JPH10148611A - Light-measuring device - Google Patents

Light-measuring device

Info

Publication number
JPH10148611A
JPH10148611A JP18502897A JP18502897A JPH10148611A JP H10148611 A JPH10148611 A JP H10148611A JP 18502897 A JP18502897 A JP 18502897A JP 18502897 A JP18502897 A JP 18502897A JP H10148611 A JPH10148611 A JP H10148611A
Authority
JP
Japan
Prior art keywords
light
transmitting
receiving
optical fiber
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18502897A
Other languages
Japanese (ja)
Inventor
Yoshio Tsunasawa
義夫 綱沢
Yasunobu Ito
康展 伊藤
Yukihisa Wada
幸久 和田
Ichiro Oda
一郎 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technology Research Association of Medical and Welfare Apparatus
Original Assignee
Technology Research Association of Medical and Welfare Apparatus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technology Research Association of Medical and Welfare Apparatus filed Critical Technology Research Association of Medical and Welfare Apparatus
Priority to JP18502897A priority Critical patent/JPH10148611A/en
Publication of JPH10148611A publication Critical patent/JPH10148611A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve an efficient layout with a simple mechanism and to determine and correct the origin of time base without decreasing the amount of application light by providing a plurality of light-transmitting/receiving means that is formed by closely arranging optical fibers for transmitting light and optical fibers, for receiving light. SOLUTION: Light transmission and reception means Sp, Sq, and Sr where one end face of installed at a specimen 2 include optical fibers Ip, Iq, and Ir for transmitting light and optical fibers Op, Oq, and or for receiving light, respectively. Then, a light pulse is transmitted to the optical fiber Ip for transmitting light of the light-transmitting/receiving means Sp and is applied to the specimen 23 from an end face. The applied light is transmitted or scattered in the specimen 2 and advances. Light advancing the inside of the specimen 2 partially advance the inside of the optical fiber from the end face of the light-transmitting/receiving means Sr and the optical fiber Or for receiving light. The advancing light passes through the optical fiber Or for receiving light, is transmitted to a signal-processing means, and performs signal processing, thus obtaining data corresponding to the installation conditions of, for example, a distance between the light-transmitting/receiving means Sp and Sr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光CTや酸素モニ
ター等の被検体に光を照射し、透過散乱光を検出して被
検体内の情報を測定する光測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light measuring apparatus for irradiating a subject with light, such as an optical CT or an oxygen monitor, and detecting transmitted scattered light to measure information in the subject.

【0002】[0002]

【従来の技術】被検体に可視光や近赤外光等の光を照射
し、被検体内を透過散乱した光を検出して、被検体内の
情報を非破壊的に測定する光測定装置が知られている。
このような光測定装置を生体に適用した測定装置として
光CTや酸素モニターがある。被検体としては、可視光
や近赤外光等の光を散乱透過することができる性質のも
のであれば可能であり、生体の他に動物や植物や青果物
等に適用することもできる。
2. Description of the Related Art A light measuring device that irradiates a subject with light such as visible light or near-infrared light, detects light transmitted and scattered in the subject, and non-destructively measures information in the subject. It has been known.
Optical CT and oxygen monitors are examples of measuring devices that apply such an optical measuring device to a living body. The subject can be any object that can transmit and scatter light such as visible light and near-infrared light, and can be applied to animals, plants, fruits and vegetables, as well as living organisms.

【0003】光CT等の光測定装置は、被検体の周囲に
送光手段および受光手段を複数個配置し、一の送光手段
から測定光を被検体内に照射し、被検体内を透過あるい
は散乱した光を受光手段で受光する。この測定光を照射
する送光手段を被検体の周囲にわたって移動させ、複数
個の受光手段で受光することによって多数の測定データ
を測定する。この測定データに基づいて被検体内部の断
層像を求めることができる。
A light measuring device such as an optical CT or the like includes a plurality of light transmitting means and a plurality of light receiving means arranged around a subject, irradiates the inside of the subject with measurement light from one light transmitting means, and transmits the inside of the subject. Alternatively, the scattered light is received by the light receiving means. The light transmitting means for irradiating the measurement light is moved around the subject, and a large number of measurement data is measured by receiving the light with a plurality of light receiving means. A tomographic image inside the subject can be obtained based on the measurement data.

【0004】図10は、従来の光測定装置の送光手段お
よび受光手段の配置を説明する図である。図10におい
て、送光器として光ファイバーの送光端I1 〜In を被
検体2の周囲に配置し、送光端の間に受光端O1 〜On
を配置して構成する。送光パルスによって、測定光を送
光端の光ファイバーから順次送光し、全ての受光端O1
〜On の光ファイバーで同時に受光して、n個の受光信
号を得る。上記工程を送光端を切り換えながら順次行う
ことによって合計n2 個の受光信号を測定し、この信号
を基に被検体の断層像を演算して求めることができる。
上記光測定装置では、光の散乱が強いため、送光手段の
送光点および受光手段の受光点を被検体に密着させる必
要がある。
FIG. 10 is a view for explaining the arrangement of a light transmitting means and a light receiving means of a conventional light measuring device. In FIG. 10, light transmitting ends I1 to In of an optical fiber are arranged around the subject 2 as light transmitters, and light receiving ends O1 to On are provided between the light transmitting ends.
Are arranged and configured. The measuring light is sequentially transmitted from the optical fiber at the light transmitting end by the light transmitting pulse, and all the light receiving ends O1
OOn are simultaneously received by the optical fibers to obtain n light receiving signals. By performing the above steps sequentially while switching the light transmitting end, a total of n 2 light receiving signals are measured, and a tomographic image of the subject can be calculated and obtained based on these signals.
In the light measuring device, since the light is strongly scattered, the light transmitting point of the light transmitting means and the light receiving point of the light receiving means need to be brought into close contact with the subject.

【0005】また、光測定装置による被検体の測定にお
いて、パルス光を被検体内に照射し、被検体内で散乱さ
れた光を時間分解計測することが知られている。この光
時間分解計測は、被検体内において散乱光が通過するに
要した時間を計測するものであり、この計測ではパルス
光が被検体に照射された時点を特定して、計測の時間軸
原点を定める必要がある。
[0005] In the measurement of an object by an optical measurement device, it is known that pulse light is applied to the inside of the object and time-resolved measurement of light scattered in the object is performed. This optical time-resolved measurement measures the time required for scattered light to pass through the subject. In this measurement, the point in time at which the pulse light is applied to the subject is specified, and the time axis origin of the measurement is determined. It is necessary to determine.

【0006】従来、時間軸原点を決定する一般的な方法
として、図11に示すように、パルス光を導く送光ファ
イバーと検出光を光検出機構に導く受光ファイバーを突
き合わせ、照射パルス光を直接に光検出機構で測定して
得られる信号強度がピーク値となる点を時間軸原点とす
る方法が知られている。図12は光検出機構の信号強度
の時間分布を示している。図12において、光源でのパ
ルス信号の発生時刻を時間0とし、光検出機構における
パルス光の信号強度がピーク値となる点Pを時間軸原点
としている。時間軸原点Pは、光の伝送時間等によって
パルス信号の発生から時間T後となる。従来、光測定装
置の時間軸原点の決定は、送受光ファイバーを突き合わ
せた配置を行い、上記決定方法を用いて行っている。
Conventionally, as a general method for determining the origin of the time axis, as shown in FIG. 11, a light transmitting fiber for guiding a pulse light and a light receiving fiber for guiding a detection light to a light detection mechanism are joined to directly irradiate the irradiation pulse light. There is known a method in which a point at which a signal intensity obtained by measurement by a light detection mechanism reaches a peak value is set as an origin of a time axis. FIG. 12 shows the time distribution of the signal intensity of the light detection mechanism. In FIG. 12, the generation time of the pulse signal at the light source is set to time 0, and the point P where the signal intensity of the pulse light at the light detection mechanism reaches its peak value is set as the origin of the time axis. The time axis origin P is after the time T from the generation of the pulse signal due to the light transmission time or the like. Conventionally, the origin of the time axis of the optical measurement device is determined by arranging the transmitting and receiving fibers against each other and using the above-described determination method.

