JPH10160666A - Spectral analyzer - Google Patents

Spectral analyzer

Info

Publication number
JPH10160666A
JPH10160666A JP31935896A JP31935896A JPH10160666A JP H10160666 A JPH10160666 A JP H10160666A JP 31935896 A JP31935896 A JP 31935896A JP 31935896 A JP31935896 A JP 31935896A JP H10160666 A JPH10160666 A JP H10160666A
Authority
JP
Japan
Prior art keywords
sample
light
signal
semiconductor laser
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31935896A
Other languages
Japanese (ja)
Inventor
Masahiko Muto
雅彦 武藤
Nobuya Tsujikura
伸弥 辻倉
Satoshi Igawa
聖史 井川
Hiroichi Ikeda
博一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP31935896A priority Critical patent/JPH10160666A/en
Publication of JPH10160666A publication Critical patent/JPH10160666A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve measurement work efficiency while suppressing configuration of spectral analyzer from being more complex to the best. SOLUTION: The device comprises an irradiation part 13 which irradiates a measurement light ray from a light source part LS to a sample, a photo- detecting part 14 which photo-detects the light transmitting or reflected on the sample, and a spectral analysis means which, based on the light detected with the light photo-detecting part 14, obtains component contained in the sample. The light source part LS comprises a semiconductor laser element 2 and a laser driving means which modulates an injection current to the semiconductor laser element 2 with a repeated signal of set cycle, and the spectral analysis means extracts, among the light photo-detected with the photo-detecting part 14, the signal component which changes in synchronous with the repetition signal of the set cycle, and based on the extracted signal component, obtains a component contained in the sample.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光源部からの測定
用光線を試料に照射する照射部と、前記試料を透過又は
前記試料で反射した光を受光する受光部と、その受光部
が受光した光に基づいて前記試料に含まれる成分を求め
る分光分析手段とが設けられた分光分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an irradiating section for irradiating a sample with a measuring light beam from a light source section, a light receiving section for receiving light transmitted through or reflected by the sample, and a light receiving section for receiving the light. And a spectroscopic analysis unit for obtaining a component contained in the sample on the basis of the obtained light.

【0002】[0002]

【従来の技術】かかる分光分析装置は、照射部から、例
えば青果物等の試料に向けて測定用光線を照射し、その
試料の透過光又は反射光を受光部にて受光する。試料に
含まれる成分によっては特定の波長の光を吸収する等す
るので、試料に照射される測定用光線の強度が一定であ
っても、試料中におけるその成分の存否あるいは多少に
よって、反射光又は透過光の強度が変化する。そこで、
分光分析手段にて、特定の波長での試料の透過光又は試
料からの反射光の強度を測定することで、試料に含まれ
る成分を求めることができる。ところで、この試料の透
過光又は試料からの反射光の強度はそれほど強いもので
はないため、従来、試料,照射部及び受光部等を暗箱に
入れて測定するか、あるいは、暗室にて測定する等し
て、外乱光を遮断した状態で測定していた。
2. Description of the Related Art In such a spectroscopic analyzer, a light beam for measurement is radiated from an irradiating section toward a sample such as fruits and vegetables, and transmitted light or reflected light of the sample is received by a light receiving section. Depending on the components contained in the sample, it absorbs light of a specific wavelength, etc., so even if the intensity of the measurement light beam applied to the sample is constant, the reflected light or The intensity of the transmitted light changes. Therefore,
The components contained in the sample can be obtained by measuring the intensity of the transmitted light of the sample at a specific wavelength or the intensity of the reflected light from the sample by the spectroscopic analysis means. By the way, since the intensity of the transmitted light of the sample or the reflected light from the sample is not so strong, conventionally, the sample, the irradiation unit, the light receiving unit, and the like are measured in a dark box or measured in a dark room. The measurement was performed in a state where disturbance light was blocked.

