JPH10160693A - Three-dimensional form measurement method - Google Patents

Three-dimensional form measurement method

Info

Publication number
JPH10160693A
JPH10160693A JP9270425A JP27042597A JPH10160693A JP H10160693 A JPH10160693 A JP H10160693A JP 9270425 A JP9270425 A JP 9270425A JP 27042597 A JP27042597 A JP 27042597A JP H10160693 A JPH10160693 A JP H10160693A
Authority
JP
Japan
Prior art keywords
dimensional
observation
image
phase
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9270425A
Other languages
Japanese (ja)
Other versions
JP3334576B2 (en
Inventor
Katsutoshi Noda
克敏 野田
Sumio Kamiya
純生 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP27042597A priority Critical patent/JP3334576B2/en
Publication of JPH10160693A publication Critical patent/JPH10160693A/en
Application granted granted Critical
Publication of JP3334576B2 publication Critical patent/JP3334576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the form of a specific phase in a polyphase material three-dimensionally by machining and eliminating the polyphase material to a specific depth and exposing one section as a flat surface, then successively repeating a machining/observation cycle for forming a two-dimensional observation image in depth direction, and synthesizing a two-dimensional observation image obtained for a plurality of sections as a three-dimensional image. SOLUTION: An observation surface is exposed (machined) and a two-dimensional observation image is formed for a plurality of two-dimensional observation surfaces F1 , F2 ,..., F3 in a sintered body that is a polyphase material by a consecutive machining observation. The obtained two-dimensional observation image is recognized by a computer with the contour of particle section as electronic information by a two-dimensional image processing. Then, the two-dimensional image is constructed three-dimensionally in the computer to obtain a three-dimensional image. By using the three-dimensional image, parameters (for example, a long diameter, a short diameter, and a distribution) are measured for the three-dimensional form of a second-phase particle. To obtain accurate information, a lager number of observation surfaces are used. Consecutive machining observation is repeated in sub μm pitch.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の相から成る
多相材料中の特定相の形態を三次元計測する方法に関す
る。
The present invention relates to a method for three-dimensionally measuring a morphology of a specific phase in a multiphase material composed of a plurality of phases.

【0002】[0002]

【従来の技術】多相材料の一つの代表例として、例えば
セラミックス焼結体においては、強度、靱性等の機械的
性質を初めとする諸特性が、焼結体を構成している組織
例えば第1相マトリクス中に存在する第2相の形態(形
状・寸法・分布・体積率等)と相関関係があることが知
られている。
2. Description of the Related Art As one typical example of a multi-phase material, for example, in a ceramic sintered body, various properties such as mechanical properties such as strength and toughness are determined by the structure constituting the sintered body, for example, It is known that there is a correlation with the form (shape, size, distribution, volume ratio, etc.) of the second phase existing in the one-phase matrix.

【0003】多相材料としてのセラミックス焼結体は複
数種類のセラミックスの混合体であり、典型的には、体
積率の最も大きい種類のセラミックスが第1相マトリク
スを構成し、それよりもかなり体積率の小さい1種類ま
たは複数種類のセラミックスが第2相として第1相マト
リクス内に分散している。このようなセラミックス焼結
体の諸特性にとって、第2相としての粒子の形態は基本
的に重要な要因となる。更に、焼結体中に先在するボイ
ドやマイクロクラックも無視できない組織因子の一つで
あり、場合によっては第3相として考慮に入れる必要が
ある。また、特に靱性に対する組織因子の影響を評価す
る上で、クラックと各組織因子との関係を知ることも重
要であり、観察時に存在するクラックも第1相マトリク
ス中に存在する第3相の一部として形態計測の対象とす
る必要がある。
A ceramic sintered body as a multi-phase material is a mixture of a plurality of types of ceramics. Typically, the type of ceramic having the largest volume ratio constitutes the first phase matrix, and has a considerably larger volume. One or more kinds of ceramics having a small ratio are dispersed in the first phase matrix as the second phase. The morphology of the particles as the second phase is basically an important factor for such properties of the ceramic sintered body. Furthermore, voids and microcracks existing in the sintered body are also one of the structural factors that cannot be ignored, and may need to be considered as a third phase in some cases. It is also important to know the relationship between cracks and each tissue factor, especially in evaluating the effect of the tissue factors on toughness, and the cracks present during observation are one of the third phases present in the first phase matrix. It needs to be a target of morphometry as a part.

【0004】なお、セラミックス焼結体の中には例えば
窒化珪素のように第1相が粒子形態でかつこの粒子状態
が焼結体の特性に大きく影響を及ぼしているものもあ
り、この場合第1相の粒子形態を計測することが重要と
なる。従来、セラミックス焼結体の組織を知る手段とし
て、二次元平面の顕微鏡観察像等を用いていた。焼結体
の断面を顕微鏡観察すると、例えば図1に示すような二
次元像が得られる。同図において、白抜きの枠で表した
観察視野内の平面に、斜線を施したように分散第2相粒
子が観察される。
In some ceramic sintered bodies, the first phase is in the form of particles, such as silicon nitride, and the state of the particles greatly affects the characteristics of the sintered body. It is important to measure the one-phase particle morphology. 2. Description of the Related Art Conventionally, as a means for knowing the structure of a ceramic sintered body, a two-dimensional plane microscopic observation image or the like has been used. When a cross section of the sintered body is observed with a microscope, for example, a two-dimensional image as shown in FIG. 1 is obtained. In the same figure, the dispersed second phase particles are observed as indicated by hatching on a plane in the observation visual field represented by a white frame.