【0007】また、一般にパルス光を発生する機構や光
を伝送する機構は、外部環境の影響を受けやすく、光検
出機構を駆動するパルス信号と発生パルス光との間、お
よび発生パルス光と照射点での照射光との間において、
時間的な変動が生じ、計測時間分解波形の時間軸原点が
ずれる場合がある。この時間軸原点のずれが測定中に発
生すると、被検体の光学定数の決定や被検体の画像形成
に誤差が生じることになる。
In general, a mechanism for generating pulse light and a mechanism for transmitting light are susceptible to the external environment, and are provided between a pulse signal for driving a light detection mechanism and generated pulse light, and between generated pulse light and irradiation. Between the light at the point
A temporal variation may occur, and the origin of the time axis of the measured time-resolved waveform may be shifted. If the deviation of the origin of the time axis occurs during the measurement, an error occurs in the determination of the optical constant of the subject and the image formation of the subject.

【0008】そこで、従来、光源からのパルス光を直接
検出する機構を用いて、被検体を計測している間の時間
軸原点のずれを監視および補正を行っている。図13は
従来の時間軸原点のずれの監視および補正機構を説明す
るための図である。図13において、光源5と送光ファ
イバーIと受光ファイバーOと光検出器6を備えた光測
定装置に対して、光源5と光検出器6とをファイバーF
で結んで監視,補正機構を構成する。図14は時間軸原
点のずれの監視および補正を説明するための光強度分布
図である。図14(a)は時間軸原点の決定直後の光強
度であり、図14(b)は時間軸原点を決定の後に時間
が経過した時点での光強度である。光強度のピーク時点
の時間差dTを計測することにより、時間軸原点のずれ
を監視および補正を行う。
Therefore, conventionally, a mechanism for directly detecting the pulse light from the light source has been used to monitor and correct the deviation of the origin of the time axis while measuring the subject. FIG. 13 is a diagram for explaining a conventional mechanism for monitoring and correcting the deviation of the origin of the time axis. In FIG. 13, the light source 5 and the photodetector 6 are connected to the fiber F with respect to the optical measurement device including the light source 5, the transmission fiber I, the light reception fiber O, and the photodetector 6.
To form a monitoring and correction mechanism. FIG. 14 is a light intensity distribution diagram for explaining monitoring and correction of the deviation of the time axis origin. FIG. 14A shows the light intensity immediately after the determination of the time axis origin, and FIG. 14B shows the light intensity at the point in time after the determination of the time axis origin. By measuring the time difference dT at the peak of the light intensity, the shift of the origin of the time axis is monitored and corrected.

【0009】[0009]

【発明が解決しようとする課題】上記のように、多数の
送光手段および受光手段を被検体の周囲にならべて配置
する必要があるため、狭い場所に効率的に配置すること
が困難であり、送受光手段の取扱が難しくなるという問
題点がある。また、送受光手段の設置密度を容易に高め
ることができないという第1の問題点がある。
As described above, it is necessary to arrange a large number of light transmitting means and light receiving means side by side around the subject, and it is difficult to efficiently arrange them in a narrow place. In addition, there is a problem that handling of the light transmitting and receiving means becomes difficult. Further, there is a first problem that the installation density of the light transmitting and receiving means cannot be easily increased.

【0010】前記図10に示すように、被検体2につい
てn2 個の測定データを得るためには、被検体2の周囲
に送光用光ファイバーと受光用光ファイバーを合わせ
て、合計2n個の光ファイバーを配置する必要がある。
また、被検体2の大きさが変化した場合であっても、光
ファイバーの相互の配置関係が変化しないよう構成を工
夫する必要がある。
As shown in FIG. 10, in order to obtain n 2 measurement data for the subject 2, a total of 2n optical fibers are provided around the subject 2 by combining a light transmitting optical fiber and a light receiving optical fiber. Need to be placed.
Further, even when the size of the subject 2 changes, it is necessary to devise a configuration so that the mutual arrangement of the optical fibers does not change.

【0011】また、従来の光測定装置では、時間軸原点
の決定および補正を行うための機構が必要であり、ま
た、被検体への照射光量が低下するという第2の問題点
がある。
Further, the conventional optical measuring device requires a mechanism for determining and correcting the origin of the time axis, and has a second problem that the amount of light irradiated on the subject is reduced.

【0012】光測定装置の時間分解計測は、送光ファイ
バーと受光ファイバーをそれぞれ被検体に取り付ける構
成であって、時間軸原点の決定および補正を行うために
は、前記図11に示すように送光ファイバーと受光ファ
イバーを突き合わせた構成が必要となる。また、図15
に示すような光断層イメージング装置(光CT)等の多
数の送光ファイバーと受光ファイバーを備えた装置にお
いて時間軸原点の決定を行うためには、各光検出機構の
個体差を解消するために、少なくとも検出器と同数の決
定および補正のための操作を行う必要があり、また、前
記図11に示す構成にセッティングするために、非常に
手間がかかることになる。
In the time-resolved measurement of the optical measuring device, a light transmitting fiber and a light receiving fiber are attached to a subject, respectively. In order to determine and correct the origin of the time axis, the light transmitting fiber is required as shown in FIG. And a light receiving fiber are required. FIG.
In order to determine the origin of the time axis in a device having a large number of transmitting and receiving fibers, such as an optical tomographic imaging device (optical CT) as shown in FIG. It is necessary to perform at least the same number of operations as the number of detectors for determination and correction, and it takes much time and effort to set the configuration shown in FIG.

【0013】また、時間軸原点の補正を行うために、図
13に示すような光ファイバーの分岐機構を用いると、
分岐機構が必要となるとともに、光源からの光が分岐さ
れて照射光の光量が低下することになる。
In order to correct the origin of the time axis, if an optical fiber branching mechanism as shown in FIG. 13 is used,
In addition to the necessity of a branching mechanism, the light from the light source is branched and the amount of irradiation light is reduced.

【0014】そこで、本発明は前記した従来の光測定装
置の問題点を解決し、効率的な配置を行うことができる
光測定装置を提供することを第1の目的とし、簡易な機
構で照射光量を低下させることなく時間軸原点の決定お
よび補正を行うことができる光測定装置を提供すること
を第2の目的とする。
SUMMARY OF THE INVENTION Accordingly, it is a first object of the present invention to solve the above-mentioned problems of the conventional light measuring device and to provide a light measuring device capable of performing efficient arrangement, and to irradiate the light with a simple mechanism. It is a second object of the present invention to provide a light measuring device capable of determining and correcting the origin of the time axis without reducing the light quantity.

【0015】[0015]

【課題を解決するための手段】本出願の第1の発明の光
測定装置は、被検体に光を送光し、被検体からの光を受
光することによって被検体を光学的に測定する光測定装
置であって、送光用光ファイバーと受光用光ファイバー
を近接配置して送受光手段を形成し、この送受光手段を
複数備えるものである。これによって、光測定装置に設
ける送受光手段の個数を減少させ、効率的な配置を行う
ことができる。
According to a first aspect of the present invention, there is provided a light measuring apparatus for transmitting light to a subject and receiving light from the subject to optically measure the subject. This is a measuring device, wherein a light transmitting and receiving means is formed by arranging a light transmitting optical fiber and a light receiving optical fiber close to each other, and a plurality of the light transmitting and receiving means are provided. Thus, the number of light transmitting and receiving means provided in the light measuring device can be reduced, and efficient arrangement can be performed.