【0003】[0003]

【発明が解決しようとする課題】従って、上記従来構成
では、外乱光を遮断するために、測定に手間がかかるも
のとなって、測定作業効率を低下させる不都合があっ
た。又、このような不都合を回避するために、光源部か
らの光をいわゆるチョッパにより断続して一定周期のパ
ルス光とした状態で、照射部から試料に照射し、受光部
にて受光した光からそのパルス光と同期して変化する成
分を抽出することにより、外乱光の影響を抑制する技術
も考えられているが、回転駆動機構等を備えたチョッパ
が必要となって分光分析装置の装置構成が大型化してし
まう不都合がある。本発明は、上記実情に鑑みてなされ
たものであって、その目的は、構成の複雑化を可及的に
抑制しながら、測定作業効率の向上を図る点にある。
Therefore, in the above-described conventional configuration, it takes much time and effort to measure the disturbance light to block the disturbance light. Further, in order to avoid such inconvenience, the light from the light source unit is intermittently turned on by a so-called chopper into a pulse light having a constant cycle, and the sample is irradiated from the irradiation unit to the light received from the light receiving unit. A technique has been considered to suppress the influence of disturbance light by extracting components that change in synchronization with the pulsed light.However, a chopper equipped with a rotary drive mechanism is required, and the device configuration of the spectrometer is required. However, there is a disadvantage that the size becomes large. The present invention has been made in view of the above circumstances, and an object of the present invention is to improve measurement work efficiency while minimizing the complexity of the configuration as much as possible.

【0004】[0004]

【課題を解決するための手段】上記請求項1記載の構成
を備えることにより、測定用光線を照射する光源部は、
半導体レーザ素子への注入電流を設定周期の繰り返し信
号にて変調して、その変調状態に応じて光強度が変化し
た測定用光線を出射する。光源部からの測定用光線は照
射部から測定対象の試料に照射されて、その試料で反射
した光又はその試料を透過した光を受光部で受光する。
そして、分光分析手段は、受光部が受光した光のうちか
ら、半導体レーザ素子の注入電流を変調した設定周期の
繰り返し信号と同期して変化する信号成分を抽出し、そ
の抽出した信号成分に基づいて、試料に含まれる成分を
求める。
According to the first aspect of the present invention, a light source unit for irradiating a measuring light beam is provided.
The injection current to the semiconductor laser element is modulated by a repetition signal of a set period, and a measurement light beam whose light intensity changes according to the modulation state is emitted. The measurement light beam from the light source unit is applied to the sample to be measured from the irradiation unit, and the light reflected by the sample or the light transmitted through the sample is received by the light receiving unit.
Then, the spectral analysis means extracts, from the light received by the light receiving unit, a signal component that changes in synchronization with a repetition signal of a set period that modulates the injection current of the semiconductor laser element, and based on the extracted signal component. To determine the components contained in the sample.

【0005】すなわち、半導体レーザ素子は、それに対
する注入電流を変化させると出射光強度が変化するとい
う特有の性質を有するので、その性質を利用して、試料
に照射する光の強度を設定周期で繰り返し変化させるこ
とができる。そして、試料の透過光又は試料からの反射
光のうちから、半導体レーザ素子の出射光の強度変化と
同期して変化する信号成分を抽出することで、受光部に
外乱光が入射した場合であっても、半導体レーザ素子の
出射光の強度変化と同期しては変化しない外乱光の影響
を抑制することができて、試料に対する遮光をそれほど
厳密に行う必要がない。もって、半導体レーザ素子の本
来的な性質を利用して、半導体レーザ素子の注入電流を
変調するだけの簡素な構成で、測定作業効率を向上でき
るものとなった。
That is, the semiconductor laser element has a unique property that the intensity of the emitted light changes when the injection current to the semiconductor laser element is changed. Therefore, by utilizing the property, the intensity of the light irradiating the sample is adjusted at a set period. Can be changed repeatedly. Then, by extracting a signal component that changes in synchronization with a change in the intensity of the emitted light from the semiconductor laser element from the transmitted light of the sample or the reflected light from the sample, the case where disturbance light is incident on the light receiving unit is obtained. However, it is possible to suppress the influence of disturbance light that does not change in synchronization with the change in the intensity of the light emitted from the semiconductor laser element, and it is not necessary to perform light shielding on the sample so strictly. Thus, the measurement operation efficiency can be improved with a simple configuration that only modulates the injection current of the semiconductor laser element by utilizing the intrinsic properties of the semiconductor laser element.