【0005】しかし、このような二次元平面での観察で
は、例えば第2相粒子の形状に異方性がある場合には、
材料特性と第2相粒子との因果関係の解析に限界があ
る。例えば図2に示すように、多相材料の一つである複
合材料の靱性は粒子の異方性により顕著な影響を受ける
ことが知られている(例えば、井上茂夫、内山哲夫、新
原晧一共著「セラミックス」“ウィスカーによるセラミ
ックスの強じん化”、P.621 〜629 、Vol.21, No.7, 19
86を参照。)すなわち、棒状、円板状、球状の第2相粒
子では、同じ体積分率で比べると棒状粒子の場合に相対
破壊靱性値が最も大きくなる。つまり、球状より円板
状、更に棒状の粒子を用いた方が、靱性値の向上には効
果的である。したがって、高い靱性値を持つ材料を開発
する上で、第2相粒子の三次元形状についての情報を得
た上で、その情報に基づいて製造条件を制御することは
非常に重要である。
However, in observation on such a two-dimensional plane, for example, when the shape of the second phase particles is anisotropic,
There is a limit to the analysis of the causal relationship between material properties and second phase particles. For example, as shown in FIG. 2, it is known that the toughness of a composite material, which is one of the multiphase materials, is significantly affected by the anisotropy of particles (eg, Shigeo Inoue, Tetsuo Uchiyama, Koichi Niihara Co-author, "Ceramics", "Toughening of Ceramics by Whisker", P.621-629, Vol.21, No.7, 19
See 86. That is, the rod-shaped, disk-shaped, and spherical second-phase particles have the largest relative fracture toughness in the case of rod-shaped particles when compared at the same volume fraction. That is, it is more effective to use a disk-shaped or rod-shaped particle than a sphere to improve the toughness value. Therefore, in developing a material having a high toughness value, it is very important to obtain information on the three-dimensional shape of the second phase particles and to control manufacturing conditions based on the information.

【0006】セラミックス材料を製造する上で、あらか
じめ形態が測定可能な第2相粒子(例えば繊維、ウィス
カー等)を所定の体積分率で添加し、第2相の形態を変
化させずに焼結することが可能な場合には、製造後に粒
子形態を計測する必要はない。しかし、例えばSi3
4 焼結体のように、焼結中に粒子形態がほぼ球状から棒
状に変化する材料が多いのが実情である。
In producing a ceramic material, second-phase particles (for example, fibers, whiskers, etc.) whose form can be measured are added at a predetermined volume fraction, and sintered without changing the form of the second phase. If possible, it is not necessary to measure the particle morphology after manufacture. However, for example, Si 3 N
Actually, there are many materials such as 4 sintered bodies whose particle morphology changes from almost spherical to rod-like during sintering.

【0007】また、材料特性と密接な関係がある粒子形
態を焼結後に計測する場合、図3に示すように従来の二
次元平面での観察では、棒状粒子の短径は測定できても
長径は測定できない。このように、従来のように二次元
平面での観察を行っている限り、材料の諸特性に大きな
影響のある第2相(粒子)、第3相(ボイド、クラッ
ク)等の長さ方向の変化を含む三次元形態についての情
報が得られないため、特性との相関における因果関係の
解析が十分に行えないという問題があった。
In the case of measuring the particle morphology closely related to the material characteristics after sintering, as shown in FIG. 3, in the conventional observation on a two-dimensional plane, the short diameter of the rod-shaped particles can be measured but the long diameter can be measured. Cannot be measured. As described above, as long as observation is performed on a two-dimensional plane as in the related art, the longitudinal direction of the second phase (particles), the third phase (voids, cracks), and the like, which have a great influence on the properties of the material, are considered. Since information about a three-dimensional form including a change cannot be obtained, there is a problem that a causal relationship in a correlation with a characteristic cannot be sufficiently analyzed.

【0008】[0008]

【発明が解決しようとする課題】そこで本発明は、セラ
ミックス焼結体に代表される多相材料中の特定相(粒
子、ボイド、クラック等)の形態を三次元的に計測する
方法を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a method for three-dimensionally measuring the morphology of a specific phase (particles, voids, cracks, etc.) in a multi-phase material represented by a ceramic sintered body. The purpose is to:

【0009】[0009]

【課題を解決するための手段】上記の目的は、本発明に
よれば、複数の相から成る多相材料中の特定相の形態を
三次元計測する方法であって、上記多相材料を所定深さ
まで加工除去して一断面を平面として表出させた後、こ
の平面の二次元観察像を形成する加工・観察サイクル
を、深さ方向に順次繰り返し、複数の断面について得ら
れた二次元観察像を上記繰り返し順に合成して三次元像
を形成することを特徴とする三次元形態計測方法によっ
て達成される。
According to the present invention, there is provided a method for three-dimensionally measuring a form of a specific phase in a multi-phase material comprising a plurality of phases, the method comprising: After processing to the depth and exposing one cross section as a plane, the processing and observation cycle of forming a two-dimensional observation image of this plane is sequentially repeated in the depth direction, and two-dimensional observation obtained for multiple cross sections This is achieved by a three-dimensional morphological measurement method characterized in that images are combined in the repetition order to form a three-dimensional image.