【0016】本出願の第1の発明の光測定装置によれ
ば、一送受光手段の送光用光ファイバーを通して光を送
り、送光用光ファイバーの端部から被検体内に光照射を
行う。被検体内に照射された光は、被検体内で透過ある
いは散乱した後、同送受光手段あるいは異なる送受光手
段の受光用光ファイバーの端部から受光され、該受光用
光ファイバーを通して信号処理手段に送られる。
According to the light measuring device of the first invention of the present application, light is sent through the light transmitting optical fiber of the one light transmitting / receiving means, and light is irradiated into the subject from the end of the light transmitting optical fiber. The light radiated into the subject is transmitted or scattered in the subject, and then received from the end of the receiving optical fiber of the same transmitting / receiving unit or a different transmitting / receiving unit, and transmitted to the signal processing unit through the receiving optical fiber. Can be

【0017】従って、本出願の第1の発明の光測定装置
の送受光手段は、送光手段と受光手段を近接して備え、
該送光手段および受光手段の光の送受光を近接状態で行
うため、従来の光測定装置のように、送光および受光を
それぞれ個別の光ファイバーにより行い、被検体への光
の照射や被検体からの光の受光をそれぞれ個別に行うも
のと比較して、光ファイバーを含む送受光手段の個数を
減少させることができ、送受光手段の配置密度を高める
効率的な配置を行うことができる。
Therefore, the light transmitting and receiving means of the light measuring device according to the first invention of the present application includes the light transmitting means and the light receiving means close to each other,
In order to transmit and receive the light of the light transmitting unit and the light receiving unit in the proximity state, the light transmission and the reception are performed by separate optical fibers, respectively, as in a conventional optical measurement device, so that the irradiation of the light to the subject and the The number of light transmitting and receiving means including optical fibers can be reduced as compared with the method of individually receiving light from the light source, and efficient arrangement can be performed to increase the arrangement density of the light transmitting and receiving means.

【0018】また、本出願の第2の発明の光測定装置
は、被検体に光を送光し、被検体からの光を受光するこ
とによって被検体を光学的に測定する光測定装置におい
て、パルス光を発生するパルス光発生手段と、被検体か
らの光を時間分解計測する光検出手段と、送光用光ファ
イバーと受光用光ファイバーを含む一体の送受光手段と
を備えた構成とするものであり、これによって、送受光
手段における送受光の時間分解波形から時間軸原点を求
めることができる。
Further, the light measuring device of the second invention of the present application is a light measuring device for optically measuring a subject by transmitting light to the subject and receiving light from the subject. A pulse light generating means for generating pulse light, a light detecting means for time-resolved measurement of light from the subject, and an integrated light transmitting and receiving means including a light transmitting optical fiber and a light receiving optical fiber. Thus, the origin of the time axis can be obtained from the time-resolved waveform of the light transmission / reception by the light transmission / reception means.

【0019】本出願の第2の発明の光測定装置によれ
ば、パルス光発生手段で発生させたパルス光を、送受光
手段の送光用光ファイバーによって被検体に照射し、被
検体で散乱された反射光を送受光手段の受光用光ファイ
バーで受光し、この被検体からの光を光検出手段で時間
分解計測する。送受光手段において、送光用光ファイバ
ーと受光用光ファイバーは近接して配置した構成である
ため、受光用光ファイバーは照射点の近傍から反射され
た光を受光することになる。被検体の照射点に近い距離
からの反射光は、被検体の光学定数にあまり左右され
ず、ほぼ同様な形状の時間分解波形を得ることができる
ため、この測定波形を用いて時間軸原点の決定や補正を
行うことができる。
According to the optical measuring device of the second invention of the present application, the subject is irradiated with the pulse light generated by the pulse light generating means by the light transmitting optical fiber of the light transmitting and receiving means, and is scattered by the subject. The reflected light is received by the light receiving optical fiber of the light transmitting and receiving means, and the light from the subject is time-resolved and measured by the light detecting means. In the light transmitting and receiving means, since the light transmitting optical fiber and the light receiving optical fiber are arranged close to each other, the light receiving optical fiber receives light reflected from the vicinity of the irradiation point. The reflected light from a distance close to the irradiation point of the subject is not so affected by the optical constants of the subject, and a time-resolved waveform of almost the same shape can be obtained. Decisions and corrections can be made.

【0020】複数の送光ファイバーと受光ファイバーを
被検体の周囲に配置する光断層イメージング装置(光C
T)では、送光ファイバーの1つを用いて被検体を照射
し、複数の受光ファイバーで同時検出しながら、受光点
のなかで送光点に近い位置に配置された受光ファイバー
で検出された時間分解波形を用いて、時間分解計測の時
間軸原点の決定やずれの監視、および補正を行うことが
できる。
An optical tomographic imaging apparatus (light C) in which a plurality of light transmitting fibers and light receiving fibers are arranged around a subject.
In T), the object is illuminated using one of the light-transmitting fibers, and simultaneously detected by a plurality of light-receiving fibers, while the time detected by the light-receiving fiber arranged close to the light-transmitting point among the light-receiving points. Using the decomposition waveform, it is possible to determine the origin of the time axis of the time-resolved measurement, monitor the deviation, and correct the deviation.

【0021】なお、光断層イメージング装置は、照射す
る送光ファイバーを順次切り換えることによって、照射
点の位置を変更し、測定を行うことができる。
The optical tomographic imaging apparatus can change the position of the irradiation point and perform measurement by sequentially switching the light transmission fiber to be irradiated.

【0022】本発明の第1の実施態様は、近接配置され
た送光用光ファイバーと受光用光ファイバーの送受光手
段を、該送光用光ファイバーと受光用光ファイバーを含
む一体の光ファイバー束で形成するものである。
According to a first embodiment of the present invention, the light transmitting / receiving means for the light transmitting optical fiber and the light receiving optical fiber arranged in close proximity is formed by an integrated optical fiber bundle including the light transmitting optical fiber and the light receiving optical fiber. It is.

【0023】本発明の第2の実施態様は、送受光手段を
送光用光ファイバーと受光用光ファイバーの光ファイバ
ー対を、2重の同心円筒状に形成するものであり、例え
ば、中心側の光ファイバーを送光用光ファイバーとし、
外側の光ファイバーを受光用光ファイバーとすることが
できる。この構成によれば、送受光手段が回転する場
合、この送受光手段の回転中心を光ファイバー対の中心
とすることによって、回転による送光点および受光点の
変動を除くことができる。
In a second embodiment of the present invention, a pair of optical fibers for transmitting and receiving light and an optical fiber for receiving light are formed in a double concentric cylindrical shape. Optical fiber for light transmission
The outer optical fiber can be a receiving optical fiber. According to this configuration, when the light transmitting / receiving unit rotates, the rotation center of the light transmitting / receiving unit is set to the center of the optical fiber pair, so that the fluctuation of the light transmitting point and the light receiving point due to the rotation can be eliminated.

【0024】本発明の第3の実施態様は、送光用光ファ
イバーを単芯ファイバーとし、受光用光ファイバーを前
記単芯ファイバーの周囲にモールドを介して設けた多成
分バンドルファイバーとして2重の同心円筒状に形成す
るものである。
A third embodiment of the present invention is directed to a double concentric cylinder as a multi-component bundle fiber in which a light transmitting optical fiber is a single core fiber and a light receiving optical fiber is provided around the single core fiber via a mold. It is formed in a shape.