【0006】又、上記請求項2記載の構成を備えること
により、光源部には、発光波長の異なる複数個の半導体
レーザ素子が備えられており、複数の波長で分光分析を
行うことができる。すなわち、単一の波長のみで分光分
析を行うことも可能であるが、上記のように複数の波長
で分光分析を行うことで、試料に含まれる複数の成分を
求めたいような場合にも対応でき、分光分析装置を一層
便利なものとできる。
In addition, with the configuration of the second aspect, the light source section is provided with a plurality of semiconductor laser elements having different emission wavelengths, so that spectral analysis can be performed at a plurality of wavelengths. In other words, it is possible to perform spectral analysis with only a single wavelength, but by performing spectral analysis with multiple wavelengths as described above, it is possible to cope with the case where it is desired to obtain multiple components contained in a sample. In addition, the spectroscopic analyzer can be made more convenient.

【0007】又、上記請求項3記載の構成を備えること
により、試料の分光分析を行うときは、照射部及び受光
部の近くに設けられた試料載置部に試料を載置して測定
する。この分光分析の際、分光分析手段は、試料載置部
が試料の載置操作時の姿勢を維持して、試料に外部光が
照射される状態で、分光分析を行う。つまり、測定対象
の試料を試料載置部に試料をセットするだけで測定操作
に移行できるので、例えば、試料載置部に試料を出し入
れする部分に遮光用の開閉扉を備えて試料の交換の都度
開閉するような構成に較べて、試料の交換操作を極めて
簡単化でき、測定作業効率を可及的に向上できる。そし
て、このように外部光が試料に照射され、外乱光として
作用する場合でも、上記のようにその影響を抑制でき
る。
[0007] With the configuration according to the third aspect, when spectroscopic analysis of the sample is performed, the sample is mounted on the sample mounting unit provided near the irradiation unit and the light receiving unit and measured. . At the time of this spectroscopic analysis, the spectroscopic analysis means performs the spectroscopic analysis in a state where the sample mounting section maintains the posture at the time of the sample mounting operation and the sample is irradiated with external light. In other words, it is possible to proceed to the measurement operation simply by setting the sample to be measured on the sample mounting portion. Compared to a configuration that opens and closes each time, the operation of exchanging the sample can be extremely simplified, and the efficiency of the measurement operation can be improved as much as possible. Then, even when the sample is irradiated with external light and acts as disturbance light, the influence can be suppressed as described above.

【0008】又、上記請求項4記載の構成を備えること
により、レーザ駆動手段は、半導体レーザ素子の注入電
流を、設定周期の正弦波信号又はパルス信号にて変調す
る。つまり、設定周期の繰り返し信号として単純な信号
を用いているので、レーザ駆動手段自体、並びに、受光
部が受光した光のうちから、設定周期の繰り返し信号と
同期して変化する信号成分を抽出する分光分析手段の構
成を簡素化することができる。
[0008] With the above configuration, the laser driving means modulates the injection current of the semiconductor laser element with a sine wave signal or a pulse signal having a set period. That is, since a simple signal is used as the repetition signal of the set cycle, a signal component that changes in synchronization with the repetition signal of the set cycle is extracted from the laser driving unit itself and the light received by the light receiving unit. The configuration of the spectroscopic analysis means can be simplified.

【0009】[0009]

【発明の実施の形態】以下、本発明を、測定対象の試料
Sである青果物に含まれる成分を求める場合に適用した
実施の形態を図面に基づいて説明する。図1に示すよう
に、分光分析装置1は、光源部LSと、光源部LSから
の測定用光線を試料Sに照射する照射部13と、試料S
からの透過光を受光する受光部14と、照射部13と受
光部14との間で、それらの何れに対しても近い位置に
位置する試料載置部15と、受光部14が受光した透過
光を検出する受光素子6と、受光素子6にて検出した光
の強度に基づいて試料Sに含まれる成分を求める分光分
析手段としての分析部ANとを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment in which the present invention is applied to a case where a component contained in a fruit or vegetable which is a sample S to be measured is determined will be described with reference to the drawings. As shown in FIG. 1, the spectroscopic analyzer 1 includes a light source unit LS, an irradiation unit 13 that irradiates the sample S with a measurement light beam from the light source unit LS,
A light receiving unit 14 for receiving the transmitted light from the light source, a sample mounting unit 15 located between the irradiation unit 13 and the light receiving unit 14 at a position close to any of them, and a transmission light received by the light receiving unit 14. The light-receiving element 6 includes a light-receiving element 6 that detects light, and an analysis unit AN as a spectral analysis unit that obtains a component contained in the sample S based on the intensity of the light detected by the light-receiving element 6.