【0010】本発明の方法によれば、セラミックス焼結
体等の多相材料中における粒子、ボイド、クラック等の
特定相の二次元観察像を合成して三次元像とすることに
より、これら特定相の形態を立体的に正確に知ることが
できるので、材料の諸特性と組織因子との因果関係をよ
り十分に解析することができる。イオンビームは微細な
加工が可能であり、また電子線に比べてイオンの質量が
大きいため加工能力が大きいので、上記の加工除去をイ
オンビームの照射により行うことが望ましい。
According to the method of the present invention, a two-dimensional observation image of a specific phase such as particles, voids and cracks in a multi-phase material such as a ceramic sintered body is synthesized to form a three-dimensional image. Since the morphology of the phase can be known three-dimensionally and accurately, the causal relationship between the various properties of the material and the tissue factor can be more fully analyzed. Since the ion beam can be finely processed and has a large processing capability due to the large mass of the ions as compared with the electron beam, it is preferable that the above-mentioned processing and removal be performed by ion beam irradiation.

【0011】イオンビームによる加工レートは、加工対
象の材質によって異なるため、表出させる平面(観察し
ようとする断面)に対して垂直方向にイオンビーム照射
すると、加工表面に凹凸ができて正確な平面上での二次
元観察像が得られないことがある。その場合には、イオ
ンビームの照射方向を、表出させる平面に対してほぼ平
行にすることにより、加工レートの差により凹凸が形成
されないため、正確な平面上での二次元観察像を得るこ
とができる。
Since the processing rate by the ion beam differs depending on the material to be processed, when the ion beam is irradiated in a direction perpendicular to the plane to be exposed (the cross section to be observed), irregularities are formed on the processing surface and an accurate flat surface is formed. The above two-dimensional observation image may not be obtained. In this case, the irradiation direction of the ion beam is made substantially parallel to the plane to be exposed, so that unevenness is not formed due to a difference in processing rate, so that a two-dimensional observation image on an accurate plane can be obtained. Can be.

【0012】上記のように表出予定平面に対して平行な
イオンビームで加工を行うと、材料が除去されて自由表
面が現れる側にイオンビームが僅かに逃げてしまい、予
定した観察面に対して傾斜した面が表出され、予定した
断面に対して傾斜した断面で二次元観察することにな
り、合成した三次元像が真の材料内部の状態に対して歪
んだ像になってしまう場合がある。そのような場合に
は、イオンビームの照射方向を、表出させる平面に対し
て所定の補正角度だけ傾斜させることにより、予定通り
の断面を表出させることができ、真の材料内部の状態を
反映した歪みのない三次元像を得ることができる。この
補正角度は、対象とする多相材料の種類、用いるイオン
ビームの特性、あるいは加工速度(送り)等に応じて、
適宜予備実験により決定することができる。本発明者が
これまでに行ったセラミックス焼結体についての結果で
は、補正角度は1°以内であったが、上記諸条件により
変化すると考えられる。
When processing is performed with an ion beam parallel to the plane to be exposed as described above, the material is removed, and the ion beam slightly escapes to the side where the free surface appears. When a tilted surface is revealed and two-dimensional observation is performed on a cross-section that is tilted with respect to the planned cross-section, the synthesized three-dimensional image becomes distorted with respect to the true internal state of the material There is. In such a case, by inclining the irradiation direction of the ion beam by a predetermined correction angle with respect to the plane to be exposed, an expected cross section can be exposed, and the true internal state of the material can be obtained. A three-dimensional image without reflected distortion can be obtained. This correction angle depends on the type of the target multiphase material, the characteristics of the ion beam used, or the processing speed (feed), etc.
It can be appropriately determined by preliminary experiments. In the results of the ceramic sintered body performed so far by the present inventor, the correction angle was within 1 °, but it is considered that the correction angle varies depending on the above conditions.

【0013】二次元観察像を電子情報として記録し、コ
ンピュータにより合成して三次元像を形成することが望
ましい。
It is desirable that a two-dimensional observation image be recorded as electronic information and synthesized by a computer to form a three-dimensional image.