【0025】また、本発明の第4の実施態様は、送受光
手段の送光用光ファイバーから被検体内に照射した光
を、異なる送受光手段の受光用光ファイバーによって受
光することによって、測定信号の基準の時間原点を設定
することができる。
Further, in a fourth embodiment of the present invention, the light radiated into the subject from the light transmitting / receiving optical fiber of the light transmitting / receiving means is received by the light receiving / receiving optical fibers of different light transmitting / receiving means, so that the measurement signal is obtained. The reference time origin can be set.

【0026】[0026]

【発明の実施の形態】以下、本発明の実施の形態を図を
参照しながら詳細に説明する。図1は、本発明の光測定
装置の一実施の形態を説明するための概略ブロック図で
ある。図1において、光測定装置1は複数の送受光手段
Sを備え、この送受光手段Sを被検体2の周囲に配置し
て測定を行う。送受光手段Sは、送光用光ファイバーI
と受光用光ファイバーOを含む光ファイバー束により一
体に形成され、各光ファイバーの一端を送光端面および
受光端面とする。なお、光ファイバー束の図示しない他
方の端部側には、発光手段および信号処理手段を設け
る。発光手段としては発光ダイオード等の周知の発光装
置を用いることができ、信号処理手段は光−電気信号変
換手段によって変換した電気信号を用いて、送受光光間
の時間測定の測定信号処理や、断層像を得る演算処理等
の種々の信号処理を行うことができる。また、発光装置
における送光を行う送受光手段の選択,送光順の制御
や、信号処理における時間原点の補正等の信号処理は、
信号処理手段において行うことができる。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic block diagram for explaining an embodiment of the light measuring device of the present invention. In FIG. 1, the optical measurement device 1 includes a plurality of light transmitting / receiving means S, and the light transmitting / receiving means S is arranged around the subject 2 to perform measurement. The light transmitting / receiving means S is a light transmitting optical fiber I
And an optical fiber bundle including a light receiving optical fiber O, and one end of each optical fiber is a light transmitting end face and a light receiving end face. A light emitting means and a signal processing means are provided on the other end (not shown) of the optical fiber bundle. A known light-emitting device such as a light-emitting diode can be used as the light-emitting means, and the signal processing means uses an electric signal converted by the light-electric signal conversion means, and performs measurement signal processing for measuring time between transmitted and received light, Various signal processing such as arithmetic processing for obtaining a tomographic image can be performed. In addition, signal processing such as selection of light transmitting / receiving means for transmitting light in the light emitting device, control of the order of light transmission, and correction of the time origin in signal processing,
This can be performed in the signal processing means.

【0027】なお、図1中には、S1 からSn のn個の
送受光手段Sを設けた例を示している。
FIG. 1 shows an example in which n transmitting / receiving means S from S1 to Sn are provided.

【0028】図2は、送受光手段Sの動作を説明するた
めの概略図であり、3個の送受光手段Sp ,Sq ,Sr
を被検体2に設置した状態を示している。各送受光手段
Sp,Sq ,Sr はそれぞれ送光用光ファイバーIp ,
Iq ,Ir と受光用光ファイバーOp ,Oq ,Or を含
み、その一方の端部面を被検体2に設置する。光パルス
を送受光手段Sp の送光用光ファイバーIp に送り、端
部面から被検体2を照射する。照射された光は、被検体
2内で透過あるいは散乱して進む。被検体2内を進んだ
光の一部は、送受光手段Srの受光用光ファイバーOr
の端部面から光ファイバー内に進入する。進入した光
は、受光用光ファイバーOr を通って図示しない信号処
理手段に送られて信号処理を行い、送受光手段Sp と送
受光手段Sr との間の距離等の設置条件に応じたデータ
を得ることができる。
FIG. 2 is a schematic diagram for explaining the operation of the light transmitting / receiving means S, and includes three light transmitting / receiving means Sp, Sq, Sr.
Is set on the subject 2. Each of the light transmitting / receiving means Sp, Sq, Sr is a light transmitting optical fiber Ip,
It includes Iq, Ir and optical fibers Op, Oq, Or for light reception, and one end face thereof is placed on the subject 2. The light pulse is sent to the light transmitting optical fiber Ip of the light sending / receiving means Sp, and the object 2 is irradiated from the end face. The irradiated light is transmitted or scattered in the subject 2 and proceeds. A part of the light traveling inside the subject 2 is received by the light receiving optical fiber Or of the light transmitting / receiving means Sr.
From the end face of the optical fiber. The entered light is sent to a signal processing means (not shown) through a light receiving optical fiber Or to perform signal processing to obtain data according to installation conditions such as a distance between the light sending / receiving means Sp and the light sending / receiving means Sr. be able to.

【0029】なお、図2では、送受光手段Sp の送光用
光ファイバーIp から照射した光を、送受光手段Srの
受光用光ファイバーOr によって受光する例を示してい
るが、送受光手段Sq あるいはSr から送光を行うこと
もでき、また、送受光手段Sqの受光用光ファイバーO
qによって受光することもできる。そして、受光した光
によって信号処理を行い測定データを得る場合には、送
受光手段の送光および受光の距離や設置位置等の設置関
係を考慮して測定データの処理を行う。
FIG. 2 shows an example in which the light irradiated from the light transmitting / receiving optical fiber Ip of the light transmitting / receiving means Sp is received by the light receiving optical fiber Or of the light transmitting / receiving means Sr, but the light transmitting / receiving means Sq or Sr Can be transmitted from the optical fiber O. Also, the light receiving optical fiber O of the light transmitting / receiving means Sq can be used.
The light can be received by q. When signal processing is performed with the received light to obtain measurement data, the measurement data is processed in consideration of the installation relationship such as the distance between the light transmission and reception of the light transmission and reception unit and the installation position.

【0030】図1のように被検体2の周囲にn個の送受
光手段S1 〜Sn を設置した場合には、例えば、一つの
送受光手段Sk の送光用光ファイバーIk から送光を行
い、この送光によって被検体2内を進む光を送受光手段
S1 〜Sn の受光用光ファイバーO1 〜On で受光して
測光し測定データを得る。この一送受光手段Sk からの
送光を複数の送受光手段S1 〜Sn で受光して測定を行
う処理工程を、送光を行う送受光手段Sk を切り換えな
がら行うことによって、合計でn2 個の測定データを得
ることができる。
When n light transmitting / receiving means S1 to Sn are provided around the subject 2 as shown in FIG. 1, for example, light is transmitted from the light transmitting optical fiber Ik of one light transmitting / receiving means Sk. The light transmitted through the subject 2 is received by the light receiving optical fibers O1 to On of the light transmitting and receiving means S1 to Sn, and the light is measured to obtain measurement data. The processing step of performing a measurement by receiving sending from this single beam transmitting and receiving means Sk by a plurality of beam transmitting and receiving unit S1 to Sn, by performing while switching beam transmitting and receiving means Sk for performing sending two n in total Measurement data can be obtained.

【0031】図1の構成例において、n2 個の測定デー
タを得るために、本発明の光測定装置ではn個の送受光
手段を用いているのに対して、前記図8に示す従来の光
測定装置ではn個の送光手段とn個の受光手段の合計2
n個の送受光手段を必要とする。従って、本発明の光測
定装置によれば、送受光手段の個数を減少させることが
できる。
In the configuration example of FIG. 1, in order to obtain n 2 measurement data, the optical measuring apparatus of the present invention uses n transmitting / receiving means, whereas the conventional optical measuring apparatus shown in FIG. In the light measuring device, n light transmitting means and n light receiving means total 2
It requires n light transmitting and receiving means. Therefore, according to the optical measuring device of the present invention, the number of light transmitting / receiving means can be reduced.