【0010】照射部13は、保持部13aと、試料Sに
密着して外部からの光を遮光する椀形状のゴム製パッド
13bにより構成してある。同様に、受光部14も、保
持部14aと椀形状のゴム製パッド14bにより構成し
てある。試料載置部15には、上面が下に凸に湾曲した
試料載置面を有する試料載置台15aが取り付けられ、
測定対象の試料Sを試料載置部15へ載置し易くしてい
る。
The irradiating section 13 is composed of a holding section 13a and a bowl-shaped rubber pad 13b which is in close contact with the sample S and shields external light. Similarly, the light receiving section 14 is also constituted by a holding section 14a and a bowl-shaped rubber pad 14b. A sample mounting table 15a having a sample mounting surface whose upper surface is convexly curved downward is attached to the sample mounting unit 15,
The sample S to be measured is easily mounted on the sample mounting section 15.

【0011】光源部LSには、光源である半導体レーザ
素子2と半導体レーザ素子2の出射光を集光する集光レ
ンズ3とが取付台4に固定されて備えられている他、分
光分析装置1の下部筐体1a内に収納されている状態
で、半導体レーザ素子2に駆動電流を供給するレーザ駆
動回路5が備えられている。レーザ駆動回路5は、図3
(イ)に示すように、半導体レーザ素子2への注入電流
を設定周期の繰り返し信号である正弦波信号で変調する
ものであり、レーザ駆動手段として機能する。レーザ駆
動回路5には、その変調のために正弦波発振回路5aが
備えられ、正弦波発振回路5aの発振周波数f0にて注
入電流を変調する。この注入電流の変調に応じて、半導
体レーザ素子2の出射光強度は、図3(ロ)に示すよう
に、正弦波状に変化する。
The light source section LS is provided with a semiconductor laser element 2 as a light source and a condensing lens 3 for condensing light emitted from the semiconductor laser element 2 fixed to a mount 4 and a spectroscopic analyzer. A laser drive circuit 5 that supplies a drive current to the semiconductor laser element 2 while being housed in the lower housing 1a is provided. The laser drive circuit 5 is shown in FIG.
As shown in (a), the injection current to the semiconductor laser element 2 is modulated by a sine wave signal which is a repetitive signal of a set period, and functions as a laser driving unit. The laser drive circuit 5 includes a sine wave oscillation circuit 5a for the modulation, and modulates the injection current at the oscillation frequency f0 of the sine wave oscillation circuit 5a. In accordance with the modulation of the injection current, the output light intensity of the semiconductor laser element 2 changes in a sine wave shape as shown in FIG.

【0012】分析部ANは、分光分析装置1の下部筐体
1a内に備えられ、図2に示すように、主に、バンドパ
スフィルタ回路7,掛け算回路8,ローパスフィルタ回
路9及びマイクロコンピュータを利用して構成される演
算装置10からなる。バンドパスフィルタ回路7は、受
光素子6の検出信号から、上記半導体レーザ素子2の変
調周波数f0付近の周波数の信号を選択的に通過させ、
掛け算回路9は、そのバンドパスフィルタ回路7の出力
と、レーザ駆動回路5の正弦波発振回路5aの周波数f
0の正弦波信号とを掛け算し、ローパスフィルタ回路9
は、掛け算回路9に出力のうち低周波数成分の信号のみ
を通過させる。つまり、バンドパスフィルタ回路7から
ローパスフィルタ回路9に至る回路は、いわゆるロック
インアンプを構成しており、受光素子6の検出信号か
ら、半導体レーザ素子2に対する変調信号である設定周
期の繰り返し信号と同期して変化する信号成分を抽出す
るのである。従って、受光部14に外部光が進入して、
受光素子6に入射しての、その外部光すなわち外乱光の
影響を低減した状態で測定できる。
The analysis section AN is provided in the lower housing 1a of the spectroscopic analyzer 1, and as shown in FIG. 2, mainly includes a band-pass filter circuit 7, a multiplication circuit 8, a low-pass filter circuit 9, and a microcomputer. It comprises an arithmetic unit 10 configured by utilizing. The bandpass filter circuit 7 selectively passes a signal having a frequency near the modulation frequency f0 of the semiconductor laser element 2 from the detection signal of the light receiving element 6,
The multiplication circuit 9 outputs the output of the band-pass filter circuit 7 and the frequency f of the sine wave oscillation circuit 5 a of the laser drive circuit 5.
Multiplied by a sine wave signal of 0, and a low-pass filter circuit 9
Allows the multiplication circuit 9 to pass only the signal of the low frequency component in the output. In other words, a circuit from the band-pass filter circuit 7 to the low-pass filter circuit 9 constitutes a so-called lock-in amplifier, and converts a detection signal of the light receiving element 6 into a repetition signal of a set period which is a modulation signal for the semiconductor laser element 2. It extracts signal components that change synchronously. Therefore, external light enters the light receiving unit 14 and
The measurement can be performed in a state where the influence of external light, that is, disturbance light, incident on the light receiving element 6 is reduced.