【0014】[0014]

【発明の実施の形態】本発明の三次元形態計測方法を行
う手順の典型例を図4に示す。先ず、同図左端に示した
逐次加工観察は、多相材料である焼結体中の複数の二次
元観察面(F1 ,F2 ,・・・Fn )について観察面の
表出(加工)と二次元観察像の形成とを行う加工除去・
観察サイクルを逐次行う工程である。得られた各観察面
の二次元観察像を、同図中央に示した二次元画像処理に
より、粒子断面の輪郭を電子情報としてコンピュータに
認識させる。次に、同図右端に示したように、二次元画
像をコンピュータ内で立体構築して三次元画像を得る。
この三次元画像を用いて、第2相粒子の三次元形態につ
いての各パラメータ(長径、短径、分布等)を計測する
ことができる。
FIG. 4 shows a typical example of a procedure for performing the three-dimensional shape measurement method of the present invention. First, in the sequential processing observation shown at the left end of the figure, the observation surface is expressed (processed) for a plurality of two-dimensional observation surfaces (F 1 , F 2 ,... F n ) in the sintered body which is a multi-phase material. ) And processing removal to form a two-dimensional observation image
This is a step of sequentially performing an observation cycle. The obtained two-dimensional observation image of each observation surface is subjected to two-dimensional image processing shown in the center of FIG. Next, as shown at the right end of the figure, a two-dimensional image is three-dimensionally constructed in a computer to obtain a three-dimensional image.
Using the three-dimensional image, each parameter (major axis, minor axis, distribution, etc.) of the three-dimensional morphology of the second phase particles can be measured.

【0015】焼結体中の複数の二次元観察面を立体構成
して三次元形態についての正確な情報を得るには、でき
るだけ多数の観察面を用いる必要がある。通常のセラミ
ックスを構成する粒子は数μmの大きさなので、逐次加
工観察は少なくともサブμmのピッチで繰り返す必要が
ある。数μmの粒子を計測する際、仮に加工ピッチを数
μmにすると、加工時に個々の被計測粒子の全体を加工
(除去)してしまうことになり、除去された粒子につい
ては二次元観察像が得られない。
In order to obtain a three-dimensional form of a plurality of two-dimensional observation planes in the sintered body and obtain accurate information on the three-dimensional form, it is necessary to use as many observation planes as possible. Since the particles constituting a normal ceramic have a size of several μm, it is necessary to repeat the sequential processing observation at a pitch of at least sub-μm. When measuring particles of several μm, if the processing pitch is set to several μm, the entire target particle to be measured will be processed (removed) at the time of processing, and a two-dimensional observation image will be obtained for the removed particles. I can't get it.

【0016】できるだけ微細な粒子まで洩らさずに二次
元観察し得る加工手段を種々検討した結果、ビームが微
細であり電子線よりもエネルギーの大きい集束イオンビ
ームが最も適していた。図5に、集束イオンビームの発
生装置(照射・観察装置)の一例を示す。イオン源はエ
ミッタと引き出し電極とから成り、タングステン製のエ
ミッタの先端部は室温で溶融しているガリウム金属で濡
れている。引き出し電極に数kVの加速電圧を印加する
ことにより、溶融したガリウム金属の原子がイオンとな
って放出される。イオンは電気的なコンデンサーレンズ
と対物レンズで細く絞られ、偏光器で走査することによ
り試料上に照射される。イオンは電子に比較すると質量
が大きいので、固体試料に照射された際、試料原子を弾
きとばす効果(スパッタリング効果)があり、この効果
を逐次加工に利用した。また、電子を照射したときと同
様に、イオンを試料に照射すると試料の表面情報を含ん
だ二次電子が放出される。この二次電子を二次電子検出
器で補足することにより、走査型電子顕微鏡と同様の像
を得ることができ、これを二次元観察像として用いた。
加工と観察を同一の装置内で実施することができるの
で、試料の装置間搬送等の煩雑な操作を必要とせずに、
サブμm単位での加工と表出面の観察を容易に行うこと
ができる。
As a result of studying various processing means capable of two-dimensional observation without leaking as fine particles as possible, a focused ion beam having a fine beam and larger energy than an electron beam was most suitable. FIG. 5 shows an example of a focused ion beam generator (irradiation / observation device). The ion source is composed of an emitter and an extraction electrode, and the tip of the tungsten emitter is wet with gallium metal that is molten at room temperature. By applying an acceleration voltage of several kV to the extraction electrode, molten gallium metal atoms are released as ions. The ions are narrowed down by an electric condenser lens and an objective lens, and irradiated on a sample by scanning with a polarizer. Since ions have a larger mass than electrons, they have an effect (sputtering effect) of repelling sample atoms when irradiated on a solid sample, and this effect was used for sequential processing. When the sample is irradiated with ions in the same manner as when the electron is irradiated, secondary electrons containing surface information of the sample are emitted. By supplementing the secondary electrons with a secondary electron detector, an image similar to that of a scanning electron microscope could be obtained, and this was used as a two-dimensional observation image.
Since processing and observation can be performed in the same device, there is no need for complicated operations such as transporting the sample between the devices,
Processing in sub-μm units and observation of the exposed surface can be easily performed.

【0017】第2相として複数種類の粒子を含むセラミ
ックス焼結体をイオンビームにより加工する際、観察面
に垂直にイオンビームを照射すると、粒子毎の加工レー
トが異なるので、加工され易い粒子が選択的に加工さ
れ、平滑な観察面を得ることができない。同様に、気孔
を含む試料の加工においても、観察面に垂直にイオンビ
ームを照射すると、気孔周囲の材料が選択的に加工さ
れ、やはり平滑な観察面が得られない。
When a ceramic sintered body containing a plurality of types of particles is processed by an ion beam as the second phase, if the ion beam is irradiated perpendicularly to the observation surface, the processing rate for each particle is different. It is selectively processed and cannot provide a smooth observation surface. Similarly, in the processing of a sample including pores, when an ion beam is irradiated perpendicularly to the observation surface, the material around the pores is selectively processed, and a smooth observation surface cannot be obtained.