【0032】図3は、本発明の光測定装置に使用する光
ファイバーの一実施形態を説明する図である。図3にお
いて、送受光手段を構成する光ファイバー3は、送光用
光ファイバー3aと受光用光ファイバー3bの光ファイ
バー対を、2重の同心円筒状で形成し、例えば、中心側
の光ファイバー3aを送光用光ファイバーとし、外側の
光ファイバー3bを受光用光ファイバーとすることがで
きる。
FIG. 3 is a view for explaining an embodiment of an optical fiber used for the light measuring device of the present invention. In FIG. 3, the optical fiber 3 constituting the light transmitting and receiving means is formed by forming a pair of optical fibers of a light transmitting optical fiber 3a and a light receiving optical fiber 3b in a double concentric cylindrical shape. An optical fiber may be used, and the outer optical fiber 3b may be used as a light receiving optical fiber.

【0033】送光用光ファイバー3aは例えば石英単芯
ファイバーとし、受光用光ファイバー3bは例えば多成
分バンドルファイバーとすることができ、石英単芯ファ
イバーの外周部分にモールド用SUS管を設け、さらに
その外側に多成分バンドルファイバーを設けることによ
って、2重の同心円筒状に形成することができる。
The light transmitting optical fiber 3a may be, for example, a single-core quartz fiber, and the light-receiving optical fiber 3b may be, for example, a multi-component bundle fiber. By providing the multi-component bundle fiber in the above, it is possible to form a double concentric cylindrical shape.

【0034】通常、送光側はレーザー等の発光手段から
導かれた光を用いるため、単芯ファイバーのような細い
ファイバーを用い、受光側は拡散光を多く受光するた
め、断面積の大きな多成分バンドルファイバーを用いる
のが有効である。なお、送光および受光ともにバンドル
ファイバーによって構成することも可能であり、この場
合には、内側を受光、外側を送光とする構成とすること
もできる。
Usually, the light transmitting side uses light guided from a light emitting means such as a laser, so that a thin fiber such as a single-core fiber is used, and the light receiving side receives a large amount of diffused light. It is effective to use a component bundle fiber. It is to be noted that both the light transmission and the light reception can be configured by bundle fibers, and in this case, the inside can be configured to receive light and the outside can be configured to transmit light.

【0035】図4は、本発明の光測定装置を用いた一構
成例を説明する図であり、リング状のベルトを構成した
例である。図4(b)において、光測定装置10は、リ
ング状のベルトである。一対の隣接する片10aと10
bをX字状にクロスさせ、X字の中心に送受光手段の光
ファイバー3の一端をその端面が被検体2を向くように
取り付ける。さらに、このX字状のユニットを次々にピ
ン10cによって可動となるようつなぎ合わせたものを
形成する。この構成によって、図4(a)に示すよう
に、リング状のベルトを被検体2の周囲に取り付ける
と、一対の片10aおよび10bが被検体2の外径に応
じて両者の角度関係を変えることによって全体のリング
が伸縮できるので、送受光手段の光ファイバーの端面を
被検体2に接触させることができる。円筒状の光ファイ
バーは軸を中心として回転できるので、光ファイバーが
ねじれることがない。
FIG. 4 is a view for explaining an example of a configuration using the light measuring device of the present invention, and is an example in which a ring-shaped belt is configured. In FIG. 4B, the light measuring device 10 is a ring-shaped belt. A pair of adjacent pieces 10a and 10
b is crossed in an X-shape, and one end of the optical fiber 3 of the light transmitting / receiving means is attached to the center of the X-shape so that the end face faces the subject 2. Further, a unit in which the X-shaped units are successively connected by pins 10c so as to be movable is formed. With this configuration, when a ring-shaped belt is attached around the subject 2 as shown in FIG. 4A, the pair of pieces 10a and 10b change the angular relationship between the two according to the outer diameter of the subject 2. This allows the entire ring to expand and contract, so that the end face of the optical fiber of the light transmitting and receiving means can be brought into contact with the subject 2. Since the cylindrical optical fiber can rotate about the axis, the optical fiber is not twisted.

【0036】本発明の光測定装置に用いる光ファイバー
は、送光手段と受光手段を一つの箇所に設けた構成であ
るため、光ファイバーが回転した場合であっても、送受
光手段の設置位置による送光,受光の光量変化を減少さ
せることができる。
Since the optical fiber used in the optical measuring device of the present invention has a structure in which the light transmitting means and the light receiving means are provided in one place, even if the optical fiber is rotated, the light is transmitted and received according to the installation position of the light transmitting and receiving means. It is possible to reduce a change in the amount of light and light received.

【0037】特に、光ファイバーを図3に示す構成とす
る場合には、送受光手段の回転中心を光ファイバー対の
中心とすることによって、送光手段と受光手段の位置関
係を同一として、回転による送光点および受光点の変動
を除くことができ、また、支持部およびファイバーの扱
いが容易となる。ファイバーが回転できない場合には、
ファイバーがねじれたり、回転方向の応力を受けて折れ
たり破損したりする場合がある。
In particular, when the optical fiber is configured as shown in FIG. 3, the center of rotation of the light transmitting and receiving means is set to the center of the pair of optical fibers, so that the positional relationship between the light transmitting means and the light receiving means is the same, and the transmission by rotation is performed. Fluctuations in the light spot and the light receiving point can be eliminated, and the handling of the support and the fiber becomes easy. If the fiber cannot rotate,
Fibers may be twisted or broken or broken by rotational stress.

【0038】図5は、本発明の光測定装置を用いた他の
構成例を説明する図であり、被検体2の表面に対して2
次元的に設置し、面状の測定を行う例を示している。図
5において、光測定装置11は、面状のベース部11a
の一方の側に光ファイバー3を複数個配置し、その端面
をベース部11aの他方の側から被検体2側に向けて設
置する。
FIG. 5 is a diagram for explaining another configuration example using the light measuring device of the present invention.
An example is shown in which the surface is measured in a two-dimensional manner. In FIG. 5, the light measuring device 11 has a planar base 11a.
A plurality of optical fibers 3 are arranged on one side of the base 11a, and the end faces of the optical fibers 3 are set so as to face the subject 2 from the other side of the base 11a.

【0039】光ファイバーの他端には、図示しない発光
手段および信号処理手段を設ける。光ファイバーとして
図3に示す構成のものを使用する場合には、光ファイバ
ーの中心側に配置した送光用光ファイバーを集め、図5
中の11b側に設けた発光手段からいずれか一本の送光
用光ファイバーに送光パルスを送る。また、光ファイバ
ーの外周側に配置した受光用光ファイバーを集め、図5
中の11c側に設けた信号処理手段に受光した光を送
る。
At the other end of the optical fiber, light emitting means and signal processing means (not shown) are provided. When the optical fiber having the configuration shown in FIG. 3 is used, the light transmitting optical fibers arranged on the center side of the optical fiber are collected, and FIG.
A light transmitting pulse is transmitted from the light emitting means provided on the side 11b to one of the light transmitting optical fibers. In addition, optical fibers for light reception arranged on the outer peripheral side of the optical fiber are collected, and FIG.
The received light is sent to a signal processing means provided on the side 11c.

【0040】なお、発光手段としては発光ダイオード等
の周知の発光装置を用いることができ、信号処理手段に
は光を電気信号に変換する光−電気信号変換手段や、送
受光光間の時間測定の測定信号処理や、断層像を得る演
算処理等の種々の信号処理を行う処理手段を配置するこ
とができる。
A well-known light-emitting device such as a light-emitting diode can be used as the light-emitting means. A light-to-electric signal conversion means for converting light into an electric signal and a time measurement between light transmission and reception light can be used for the signal processing means. Processing means for performing various signal processing such as the measurement signal processing described above and the arithmetic processing for obtaining a tomographic image can be arranged.