【0013】演算装置10は、ローパスフィルタ回路9
からの入力信号から、試料Sの透過率を演算し、試料S
に含まれる成分を求める。試料Sにグルコースが含まれ
ているか否かを判断したい場合を例にとって具体的に説
明すると、グルコースは、750nm,830nm,9
15nm,1030nm,1080nm,1205n
m,1260nm及び1380nm等の波長で特徴的な
吸収特定を有するので、半導体レーザ素子2として例え
ば1260nmの発光波長を有するInGaAsP系の
ものを採用して、それの測定用光線の試料Sでの吸光度
から、試料Sにグルコースが含まれているか否かを判定
できる。このグルコース以外にも、種々の成分の吸収特
性に応じた発光波長を選択して使用することで、種々の
成分を求めることができる。
The arithmetic unit 10 includes a low-pass filter circuit 9
Calculates the transmittance of sample S from the input signal from
Find the components contained in The case where it is desired to determine whether or not glucose is contained in the sample S will be specifically described as an example. Glucose is 750 nm, 830 nm, 9
15nm, 1030nm, 1080nm, 1205n
Since the semiconductor laser device 2 has a characteristic absorption characteristic at wavelengths such as m, 1260 nm, and 1380 nm, for example, an InGaAsP-based semiconductor laser device having an emission wavelength of 1260 nm is employed, and the absorbance of the measurement light beam in the sample S is measured. Thus, it can be determined whether or not the sample S contains glucose. In addition to glucose, various components can be obtained by selecting and using emission wavelengths according to the absorption characteristics of various components.

【0014】実際の測定作業では、作業者が、試料載置
台15a上の試料Sを測定済みのものから未測定のもの
に取り替える作業及び図示しない測定開始指示用のスイ
ッチを入り操作する作業を順次繰り返し、連続的に複数
の試料Sの測定を行う。測定作業時においては、試料載
置部15は周囲が開放されており、測定済みの試料Sと
未測定の試料Sとの交換を容易に行える。又、上述のよ
うに、外部光が入射してもその影響を排除して測定でき
るので、試料載置部15が、測定対象の試料Sを試料載
置台15a上に載置したときの状態を維持したままで、
すなわち、外部光が照射される状態のままで測定を行え
る。
In the actual measurement operation, the operator sequentially performs the operation of replacing the sample S on the sample mounting table 15a from the measured one to the unmeasured one and the operation of turning on and operating a switch (not shown) for instructing a measurement start. The measurement of a plurality of samples S is repeatedly performed continuously. At the time of the measurement work, the periphery of the sample mounting portion 15 is open, and the exchange of the measured sample S and the unmeasured sample S can be easily performed. In addition, as described above, even when external light is incident, the measurement can be performed while eliminating the influence of the external light. Therefore, the state in which the sample mounting unit 15 mounts the sample S to be measured on the sample mounting table 15a. While maintaining
That is, the measurement can be performed while the external light is being irradiated.

【0015】〔別実施形態〕以下、別実施例を列記す
る。 上記実施の形態では、光源部LSに単一の半導体レ
ーザ素子2を備える構成としているが、発光波長の異な
る半導体レーザ素子2を複数個備える構成としても良
い。このように発光波長の異なる複数個の半導体レーザ
素子2を備えることで、例えば、上記実施の形態で例示
している試料Sがグルコースを成分として含んでいるか
否かを検出する場合に、各半導体レーザ素子2の発光波
長を、グルコースの吸収特性において特徴的な波長の夫
々に設定し、グルコースの成分量が既知の試料Sを予め
測定して測定結果を記憶しておき、成分量が未知の試料
Sの測定結果をその記憶情報と対比することで、より精
度良くグルコースの存否及び存在量を測定することがで
きる。
[Other Embodiments] Other embodiments will be listed below. In the above-described embodiment, the light source section LS is provided with a single semiconductor laser element 2, but may be provided with a plurality of semiconductor laser elements 2 having different emission wavelengths. By providing a plurality of semiconductor laser elements 2 having different emission wavelengths in this manner, for example, when detecting whether or not the sample S exemplified in the above embodiment contains glucose as a component, The emission wavelength of the laser element 2 is set to each of the characteristic wavelengths in the glucose absorption characteristic, a sample S whose glucose component amount is known is measured in advance, and the measurement result is stored, and the component amount is unknown. By comparing the measurement result of the sample S with the stored information, the presence or absence and the amount of glucose can be measured more accurately.