【0018】そこで、図6および図7に示すように、イ
オンビームによる加工方向(=照射方向)を観察面とほ
ぼ平行すなわち加工方向を観察方向とほぼ垂直にするこ
とにより、平滑な観察面を得ることができる。このよう
に加工時と観察時とで試料に対するイオンビーム照射方
向をほぼ90°切り換える操作は、実際にはイオンビー
ムではなく試料の方をほぼ90°回転させることにより
容易に行える。
Therefore, as shown in FIGS. 6 and 7, the processing direction (irradiation direction) of the ion beam is substantially parallel to the observation surface, that is, the processing direction is substantially perpendicular to the observation direction, so that a smooth observation surface is obtained. Obtainable. As described above, the operation of switching the direction of ion beam irradiation on the sample between processing and observation by approximately 90 ° can be easily performed by actually rotating the sample, not the ion beam, by approximately 90 °.

【0019】以下に、実施例により本発明を更に詳細に
説明する。
Hereinafter, the present invention will be described in more detail by way of examples.

【0020】[0020]

【実施例】【Example】

〔実施例1〕試料として、セリア安定化ジルコニア多結
晶体を第1相マトリクスとし、その中に第2相として円
板上のランタン−β−アルミナ結晶粒子が分散している
セラミックス焼結体を用いた。
[Example 1] As a sample, a ceramic sintered body in which a ceria-stabilized zirconia polycrystal was used as a first phase matrix and in which lanthanum-β-alumina crystal particles on a disk were dispersed as a second phase. Using.

【0021】集束イオンビームによる加工範囲を図6の
模式図で示したX−Y面においてX×Y=15μm以上
×15μm以上とし、Z方向の逐次加工ピッチを0.1
μmとして、100回の逐次加工観察を行った。イオン
ビーム引き出し電極の加速電圧は15kVとし、加工時
のビーム電流は20〜4500pA、観察時のビーム電
流は1〜4pAの範囲とした。
The processing range by the focused ion beam is set to X × Y = 15 μm or more × 15 μm or more on the XY plane shown in the schematic diagram of FIG. 6, and the sequential processing pitch in the Z direction is set to 0.1.
100 μm was sequentially observed for processing. The acceleration voltage of the ion beam extraction electrode was set to 15 kV, the beam current during processing was set to 20 to 4500 pA, and the beam current during observation was set to 1 to 4 pA.

【0022】図6および図7に示したように、加工時と
観察時とで試料をほぼ90°回転させ、イオンビームに
よる加工方向(=照射方向)を観察面とほぼ平行、すな
わち加工方向と観察方向をほぼ90°回転させて、逐次
加工観察を行った。逐次加工を行うに当たり、図8に示
すように、イオンビーム照射方向に対して試料表面を補
正角度θ=0.4°だけ傾斜させることにより、イオン
ビーム照射時は加工前の試料表面と加工による表出面が
平行になるようにした。この補正角度は、予め予備実験
により求めた値である。理由は明らかでないが、この補
正角度なしに加工を行うと、加工前の試料表面に対して
加工による表出面が平行にならない。
As shown in FIGS. 6 and 7, the sample is rotated by approximately 90 ° between the processing and the observation, and the processing direction (= irradiation direction) by the ion beam is substantially parallel to the observation surface, that is, the processing direction. The observation direction was rotated by about 90 °, and processing observation was sequentially performed. In performing the sequential processing, as shown in FIG. 8, the sample surface is inclined by a correction angle θ = 0.4 ° with respect to the ion beam irradiation direction, so that the sample surface and the processing before the ion beam irradiation are The exposed surface was made parallel. This correction angle is a value obtained in advance by a preliminary experiment. Although the reason is not clear, if processing is performed without this correction angle, the exposed surface by processing will not be parallel to the sample surface before processing.

【0023】図9に、上記の条件で逐次加工観察を行っ
て得た100回分の二次元観察像のうち、最初の6回分
を示す。同図中、各コマが各回の観察像であり、各コマ
の左に付した数字がそのコマの観察回を示す。同図にお
いて、最も黒いコントラストで観察される部分が第2相
としての円板上のランタン−β−アルミナ結晶粒子であ
る。一枚の二次元像を観察している限りでは、この第2
相粒子は単に棒状であるように見えるが、上記逐次加工
観察で得られた100回分の二次元観察像をコンピュー
タ上で三次元合成することにより、円板上の結晶粒子と
して形態計測することができた。得られた三次元像の一
例を図13に示す。これは図9の視野内からランタン−
β−アルミナ結晶粒子を12個選択して100回分の二
次元観察像を三次元合成したものであり、二次元観察像
で棒状に観察される結晶が積層して円板状粒子として明
示されている。 〔実施例2〕試料として柱状粒子の窒化珪素焼結体を用
いた。逐次加工観察の条件および手順は実施例1と同様
とした。ただし、加工時の補正角度θ=0.2°とし
た。この補正角度もやはり予備実験により予め求めてお
いて値である。
FIG. 9 shows the first six images out of 100 two-dimensional observation images obtained by performing sequential processing observations under the above conditions. In the figure, each frame is an observation image of each time, and the number attached to the left of each frame indicates the number of times of observation of that frame. In this figure, the portion observed with the darkest contrast is the lanthanum-β-alumina crystal particles on the disk as the second phase. As long as one observes a two-dimensional image, this second
Although the phase particles appear to be simply rod-shaped, the two-dimensional observation images of 100 times obtained by the above sequential processing observation can be three-dimensionally synthesized on a computer to measure the shape as crystal particles on a disk. did it. FIG. 13 shows an example of the obtained three-dimensional image. This is because lantern-
This is a three-dimensional synthesis of 100 two-dimensional observation images obtained by selecting 12 β-alumina crystal particles. I have. Example 2 A silicon nitride sintered body of columnar particles was used as a sample. The conditions and procedure for sequential processing observation were the same as in Example 1. However, the correction angle θ during processing was set to 0.2 °. This correction angle is also a value obtained in advance by a preliminary experiment.

