mode interference type optical waveguide
US7280713B2 (en) 2002-05-15 2007-10-09 Fujitsu Limited Optical modulator, optical waveguide device and acousto-optic tunable filter apparatus
JP2010226062A (en) * 2009-03-25 2010-10-07 Fujitsu Ltd Optical waveguide element, manufacturing method therefor, semiconductor device, laser module, and optical transmission system
JP2015065406A (en) * 2013-08-30 2015-04-09 三菱電機株式会社 Wavelength variable light source and wavelength variable light source module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332530B1 (en) * 2000-03-24 2002-04-17 안병엽 Switching device using a multi-mode interference waveguide
KR100424606B1 (en) * 2001-09-10 2004-03-27 이두환 Adaptive optical attenuator using multi-mode interference
US7280713B2 (en) 2002-05-15 2007-10-09 Fujitsu Limited Optical modulator, optical waveguide device and acousto-optic tunable filter apparatus
US7289703B2 (en) 2002-05-15 2007-10-30 Fujitsu Limited Optical modulator, optical waveguide device and acousto-optic tunable filter apparatus
US7315676B2 (en) 2002-05-15 2008-01-01 Fujitsu Limited Optical modulator, optical waveguide device and acousto-optic tunable filter apparatus
JP2006323135A (en) * 2005-05-19 2006-11-30 Nippon Telegr & Teleph Corp <Ntt> Multi-mode interference type optical waveguide
JP4499611B2 (en) * 2005-05-19 2010-07-07 日本電信電話株式会社 Multimode interference optical waveguide
JP2010226062A (en) * 2009-03-25 2010-10-07 Fujitsu Ltd Optical waveguide element, manufacturing method therefor, semiconductor device, laser module, and optical transmission system
US8401352B2 (en) 2009-03-25 2013-03-19 Fujitsu Limited Optical waveguide device, its manufacture method, laser module and optical transmission system
JP2015065406A (en) * 2013-08-30 2015-04-09 三菱電機株式会社 Wavelength variable light source and wavelength variable light source module

Similar Documents

Publication Publication Date Title
EP1584975B1 (en) Optical waveguide device, optical waveguide laser using same and optical apparatus having same
JP2929481B2 (en) Optical function element
JP3434986B2 (en) Optical multiplexing / demultiplexing circuit
JPH08171020A (en) Optical coupling device
US4983006A (en) Polarization-independent optical waveguide switch
JP2008089875A (en) Optical waveguide element
JPH02195309A (en) Optical coupling element
JP2006284791A (en) Multimode interference optical coupler
JP2002228863A (en) Optical coupling structure
JP2850996B2 (en) Optical coupling device
JPH11167032A (en) Curved optical waveguide circuit
JPH10160951A (en) Optical multiplexing and demultiplexing circuit
EP1239311A1 (en) Integrated optical device comprising an adiabatic junction
US20230168431A1 (en) Photonic Systems Comprising an Asymmetric Coupler and Methods of Fabrication
JPH10186154A (en) Tapered non-linear thin film and non-linear grating coupler using stepped non-linear thin film
JP2001350046A (en) Integrated optical waveguide element
JP3004971B1 (en) Array waveguide diffraction grating and optical signal processing circuit using array waveguide diffraction grating
JP5467414B2 (en) Optical functional waveguide
JPH06194536A (en) Optical coupling device
JPH08234062A (en) Optical coupling device and optical coupling method
JP3283772B2 (en) Waveguide type variable optical attenuator
JP2001177182A (en) External resonator semiconductor laser and optical waveguide device
JP3969320B2 (en) Waveguide type optical components
JP2004020588A (en) Wavelength transformation device
JPH09311233A (en) Optical wavelength filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060224

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060317

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070119