【0016】又、各半導体レーザ素子2の発光波長を、
グルコース以外に、クエン酸又はアスコルビン酸等の吸
収特定に対応した発光波長に設定して、試料Sに含まれ
る複数の成分を求めるようにしても良い。尚、半導体レ
ーザ素子2を複数個設ける態様としては、複数個の半導
体レーザ素子のチップを一つのパッケージ内に、光出射
方向視で横並び状態で配置する構成や、複数の半導体レ
ーザ素子2を各別に測定用光軸上に位置させる駆動手段
を設け、各半導体レーザ素子2の位置を順次切り換えて
測定する構成等種々の構成が可能である。
The emission wavelength of each semiconductor laser element 2 is
In addition to glucose, a plurality of components contained in the sample S may be obtained by setting an emission wavelength corresponding to the specific absorption of citric acid or ascorbic acid. In addition, as an aspect in which a plurality of semiconductor laser elements 2 are provided, a configuration in which chips of a plurality of semiconductor laser elements are arranged side by side in one package in a light emitting direction or a plurality of semiconductor laser elements 2 In addition, various configurations such as a configuration in which a driving unit for positioning on the optical axis for measurement is provided and the position of each semiconductor laser element 2 is sequentially switched for measurement are possible.

【0017】 上記実施の形態では、半導体レーザ素
子2への注入電流を変調する設定周期の繰り返し信号と
して正弦波信号を例示しているが、例えば、設定周期の
パルス信号にて変調しても良い。この場合、受光素子6
の検出信号を、上記の繰り返しパルス信号1周期あたり
1回サンプリングし、信号波形上の任意の1点の平均値
をとるか、あるいは、サンプリング時間を順次ずらせて
波形そのものを正確に記録する、いわゆるボックスカー
積分器の原理を利用して、外乱光の影響を低減した状態
で試料Sの透過光を検出できる。
In the above-described embodiment, a sine wave signal is exemplified as a repetition signal of a set cycle for modulating an injection current to the semiconductor laser element 2. However, for example, the signal may be modulated by a pulse signal of a set cycle. . In this case, the light receiving element 6
Is sampled once per one cycle of the repetitive pulse signal, and the average value of an arbitrary point on the signal waveform is obtained, or the waveform itself is accurately recorded by sequentially shifting the sampling time. Utilizing the principle of the boxcar integrator, the transmitted light of the sample S can be detected in a state where the influence of disturbance light is reduced.

【0018】 上記実施の形態では、光源部LSから
の測定用光線の波長が固定設定されている場合を例示し
ているが、例えば、半導体レーザ素子2をいわゆるDB
Rレーザとして構成し、そのDBR部への注入電流を変
化させて発光波長を変化させる構成としても良い。この
ように発光波長が変化する構成とすると、吸光度の分光
スペクトルを得ることができるので、この分光スペクト
ルの二次微分から試料Sに含まれる成分を求めることが
可能となり、測定精度の向上を図ることができる。尚、
この場合、発光波長の変化は、半導体レーザ素子2の注
入電流の変調周波数よりも十分遅いこと望ましい。
In the above-described embodiment, the case where the wavelength of the measuring light beam from the light source unit LS is fixedly set is exemplified.
It may be configured as an R laser, and the emission wavelength may be changed by changing the injection current to the DBR section. With such a configuration in which the emission wavelength changes, a spectral spectrum of the absorbance can be obtained, so that the component contained in the sample S can be obtained from the second derivative of the spectral spectrum, and the measurement accuracy is improved. be able to. still,
In this case, it is desirable that the change of the emission wavelength is sufficiently slower than the modulation frequency of the injection current of the semiconductor laser device 2.