【0024】図10に、上記の条件で逐次加工観察を行
って得た100回分の二次元観察像のうち、最初の6回
分を示す。同図中、各コマが各回の観察像であり、各コ
マの左に付した数字がそのコマの観察回を示す。同図に
おいて、最も黒いコントラストで観察される部分が窒化
珪素の柱状粒子であり、白いコントラストで観察される
部分が粒界である。この場合には、窒化珪素を第1相と
し粒界を第2相とする多相材料として取り扱うことがで
きる。上記逐次加工観察で得られた100回分の二次元
観察像をコンピュータ上で三次元合成することにより、
窒化珪素結晶を柱状の粒子として形態計測することがで
きた。例えば、一枚の二次元観察像からは計測不可能な
柱状粒子の長さも計測できた。得られた三次元像の一例
を図14に示す。これは図10の視野内から窒化珪素結
晶を8個選択して100回分の二次元観察像を三次元合
成したものであり、個々の窒化珪素結晶全体の形態が六
角柱状粒子として明示されている。
FIG. 10 shows the first six images out of 100 two-dimensional observation images obtained by performing sequential processing observations under the above conditions. In the figure, each frame is an observation image of each time, and the number attached to the left of each frame indicates the number of times of observation of that frame. In the figure, the portion observed with the darkest contrast is the columnar particles of silicon nitride, and the portion observed with the white contrast is the grain boundary. In this case, it can be handled as a multi-phase material having silicon nitride as the first phase and grain boundaries as the second phase. By three-dimensionally combining on a computer the two-dimensional observation images for 100 times obtained by the sequential processing observation,
The morphology could be measured using silicon nitride crystals as columnar particles. For example, it was possible to measure the length of columnar particles that could not be measured from one two-dimensional observation image. FIG. 14 shows an example of the obtained three-dimensional image. This is obtained by selecting eight silicon nitride crystals from the field of view in FIG. 10 and synthesizing two-dimensional observation images for 100 times three-dimensionally, and clearly shows the form of each individual silicon nitride crystal as hexagonal columnar particles. .

【0025】以上の例では、セラミックス粒子自体の三
次元形態計測を行った例を示したが、本発明の方法によ
れば、粒子形態の三次元解析のみでなく、例えば粒子に
相対するクラック形態の三次元解析もできる。破壊し難
い材料を開発するためには、粒子とその粒子によって導
かれる破壊経路(クラック伝播経路)との関係を明らか
にする必要がある。従来は図11に示すように二次元像
でクラック伝播経路を観察していたが、実際には破壊は
三次元的に起きている。本発明の方法によれば、図12
に示したように、クラックが多相材料中の分散粒子の間
を通って伝播し、あるいは分散粒子により停止させられ
ている状態をより明瞭に観察することができる。このよ
うにして得られる特定相の三次元的な形態(形状、寸
法、分布、体積率等)の計測結果は、破壊靱性の優れた
材料開発に必要な情報として極めて有用である。
In the above example, an example was shown in which the three-dimensional morphology of the ceramic particles themselves was measured. However, according to the method of the present invention, not only the three-dimensional analysis of the particle morphology but also the 3D analysis is also possible. In order to develop a material that is difficult to break, it is necessary to clarify the relationship between particles and a fracture path (crack propagation path) guided by the particles. Conventionally, as shown in FIG. 11, the crack propagation path is observed with a two-dimensional image, but actually, the fracture occurs three-dimensionally. According to the method of the present invention, FIG.
As shown in the above, it is possible to more clearly observe the state in which the cracks propagate between the dispersed particles in the multi-phase material or are stopped by the dispersed particles. The measurement results of the three-dimensional form (shape, size, distribution, volume ratio, etc.) of the specific phase obtained in this way are extremely useful as information necessary for developing a material having excellent fracture toughness.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
セラミックス焼結体に代表される多相材料中の特定相
(粒子、ボイド、クラック等)の形態を三次元的に計測
する方法が提供される。これにより、特性の優れた多相
材料の開発に極めて有用な情報を得ることができる。
As described above, according to the present invention,
A method is provided for three-dimensionally measuring the form of a specific phase (particles, voids, cracks, etc.) in a multiphase material represented by a ceramic sintered body. This makes it possible to obtain information that is extremely useful for developing a multiphase material having excellent characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、従来の二次元平面上で観察による第2
相粒子形態を示す模式図である。
FIG. 1 is a second view obtained by observation on a conventional two-dimensional plane.
It is a schematic diagram which shows a phase particle form.