【0041】次に、本発明の光測定装置における測定に
ついて図6を用いて説明する。光測定装置において、被
検体に光を照射するには、複数個設置された送受光手段
の中から一つの送受光手段を選択し、図6(a)〜
(c)に示すように、該一の送受光手段に送光用光ファ
イバーI1 を通して光パルスを送ることにより行う。一
方、被検体を進んだ光の受光は、図6(a)〜(c)に
示すように、複数個の受光手段のいずれかの受光端面に
入射した光を、受光用光ファイバーO1 ,O2 ,又はO
3 を通して信号処理手段に送ることによって行う。
Next, the measurement in the light measuring device of the present invention will be described with reference to FIG. In the light measuring device, in order to irradiate the subject with light, one of the plurality of light transmitting / receiving means is selected from among a plurality of light transmitting / receiving means, and FIGS.
As shown in (c), this is carried out by sending a light pulse to the one light sending / receiving means through the light sending optical fiber I1. On the other hand, as shown in FIGS. 6 (a) to 6 (c), the light that has traveled through the subject is converted from light incident on one of the light-receiving end faces of the plurality of light-receiving means into light-receiving optical fibers O1, O2, O2, and O2. Or O
By sending it to the signal processing means through 3.

【0042】光測定装置が行う通常の測定では、図6
(b),(c)に示すように、被検体を通過した光を、
送光を行う送受光手段とは異なる送受光手段の光ファイ
バーによって受光する。例えば、図6(b)では、送光
用光ファイバーI1 から入射した光パルスを異なる送受
光手段の受光用光ファイバーO2 で受光し、図6(c)
では、送光用光ファイバーI1 から入射した光パルスを
異なる送受光手段の受光用光ファイバーO3 で受光す
る。この受光用光ファイバーO2 で受光する光の時間分
解測光による時間応答は、例えば図6(d)の破線で示
すような波形となり、また、この受光用光ファイバーO
3 で受光する光の時間応答は、例えば図6(d)の一点
鎖線で示すような波形となる。
In a normal measurement performed by the light measuring device, FIG.
As shown in (b) and (c), the light passing through the subject is
The light is received by the optical fiber of the light transmitting / receiving means different from the light transmitting / receiving means for transmitting the light. For example, in FIG. 6B, the light pulse incident from the light transmitting optical fiber I1 is received by the light receiving optical fiber O2 of the different light transmitting and receiving means, and FIG.
Then, the light pulse incident from the light transmitting optical fiber I1 is received by the light receiving optical fiber O3 of the different light transmitting / receiving means. The time response of the light received by the light-receiving optical fiber O2 by the time-resolved photometry has, for example, a waveform shown by a broken line in FIG.
The time response of the light received at 3 has a waveform, for example, as shown by the dashed line in FIG.

【0043】各受光手段が受光する光の波形は、送光用
光ファイバーと受光用光ファイバーとの距離や被検体の
特性や光源の温度変化に応じて変化する。例えば、パル
ス光を発生する光源では、パルス光発生機構を駆動する
パルス信号と発生するパルス光との間に、温度変化等の
環境変化によって時間的変動が生じる。
The waveform of the light received by each light receiving means changes according to the distance between the light transmitting optical fiber and the light receiving optical fiber, the characteristics of the subject, and the temperature change of the light source. For example, in a light source that generates pulsed light, a temporal change occurs between a pulse signal for driving a pulsed light generation mechanism and the generated pulsed light due to an environmental change such as a temperature change.

【0044】時間分解測光は、受光した光の時間差を求
めて測定を行うものであるが、多数の光ファイバーにつ
いて発光手段と送受光手段の端部との間の長さの相違に
よる光ファイバー中を伝達する光の伝達時間の相違や、
パルス信号とパルス光との間の時間変動のために、時間
軸原点の監視や補正を行う必要がある。
In the time-resolved photometry, measurement is performed by determining the time difference between received light. However, a large number of optical fibers are transmitted through an optical fiber due to a difference in length between the light emitting means and the end of the light transmitting / receiving means. Differences in light transmission time,
Due to the time variation between the pulse signal and the pulse light, it is necessary to monitor and correct the origin of the time axis.

【0045】そこで、図6(a)に示すように、同一の
送受光手段間で送光,受光を行うと、入射点と射出点が
極めて接近しているので、この間を光が伝達する時間は
無視できる。従って、生体中を光が伝達する時間の基準
を、同一の送受光手段間で送光,受光する時の時間分解
波形のピーク時間を時間のゼロ点と定めることで補正す
ることができる。即ち、ファイバーの長さの相違により
異なる送受光手段の間に時間差があっても、この方法で
容易に補正することができるので、従来のように二つの
送受光ファイバーをつきあわせて時間の原点を定める余
分の操作を省くことができる。
Therefore, as shown in FIG. 6 (a), when light is transmitted and received between the same light transmitting and receiving means, the incident point and the emitting point are extremely close to each other. Can be ignored. Therefore, it is possible to correct the reference of the time for transmitting light in the living body by defining the peak time of the time-resolved waveform when transmitting and receiving light between the same transmitting and receiving means as the zero point of time. In other words, even if there is a time difference between different transmitting and receiving means due to the difference in the length of the fiber, it can be easily corrected by this method. The extra operation to be determined can be omitted.

【0046】次に、図7,8および表1,2を用いて、
本発明を用いた時間分解波形から時間軸原点を求める動
作を説明する。図7はシミュレーション構成図であり、
図8および表1,2はシミュレーション結果である。
Next, using FIGS. 7 and 8 and Tables 1 and 2,
The operation of obtaining the time base origin from the time-resolved waveform using the present invention will be described. FIG. 7 is a simulation configuration diagram,
FIG. 8 and Tables 1 and 2 show the simulation results.

【0047】図7において、時間分解波形から時間軸原
点を求めるシミュレーションは、送受光間距離dの間隔
で送光部21と受光部22を、横方向および深さ方向に
無限大を想定した無限平板に近似した被検体20に配置
し、光を点入射で入射し、反射光を径1mmの円で検出
する。
In FIG. 7, the simulation for obtaining the origin of the time axis from the time-resolved waveform is based on the assumption that the light transmitting unit 21 and the light receiving unit 22 are arranged at an interval of the distance d between the light transmission and reception by infinity in the lateral and depth directions. It is placed on the subject 20 which approximates a flat plate, light is incident at point incidence, and reflected light is detected by a circle having a diameter of 1 mm.

【0048】このシミュレーションにおいて、送受光点
の間隔dが2mmの場合について、吸収係数μaを0.
00/mmから0.02/mmで変化させ、また、散乱
係数μs’を0.50/mm〜1.5/mmで変化させ
たときの光強度がピークとなる時間(pSec)を表1
に示す。なお、散乱係数μs’において、0.50/m
m〜1.5/mmの範囲は、一般に生体がとりうる値で
ある。
In this simulation, when the interval d between the light transmitting and receiving points is 2 mm, the absorption coefficient μa is set to 0.
Table 1 shows the time (pSec) at which the light intensity peaks when the scattering coefficient is changed from 00 / mm to 0.02 / mm and the scattering coefficient μs ′ is changed from 0.50 / mm to 1.5 / mm.
Shown in In addition, in the scattering coefficient μs ′, 0.50 / m
The range of m to 1.5 / mm is generally a value that a living body can take.

【0049】[0049]

【表1】 表1に示すシミュレーション結果によれば、光強度がピ
ークとなる時間はほぼ一定となる。
[Table 1] According to the simulation results shown in Table 1, the time when the light intensity reaches a peak is almost constant.