【0019】 上記実施の形態では、分析部ANにバ
ンドパスフィルタ回路7等を備えて、半導体レーザ素子
2の注入電流を変調する設定周期の繰り返し信号と同期
して変化する信号成分を抽出しているが、これらの回路
による処理を全て演算装置10にて行わせるように構成
しても良い。 上記実施の形態では、受光部14は試料Sを透過し
た光を受光する構成としているが、照射部13から照射
して試料Sで反射された光を受光部14にて受光する構
成としても良い。
In the above embodiment, the analysis unit AN includes the band-pass filter circuit 7 and the like, and extracts a signal component that changes in synchronization with a repetition signal of a set cycle for modulating the injection current of the semiconductor laser device 2. However, a configuration may be adopted in which the processing by all of these circuits is performed by the arithmetic device 10. In the above embodiment, the light receiving unit 14 is configured to receive the light transmitted through the sample S. However, the light receiving unit 14 may be configured to receive the light emitted from the irradiation unit 13 and reflected by the sample S. .

【0020】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構造に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the structure shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態にかかる分光分析装置の概
略構成図
FIG. 1 is a schematic configuration diagram of a spectroscopic analyzer according to an embodiment of the present invention.

【図2】本発明の実施の形態にかかる分光分析装置の概
略ブロック構成図
FIG. 2 is a schematic block diagram of a spectroscopic analyzer according to an embodiment of the present invention.

【図3】本発明の実施の形態にかかる測定用光線の変調
状態の説明図
FIG. 3 is an explanatory diagram of a modulation state of a measuring light beam according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 半導体レーザ素子 5 レーザ駆動手段 13 照射部 14 受光部 15 試料載置部 AN 分光分析手段 LS 光源部 2 Semiconductor laser element 5 Laser driving means 13 Irradiation part 14 Light receiving part 15 Sample mounting part AN Spectroscopic analysis means LS Light source part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 博一 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Hirokazu Ikeda 1-1-1 Hama, Amagasaki-shi, Hyogo Pref.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光源部(LS)からの測定用光線を試料
に照射する照射部(13)と、前記試料を透過又は前記
試料で反射した光を受光する受光部(14)と、その受
光部(14)が受光した光に基づいて前記試料に含まれ
る成分を求める分光分析手段(AN)とが設けられた分
光分析装置であって、 前記光源部(LS)が、半導体レーザ素子(2)と、 その半導体レーザ素子(2)への注入電流を設定周期の
繰り返し信号にて変調するレーザ駆動手段(5)とが備
えられて構成され、 前記分光分析手段(AN)は、前記受光部(14)が受
光した光のうちから、前記設定周期の繰り返し信号と同
期して変化する信号成分を抽出し、その抽出した信号成
分に基づいて、前記試料に含まれる成分を求めるように
構成されている分光分析装置。
An irradiation unit (13) for irradiating a sample with a measurement light beam from a light source unit (LS), a light receiving unit (14) for receiving light transmitted through the sample or reflected by the sample, and receiving the light. A spectral analysis unit (AN) for obtaining a component contained in the sample based on light received by the unit (14), wherein the light source unit (LS) is a semiconductor laser device (2). ), And a laser driving means (5) for modulating an injection current to the semiconductor laser element (2) with a repetitive signal of a set period. The spectroscopic analysis means (AN) comprises: (14) is configured to extract, from the light received, a signal component that changes in synchronization with the repetition signal of the set period, and obtain a component included in the sample based on the extracted signal component. Spectrometer.
【請求項2】 前記光源部(LS)に、発光波長が異な
る複数個の半導体レーザ素子(2)が備えられている請
求項1記載の分光分析装置。
2. The spectroscopic analyzer according to claim 1, wherein the light source section (LS) is provided with a plurality of semiconductor laser elements (2) having different emission wavelengths.
【請求項3】 前記照射部(13)及び前記受光部(1
4)の近くに、分光分析の対象となる試料を載置する試
料載置部(15)が設けられ、 前記分光分析手段(AN)は、前記試料載置部(15)
が前記試料の載置操作時の姿勢を維持し且つ外部光が照
射される状態で、前記試料に含まれる成分を求めるよう
に構成されている請求項1又は2記載の分光分析装置。
3. The irradiating section (13) and the light receiving section (1).
A sample mounting part (15) for mounting a sample to be subjected to spectroscopic analysis is provided near 4), and the spectroscopic analysis means (AN) is provided with the sample mounting part (15).
3. The spectroscopic analyzer according to claim 1, wherein the apparatus is configured to calculate a component contained in the sample while maintaining a posture of the sample during the mounting operation and irradiating the sample with external light. 4.
【請求項4】 前記設定周期の繰り返し信号が、設定周
期の正弦波信号又はパルス信号である請求項1〜3のい
ずれか1項に記載の分光分析装置。
4. The spectroscopic analyzer according to claim 1, wherein the repetition signal of the set cycle is a sine wave signal or a pulse signal of the set cycle.
JP31935896A 1996-11-29 1996-11-29 Spectral analyzer Pending JPH10160666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31935896A JPH10160666A (en) 1996-11-29 1996-11-29 Spectral analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31935896A JPH10160666A (en) 1996-11-29 1996-11-29 Spectral analyzer