【図2】図2は、三次元的に形状の異なる第2相粒子を
分散させた場合の粒子体積分率と相対破壊靱性値との関
係を模式的に示すグラフである。
FIG. 2 is a graph schematically showing a relationship between a particle volume fraction and a relative fracture toughness value when second phase particles having three-dimensionally different shapes are dispersed.

【図3】図3は、長径および短径を持つ柱状粒子と、そ
の二次元観察像との関係を示す模式図である。
FIG. 3 is a schematic diagram illustrating a relationship between columnar particles having a major axis and a minor axis and a two-dimensional observation image thereof.

【図4】図4は、本発明による三次元形態計測方法を行
う手順の典型例を示すフローチャートである。
FIG. 4 is a flowchart showing a typical example of a procedure for performing the three-dimensional shape measurement method according to the present invention.

【図5】図5(A)および(B)は、本発明の三次元形
態計測に用いるのに適した集束イオンビーム発生装置
(加工・観察装置)の(A)斜視図および(B)部分拡
大断面図である。
5 (A) and 5 (B) are (A) perspective view and (B) part of a focused ion beam generator (processing / observing apparatus) suitable for use in three-dimensional shape measurement of the present invention. It is an expanded sectional view.

【図6】図6は、本発明による逐次加工観察を行う際の
試料とイオンビームの照射方向(加工・観察方向)との
関係を示す模式図である。
FIG. 6 is a schematic diagram showing a relationship between a sample and an ion beam irradiation direction (processing / observation direction) when performing sequential processing observation according to the present invention.

【図7】図7は、図6の面Aにおける断面図である。FIG. 7 is a cross-sectional view taken along a plane A in FIG. 6;

【図8】図8は、本発明による加工時にイオンビーム照
射方向に対して試料の加工面を所定の補正角度θだけ傾
斜させた状態を模式的に示す断面図である。
FIG. 8 is a cross-sectional view schematically showing a state in which a processing surface of a sample is inclined by a predetermined correction angle θ with respect to an ion beam irradiation direction during processing according to the present invention.

【図9】図9は、セリア安定化ジルコニア(ZrO2
から成る第1相マトリクス中に、円板状のランタン−β
−アルミナ粒子(LBA)が第2相として分散したセラ
ミックス焼結体を、本発明により100回逐次加工観察
したうちの最初の6回分を示す顕微鏡写真である。
FIG. 9 shows ceria-stabilized zirconia (ZrO 2 )
Lanthanum-β in a first phase matrix consisting of
-It is a microscope picture which shows the first six times of the ceramics sintered compact in which the alumina particles (LBA) were dispersed as the second phase were sequentially processed and observed 100 times by the present invention.

【図10】図10は、柱状粒子の窒化珪素(Si3
4 )焼結体について100回逐次加工観察したうちの最
初の6回分を示す顕微鏡写真である。
FIG. 10 is a view showing columnar particles of silicon nitride (Si 3 N);
4 ) Photomicrographs showing the first six times of 100 successive processing observations on the sintered body.

【図11】図11は、従来の二次元観察による分散粒子
とクラックとを示す模式図である。
FIG. 11 is a schematic diagram showing dispersed particles and cracks by conventional two-dimensional observation.

【図12】図12は、本発明により多数の二次元観察像
から合成した分散粒子とクラックの三次元像を示す模式
図である。
FIG. 12 is a schematic diagram showing a three-dimensional image of dispersed particles and cracks synthesized from a number of two-dimensional observation images according to the present invention.

【図13】図13は、図9に示した例の100回分の二
次元像より合成した三次元像の一例を示す顕微鏡写真で
ある。図中に、三次元のスケールとして一辺が10μm
の立方体を記入した。
FIG. 13 is a micrograph showing an example of a three-dimensional image synthesized from 100 two-dimensional images of the example shown in FIG. 9; In the figure, one side is 10 μm as a three-dimensional scale.
Filled the cube.