【0050】なお、図8は散乱係数μs’1.00/m
mの場合のシミュレーション結果を示している。ここ
で、縦軸は規格化した光量を表している。
FIG. 8 shows the scattering coefficient μs'1.00 / m
The simulation result in the case of m is shown. Here, the vertical axis represents the normalized light amount.

【0051】また、シミュレーションにおいて、送受光
点の間隔dが3mmの場合について、吸収係数μaを
0.00/mmから0.02/mmで変化させ、また、
散乱係数μs’を0.50/mm〜1.5/mmで変化
させたときの光強度がピークとなる時間(pSec)を
表2に示す。
In the simulation, when the distance d between the light transmitting and receiving points is 3 mm, the absorption coefficient μa is changed from 0.00 / mm to 0.02 / mm.
Table 2 shows the time (pSec) at which the light intensity peaks when the scattering coefficient μs ′ is changed from 0.50 / mm to 1.5 / mm.

【0052】[0052]

【表2】 従って、上記シミュレーション結果によれば、送受光点
の間隔dが2〜3mm程度の場合には、誤差は数pSe
c内であり、また、送受光点の距離精度において2.5
±0.5mmの精度に対して±6pSec程度となる。
[Table 2] Therefore, according to the simulation result, when the interval d between the light transmitting and receiving points is about 2 to 3 mm, the error is several pSe.
c and 2.5 in the distance accuracy of the transmitting and receiving points.
For an accuracy of ± 0.5 mm, it is about ± 6 pSec.

【0053】したがって、本発明によれば、送受光ファ
イバーを突き合わせる光学系を構成することなく、生体
や疑似生体等の被検体に送受光ファイバーを取り付けた
状態で、各受光ファイバーに近い距離の送光ファイバー
で照射した際の時間分解波形を測定することによって、
時間軸原点の決定を行うことができる。
Therefore, according to the present invention, the light transmitting and receiving fibers are attached to a subject such as a living body or a simulated living body without forming an optical system for abutting the light transmitting and receiving fibers. By measuring the time-resolved waveform when irradiated at
The origin of the time axis can be determined.

【0054】また、被検体を計測している間において、
発生したパルス光発生機構や光ファイバーの時間軸のず
れは、照射点に近い距離の反射光を検出した時間分解波
形と上記時間軸原点の決定で求めた時間軸とから算出す
ることができる。従って、この時間軸のずれを用いて、
他の光検出器で測定した時間分解波形の時間軸の補正を
行うことができる。
During the measurement of the subject,
The generated pulse light generation mechanism and the shift of the time axis of the optical fiber can be calculated from the time-resolved waveform that detects the reflected light at a distance close to the irradiation point and the time axis obtained by determining the time-axis origin. Therefore, using this time axis shift,
The time axis of the time-resolved waveform measured by another photodetector can be corrected.

【0055】また、図9は、本発明の光測定装置に使用
する光ファイバーの他の実施形態を説明する図である。
図9において、送受光手段を構成する光ファイバー4
は、複数本の送光用光ファイバー4aと受光用光ファイ
バー4bを分散配置して構成するものであり、前記4,
5に示す実施形態に適用することもできる。この構成の
場合には、光ファイバー4の形状を任意の形状とするこ
とができ、また、広がりを持った送光点や受光点を形成
することができる。
FIG. 9 is a view for explaining another embodiment of the optical fiber used for the light measuring device of the present invention.
In FIG. 9, an optical fiber 4 constituting a light transmitting / receiving means is shown.
Comprises a plurality of light transmitting optical fibers 4a and light receiving optical fibers 4b dispersedly arranged.
5 can also be applied to the embodiment shown in FIG. In the case of this configuration, the shape of the optical fiber 4 can be set to an arbitrary shape, and a light transmitting point and a light receiving point having a spread can be formed.

【0056】本発明の実施の形態によれば、送受光ファ
イバーを突き合わせることなく、時間軸の決定を行うこ
とができる。
According to the embodiment of the present invention, the time axis can be determined without abutting the transmitting and receiving fibers.

【0057】本発明の実施の形態によれば、照射するパ
ルス光を分岐することなく、パルス光発生機構の時間軸
ずれを監視し、補正することができる。
According to the embodiment of the present invention, the time axis deviation of the pulse light generating mechanism can be monitored and corrected without branching the irradiated pulse light.

【0058】[0058]

【発明の効果】以上説明したように、本発明の光測定装
置によれば、効率的な配置を行うことができ、また、簡
易な機構で照射光量を低下させることなく時間軸原点の
決定および補正を行うことができる。
As described above, according to the light measuring apparatus of the present invention, efficient arrangement can be performed, and the time axis origin can be determined and reduced by a simple mechanism without lowering the irradiation light quantity. Corrections can be made.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光測定装置の一実施の形態を説明する
ための概略ブロック図である。
FIG. 1 is a schematic block diagram for explaining an embodiment of a light measuring device according to the present invention.

【図2】本発明の送受光手段の動作を説明するための概
略図である。
FIG. 2 is a schematic diagram for explaining the operation of the light transmitting / receiving means of the present invention.

【図3】本発明の光測定装置に使用する光ファイバーの
一実施形態を説明する図である。
FIG. 3 is a diagram illustrating an embodiment of an optical fiber used in the optical measurement device of the present invention.

【図4】本発明の光測定装置を用いた一構成例を説明す
る図である。
FIG. 4 is a diagram illustrating an example of a configuration using the optical measurement device of the present invention.

【図5】本発明の光測定装置を用いた他の構成例を説明
する図である。
FIG. 5 is a diagram illustrating another configuration example using the optical measurement device of the present invention.

【図6】本発明の光測定装置の測定を説明する図であ
る。
FIG. 6 is a diagram illustrating measurement by the optical measurement device of the present invention.

【図7】本発明を用いた時間分解波形から時間軸原点を
求める動作を説明するためのシミュレーション構成図で
ある。
FIG. 7 is a simulation configuration diagram for explaining an operation of obtaining a time base origin from a time-resolved waveform using the present invention.

【図8】本発明を用いた時間分解波形から時間軸原点を
求める動作を説明するためのシミュレーション結果であ
る。
FIG. 8 is a simulation result for explaining an operation of obtaining a time base origin from a time-resolved waveform using the present invention.

【図9】本発明の光測定装置に使用する光ファイバーの
他の実施形態を説明する図である。
FIG. 9 is a diagram illustrating another embodiment of the optical fiber used for the light measuring device of the present invention.

【図10】従来の光測定装置の送光手段および受光手段
の配置を説明する図である。
FIG. 10 is a diagram illustrating an arrangement of a light transmitting unit and a light receiving unit of a conventional light measuring device.

【図11】時間軸原点を決定する一般的な方法を説明す
るための構成図である。
FIG. 11 is a configuration diagram for explaining a general method of determining a time axis origin.

【図12】光検出機構の信号強度の時間分布を表す図で
ある。
FIG. 12 is a diagram illustrating a time distribution of signal intensity of the light detection mechanism.

【図13】従来の時間軸原点のずれの監視および補正機
構を説明するための図である。
FIG. 13 is a diagram for explaining a conventional mechanism for monitoring and correcting the deviation of the origin of the time axis.

【図14】時間軸原点のずれの監視および補正を説明す
るための光強度分布図である。
FIG. 14 is a light intensity distribution diagram for explaining monitoring and correction of a deviation of a time axis origin.

【図15】光断層イメージング装置(光CT)を説明す
るための図である。
FIG. 15 is a diagram for explaining an optical tomographic imaging apparatus (optical CT).

【符号の説明】[Explanation of symbols]

1,10,11…光測定装置、2…被検体、3,4…光
ファイバー、20…被検体、21…送光部、22…受光
部、S1,S2,〜Sn 、送受光手段I1,I2,〜In…送光
用光ファイバー、O1,O2,〜On …受光用光ファイバ
ー。
Reference numerals 1, 10, 11: optical measuring device, 2: subject, 3, 4: optical fiber, 20: subject, 21: light transmitting unit, 22: light receiving unit, S1, S2, -Sn, light transmitting and receiving means I1, I2 , ~ In: Optical fiber for transmitting light, O1, O2, -On: Optical fiber for receiving light.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小田 一郎 神奈川県秦野市堀山下字松葉380−1 株 式会社島津製作所秦野工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Ichiro Oda 380-1 Matsuba, Horiyamashita, Hadano-shi, Kanagawa Inside the Hadano Plant of Shimadzu Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検体に光を送光し、被検体からの光を
受光することによって被検体を光学的に測定する光測定
装置において、送光用光ファイバーと受光用光ファイバ
ーを近接配置してなる送受光手段を形成し、該送受光手
段を複数備えたことを特徴とする光測定装置。
1. An optical measuring device for transmitting light to a subject and optically measuring the subject by receiving light from the subject, wherein an optical fiber for transmitting light and an optical fiber for receiving light are arranged close to each other. An optical measurement device, comprising: a light transmitting / receiving means; and a plurality of the light transmitting / receiving means.
【請求項2】 被検体に光を送光し、被検体からの光を
受光することによって被検体を光学的に測定する光測定
装置において、パルス光を発生するパルス光発生手段
と、被検体からの光を時間分解計測する光検出手段と、
送光用光ファイバーと受光用光ファイバーを含む一体の
送受光手段とを備え、前記一体の送受光手段における送
受光の時間分解波形から時間軸原点を求めることを特徴
とする光測定装置。
2. A light measuring apparatus for optically measuring a subject by transmitting light to the subject and receiving light from the subject, wherein a pulse light generating means for generating pulsed light; Light detection means for time-resolved measurement of light from
An optical measurement device comprising: an integrated light transmitting and receiving means including a light transmitting and receiving optical fiber and a light receiving and receiving optical fiber; and obtaining a time axis origin from a time-resolved waveform of the light transmitting and receiving by the integrated light transmitting and receiving means.
JP18502897A 1996-08-29 1997-07-10 Light-measuring device Withdrawn JPH10148611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18502897A JPH10148611A (en) 1996-08-29 1997-07-10 Light-measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22835796 1996-08-29
JP8-228357 1996-08-29
JP18502897A JPH10148611A (en) 1996-08-29 1997-07-10 Light-measuring device

Publications (1)

Publication Number Publication Date
JPH10148611A true JPH10148611A (en) 1998-06-02

Family

ID=26502857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18502897A Withdrawn JPH10148611A (en) 1996-08-29 1997-07-10 Light-measuring device

Country Status (1)

Country Link
JP (1) JPH10148611A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110239A1 (en) * 2004-05-18 2005-11-24 Hamamatsu Photonics K.K. Image reconfiguring method
US7072700B2 (en) 1999-12-27 2006-07-04 Hitachi, Ltd. Biological photometric device
JP2007082608A (en) * 2005-09-20 2007-04-05 Fujifilm Corp Sample analysis apparatus
JP2009082265A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Probe device
WO2010061673A1 (en) * 2008-11-25 2010-06-03 浜松ホトニクス株式会社 Method for measuring scattering absorber and device for measuring scattering absorber
JP2010148794A (en) * 2008-12-26 2010-07-08 Shimadzu Corp Optical measurement apparatus
JP2010151616A (en) * 2008-12-25 2010-07-08 Shimadzu Corp Light measuring device
JP2012032204A (en) * 2010-07-29 2012-02-16 Shimadzu Corp Light measuring equipment
JP2015100410A (en) * 2013-11-21 2015-06-04 国立研究開発法人産業技術総合研究所 Brain function measurement instrument and brain function measurement method
CN114176522A (en) * 2021-12-09 2022-03-15 武汉资联虹康科技股份有限公司 Near-infrared brain function imaging system with flexibly configurable channels

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072700B2 (en) 1999-12-27 2006-07-04 Hitachi, Ltd. Biological photometric device
WO2005110239A1 (en) * 2004-05-18 2005-11-24 Hamamatsu Photonics K.K. Image reconfiguring method
JP2005328916A (en) * 2004-05-18 2005-12-02 Hamamatsu Photonics Kk Image reconstruction method
JP2007082608A (en) * 2005-09-20 2007-04-05 Fujifilm Corp Sample analysis apparatus
JP2009082265A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Probe device
JP2010127643A (en) * 2008-11-25 2010-06-10 Hamamatsu Photonics Kk Method and device of measuring scatter absorber
WO2010061673A1 (en) * 2008-11-25 2010-06-03 浜松ホトニクス株式会社 Method for measuring scattering absorber and device for measuring scattering absorber
GB2477455A (en) * 2008-11-25 2011-08-03 Hamamatsu Photonics Kk Method for measuring scattering absorber and device for measuring scattering absorber
GB2477455B (en) * 2008-11-25 2013-03-20 Hamamatsu Photonics Kk Method for measuring scattering absorber and device for measuring scattering absorber
US8700349B2 (en) 2008-11-25 2014-04-15 Hamamatsu Photonics K.K. Method for measuring scattering absorber and device for measuring scattering absorber
JP2010151616A (en) * 2008-12-25 2010-07-08 Shimadzu Corp Light measuring device
JP2010148794A (en) * 2008-12-26 2010-07-08 Shimadzu Corp Optical measurement apparatus
JP2012032204A (en) * 2010-07-29 2012-02-16 Shimadzu Corp Light measuring equipment
JP2015100410A (en) * 2013-11-21 2015-06-04 国立研究開発法人産業技術総合研究所 Brain function measurement instrument and brain function measurement method
CN114176522A (en) * 2021-12-09 2022-03-15 武汉资联虹康科技股份有限公司 Near-infrared brain function imaging system with flexibly configurable channels

Similar Documents

Publication Publication Date Title
US8355131B2 (en) Device and method for acquiring image data from a turbid medium
US5032024A (en) Optical examination apparatus
JPH09122128A (en) Measurement condition reproducing tool, measurement condition reproducing method and biological information utilizing the same
JP2009508110A (en) Optical probe for optical imaging system
JP2010188114A5 (en) Imaging method and apparatus for taking optical coherence tomographic image
JP2013523362A (en) Apparatus and method for determining biological, chemical and / or physiological parameters in biological tissue
JPH10148611A (en) Light-measuring device
EP0239370A2 (en) Droplet size measuring apparatus
US5586554A (en) Optical system for measuring metabolism in a body
US20210196135A1 (en) Blood vessel detection device and method therefor
JP2004037408A5 (en)
US20170089847A1 (en) Xrf/xrd system with dynamic management of multiple data processing units
CN105596011A (en) Noninvasive blood glucose detection device
WO2007060583A2 (en) Method and apparatus for determining concentrations of analytes in a turbid medium
JP4151162B2 (en) Optical measuring device
CN101616627B (en) An optical device for assessing optical depth in a sample
US20200359938A1 (en) Lipid measurement device and method therefor
CN110178006A (en) NDIR glucose detection in liquid
US9993158B2 (en) Apparatus for measuring condition of object
JP3597887B2 (en) Scanning optical tissue inspection system
JP2004024856A (en) Optical component measuring instrument
US20200245929A1 (en) Lipid measuring apparatus and lipid measuring method
JPH1137938A (en) Diffuse reflection light measuring apparatus
JPS61240146A (en) Method for analyzing composition of article to be measured by x-rays
JPH08196526A (en) Nonaggressive biochemical measuring instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005