Publications (1)

Publication Number Publication Date
JPH10160666A true JPH10160666A (en) 1998-06-19

Family

ID=18109266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31935896A Pending JPH10160666A (en) 1996-11-29 1996-11-29 Spectral analyzer

Country Status (1)

Country Link
JP (1) JPH10160666A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103130A1 (en) * 2012-12-27 2014-07-03 パナソニック 株式会社 Foodstuff analysis device
JP2014202633A (en) * 2013-04-05 2014-10-27 シンフォニアテクノロジー株式会社 Internal quality measuring apparatus for greengrocery, and greengrocery sorter
JP2016206051A (en) * 2015-04-24 2016-12-08 株式会社島津製作所 Optical analyzer
WO2022153753A1 (en) * 2021-01-13 2022-07-21 株式会社日立ハイテク Automatic analysis device and automatic analysis method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103130A1 (en) * 2012-12-27 2014-07-03 パナソニック 株式会社 Foodstuff analysis device
JP2014126560A (en) * 2012-12-27 2014-07-07 Panasonic Corp Food analysis device
US9784672B2 (en) 2012-12-27 2017-10-10 Panasonic Intellectual Property Management Co., Ltd. Foodstuff analysis device
JP2014202633A (en) * 2013-04-05 2014-10-27 シンフォニアテクノロジー株式会社 Internal quality measuring apparatus for greengrocery, and greengrocery sorter
JP2016206051A (en) * 2015-04-24 2016-12-08 株式会社島津製作所 Optical analyzer
WO2022153753A1 (en) * 2021-01-13 2022-07-21 株式会社日立ハイテク Automatic analysis device and automatic analysis method

Similar Documents

Publication Publication Date Title
EP0056239B1 (en) Method of measuring raman spectra and laser raman spectrophotometry system
US4236076A (en) Infrared analyzer
WO2006021903A9 (en) Autonomous calibration for optical analysis system
WO2006021926A1 (en) Calibration for spectroscopic analysis
EP1645854B1 (en) Method and apparatus for measurement of optical detector linearity
US8891085B2 (en) Gas analyzer
JP3056037B2 (en) Optical measurement method and device
JPS5939686B2 (en) Multiwavelength spectrometer and multiwavelength radiation analyzer
US5202560A (en) System for measuring the concentration of a gaseous component by detecting positions of mode jumps in a laser diode
EP0121404A2 (en) A photometric light absorption measuring apparatus
CN111189781A (en) Photoacoustic spectrum gas sensor
JPH052931B2 (en)
JPH10160666A (en) Spectral analyzer
JP2000230903A (en) Photometric method and apparatus
JP3451536B2 (en) Soil optical property measurement device
CN113295655A (en) Large-dynamic-range spectral transmittance measuring device and calibration and measurement method thereof
JP2002350342A (en) Method and apparatus for measuring surface state
US9295420B2 (en) Transmission-reflectance swappable Raman probe for physiological detections
JP2008180597A (en) Light detection device and optical measurement unit
JP2004020539A (en) Infrared circular dichroism measuring instrument and infrared circular dichroism measuring method
JP2001159601A (en) Optical measuring apparatus
KR20190085993A (en) NDIR glucose detection in liquid
JPH09264845A (en) Absorptiometer
JPH06213804A (en) Method and apparatus for measuring percentage sugar content
EP1800109A1 (en) Method and sensor for infrared measurement of gas