【図14】図14は、図10に示した例の100回分の
二次元像より合成した三次元像の一例を示す顕微鏡写真
である。図中に、三次元のスケールとして一辺が10μ
mの立方体を記入した。
FIG. 14 is a photomicrograph showing an example of a three-dimensional image synthesized from 100 two-dimensional images of the example shown in FIG. 10; In the figure, one side is 10μ as a three-dimensional scale.
m is filled in.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の相から成る多相材料中の特定相の
形態を三次元計測する方法であって、 上記多相材料を所定深さまで加工除去して一断面を平面
として表出させた後、この平面の二次元観察像を形成す
る加工・観察サイクルを、深さ方向に順次繰り返し、複
数の断面について得られた二次元観察像を上記繰り返し
順に合成して三次元像を形成することを特徴とする三次
元形態計測方法。
1. A method for three-dimensionally measuring a form of a specific phase in a multi-phase material comprising a plurality of phases, wherein the multi-phase material is processed and removed to a predetermined depth, and one section is exposed as a plane. Thereafter, a processing / observation cycle for forming a two-dimensional observation image of this plane is sequentially repeated in the depth direction, and a two-dimensional observation image obtained for a plurality of cross sections is combined in the above-described repetition order to form a three-dimensional image. A three-dimensional morphological measurement method characterized by the following.
【請求項2】 前記加工除去をイオンビームの照射によ
り行うことを特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the processing and removing are performed by irradiation with an ion beam.
【請求項3】 前記イオンビームの照射方向を、前記表
出させる平面に対してほぼ平行にすることを特徴とする
請求項2記載の方法。
3. The method according to claim 2, wherein the irradiation direction of the ion beam is substantially parallel to the plane to be exposed.
【請求項4】 前記イオンビームの照射方向を、前記表
出させる平面に対して所定の補正角度だけ傾斜させるこ
とを特徴とする請求項2または3記載の方法。
4. The method according to claim 2, wherein the irradiation direction of the ion beam is inclined by a predetermined correction angle with respect to the plane to be exposed.
【請求項5】 前記二次元観察像を電子情報として記録
し、前記合成をコンピュータにより行い前記三次元像を
形成することを特徴とする請求項1から4までのいずれ
か1項に記載の方法。
5. The method according to claim 1, wherein the two-dimensional observation image is recorded as electronic information, and the combination is performed by a computer to form the three-dimensional image. .
JP27042597A 1996-10-04 1997-09-17 3D shape measurement method Expired - Fee Related JP3334576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27042597A JP3334576B2 (en) 1996-10-04 1997-09-17 3D shape measurement method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-281642 1996-10-04
JP28164296 1996-10-04
JP27042597A JP3334576B2 (en) 1996-10-04 1997-09-17 3D shape measurement method

Publications (2)

Publication Number Publication Date
JPH10160693A true JPH10160693A (en) 1998-06-19
JP3334576B2 JP3334576B2 (en) 2002-10-15

Family

ID=26549214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27042597A Expired - Fee Related JP3334576B2 (en) 1996-10-04 1997-09-17 3D shape measurement method

Country Status (1)

Country Link
JP (1) JP3334576B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102365A (en) * 1999-07-29 2001-04-13 Kyocera Corp Vacuum chamber and manufacturing method therefor
JP2020060467A (en) * 2018-10-11 2020-04-16 東邦チタニウム株式会社 Evaluation method and evaluation device of metal powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102365A (en) * 1999-07-29 2001-04-13 Kyocera Corp Vacuum chamber and manufacturing method therefor
JP4544700B2 (en) * 1999-07-29 2010-09-15 京セラ株式会社 Vacuum container and method for manufacturing the same
JP2020060467A (en) * 2018-10-11 2020-04-16 東邦チタニウム株式会社 Evaluation method and evaluation device of metal powder

Also Published As

Publication number Publication date
JP3334576B2 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
CN111289546B (en) Preparation and characterization method of precious metal superfine wire EBSD test sample
Prenitzer et al. Transmission electron microscope specimen preparation of Zn powders using the focused ion beam lift-out technique
Kibbel et al. Exaggerated Grain Growth in ZrO2‐Toughened Al2O3
JP3334576B2 (en) 3D shape measurement method
CN108181333B (en) Process method and evaluation method for refining amorphous solid alloy three-dimensional reconstruction transmission electron microscope sample
CN109942316A (en) A kind of enhancing zirconium dioxide surface hides the coating process of color porcelain shear strength
Weck et al. Femtosecond laser-based fabrication of a new model material to study fracture
Björklund et al. Quantitative Microscopy of β‐Si3N4 Ceramics
Tuggle et al. Electron backscatter diffraction of Nb3Sn coated niobium: Revealing structure as a function of depth
Baba et al. Microstructure and mechanical properties of TiN dispersed Si 3 N 4 ceramics via in-situ nitridation of coarse metallic Ti.
Savchenko et al. Characterization of deformation and damage process of alumina-based ceramics by DIC technique
US5017548A (en) Method of producing high-temperature superconducting ceramics material by mechanical orientation
Frankberg Plastic deformation of amorphous aluminium oxide: flow of inorganic glass at room temperature
Ikuhara Towards new transmission electron microscopy in advanced ceramics
JP2000310585A (en) Formation for thin film sample for transmission type electron microscopic observation
Anderson et al. Practical Aspects of FIB Tem Specimen Preparation: With Emphasis On Semiconductor Applications
Black Plastic deformation in ultramicrotomy of copper and aluminum
Yilmaz Mechanical properties of body-centred cubic nanopillars
Murphy et al. Characterisation of plastic zones around crack-tips in pure single-crystal tungsten using electron backscatter diffraction
Argunova et al. Third International Conference “Physics for Life Sciences” Study of Dentin Structural Features by Computed Microtomography and Transmission Electron Microscopy
Hetherington Preparation of semiconductor cross sections by cleaving
Bailey et al. Preparation of 3D atom probe samples of multilayered film structures using a focused ion beam
Raiser Dynamic failure resistance of ceramics and glasses
Kulkov et al. Microstructure of porous ceramics sintered at different temperatures
Lu In-situ transmission electron microscopy study of dislocation in TI-6AL-4V

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070802

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees