JPH10135099A - Exposure device and exposure method - Google Patents

Exposure device and exposure method

Info

Publication number
JPH10135099A
JPH10135099A JP8283678A JP28367896A JPH10135099A JP H10135099 A JPH10135099 A JP H10135099A JP 8283678 A JP8283678 A JP 8283678A JP 28367896 A JP28367896 A JP 28367896A JP H10135099 A JPH10135099 A JP H10135099A
Authority
JP
Japan
Prior art keywords
line width
wafer
exposure
photoresist film
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8283678A
Other languages
Japanese (ja)
Inventor
Ikuo Yoshihara
郁夫 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8283678A priority Critical patent/JPH10135099A/en
Publication of JPH10135099A publication Critical patent/JPH10135099A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an exposure device for preventing the occurrence of the variation of line width on a wafer face owing to the difference of photoresist film thickness on the wafer face and to provide the exposure method of a semiconductor wafer. SOLUTION: The exposure device 10 has a conventional exposure device 12, a first calculation means 14 and a second calculation means 16. The first calculation means 14 calculates predicted line width in an arbitrarily selected position in a sample wafer, based on a relation that the difference between preset line width and formed line width in the wafer face. Namely, the line width deviation distributes, according to a normalized distribution curve with respect to the distance from the wafer center and on line width measurement values measured in measurement positions, which are arbitrarily set along one diameter direction of the sample wafer and the direction orthogonal to the diameter direction. The second calculation means 16 calculates a necessary exposure value at the selected position, so that preset line width can be obtained based on predicted line width in accordance with the correlation relation of line width and the exposure value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、露光装置に関し、
更に詳細には、形成線幅がウエハ面内で均一になるよう
にパターンを露光できるようにした露光装置に関するも
のである。
The present invention relates to an exposure apparatus,
More specifically, the present invention relates to an exposure apparatus capable of exposing a pattern so that a formed line width becomes uniform in a wafer surface.

【0002】[0002]

【従来の技術】半導体装置の製造において、フォトリソ
グラフィによりパターニングする際、フォトレジスト膜
上に露光して形成したパターン線幅は、半導体装置の動
作特性を左右する極めて重要な因子である。特に、MO
Sトランジスタのゲート長は、半導体装置の動作速度を
決定する重要な因子の一つであるので、半導体装置の設
計では、トランジスタ能力とゲート長との関係から十分
に吟味されて設定される。半導体装置の高集積化及び動
作高速化の要求に伴い、ゲート長はデザインルールの微
細化に従って微細化されると共に、フォトリソグラフィ
技術の適用に当たり、ゲート長のばらつき割合が大きく
なる一方、ゲート長のばらつきを抑制することが益々難
しくなっている。ゲート長の寸法精度のばらつきが大き
いと、半導体装置の高速化が実現せず、製品歩留りが低
下するので、ゲート長のばらつきを抑制することが、半
導体装置の高速化を図る上で、益々、重要になってい
る。そこで、従来、反射防止膜を設けたりてゲート長の
ばらつきを軽減したり、或いは光の近接効果コントロー
ル技術を用いてゲート長のばらつきを軽減したりして来
た。
2. Description of the Related Art In manufacturing a semiconductor device, when patterning is performed by photolithography, a pattern line width formed by exposing a photoresist film is an extremely important factor that affects the operation characteristics of the semiconductor device. In particular, MO
Since the gate length of the S transistor is one of the important factors that determine the operation speed of the semiconductor device, the design of the semiconductor device is set in consideration of the relationship between the transistor capacity and the gate length. With the demand for high integration and high-speed operation of semiconductor devices, the gate length is miniaturized according to the miniaturization of the design rule, and the application ratio of the photolithography technology increases the variation ratio of the gate length. It is becoming more and more difficult to suppress variations. If the variance in the dimensional accuracy of the gate length is large, the speed of the semiconductor device cannot be increased, and the product yield will be reduced. It has become important. Therefore, conventionally, a variation in gate length has been reduced by providing an anti-reflection film, or a variation in gate length has been reduced by using a light proximity effect control technique.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の従来の
方法では、ゲート長のばらつきを抑制するのに限界があ
り、そのため製品のMOSトランジスタの性能、特に動
作速度や消費電力にばらつきが生じ、製品歩留りを向上
させることが難しかった。ゲート長等の線幅のばらつき
は、3種類に大別でき、それぞれ以下の原因に起因する
と考えられている。 1)ウエハ間、ウエハロット間のばらつき この種類のばらつきは、最適露光条件の経時的変化及び
フォトレジスト膜厚の面内変動及びロット間変動による
ものと推定されている。 2)ウエハ面内のばらつき この種類のばらつきは、フォトレジスト膜厚の面内変動
及び現像液の供給量の変動によるもの、更にはウエハの
フォトレジスト膜表面の高低差によるものと推定されて
いる。 3)ショット内のばらつき 露光フィールド内の光の明暗、レンズ歪み及びパターン
歪みによるものと推定されている。これらの3種類の線
幅のばらつきの中で、フォトレジスト膜厚の変動による
ウエハ面内の線幅変動が、ばらつきとして最も顕著なも
のの一つであり、しかも従来の技術では克服することが
難しいものである。
However, in the above-mentioned conventional method, there is a limit in suppressing the variation in the gate length, and therefore, the performance of the MOS transistor of the product, particularly, the operation speed and the power consumption are varied. It was difficult to improve the product yield. Variations in line width such as gate length can be roughly classified into three types, each of which is considered to be caused by the following causes. 1) Variations between wafers and wafer lots Variations of this type are presumed to be due to temporal changes in the optimal exposure conditions, in-plane variations in photoresist film thickness, and variations between lots. 2) Variation in wafer surface This type of variation is presumed to be due to variations in photoresist film thickness within the surface and variations in the amount of developer supplied, and furthermore to variations in the height of the photoresist film surface of the wafer. . 3) Intra-shot variation It is estimated that this is due to the brightness of light in the exposure field, lens distortion, and pattern distortion. Of these three types of line width variations, line width variations in the wafer surface due to variations in photoresist film thickness are one of the most prominent variations, and are difficult to overcome with conventional techniques. Things.

【0004】そこで、本発明の目的は、ウエハ面内のフ
ォトレジスト膜厚の差に起因するウエハ面内の線幅のば
らつきの発生を防止するようにした露光装置と、半導体
ウエハの露光方法とを提供することである。
An object of the present invention is to provide an exposure apparatus, a method of exposing a semiconductor wafer, and a method of preventing the occurrence of line width variations in a wafer surface due to a difference in photoresist film thickness in the wafer surface. It is to provide.

【0005】[0005]

【課題を解決するための手段】本発明者は、線幅のばら
つきの原因を調査する過程で、ウエハ上のフォトレジス
ト膜の膜厚が、ウエハ面内で一様でなく、ウエハの中央
部で薄く、周辺部に行くにつれて徐々に厚くなっている
にもかかわらず、従来の露光方法では、各ショットにつ
いて、ウエハ面内のショット位置に関係なく同じ露光時
間で露光しているから、周辺部のチップの線幅長が中央
部より太くなることに注目し、露光量をフォトレジスト
膜の膜厚に応じて変化させることを研究した。
In the process of investigating the cause of line width variation, the present inventors have found that the thickness of the photoresist film on the wafer is not uniform in the wafer surface, In the conventional exposure method, each shot is exposed at the same exposure time irrespective of the shot position in the wafer surface, although the thickness is gradually increased toward the peripheral portion. Focusing on the fact that the line width of the chip becomes thicker than the central part, we studied how to change the exposure amount according to the thickness of the photoresist film.

【0006】そして、フォトレジスト膜の膜厚に従って
線幅長が異なることから、ウエハ面内での設定線幅と形
成線幅との差、即ち線幅偏差がウエハ中心からの距離に
対して正規分布曲線に従って分布するという経験則が成
立すること、及び、他の条件が同じであれば、露光量、
例えば露光時間と線幅とは一定の相関関係にあることに
気が付き、確認実験を重ねて、本発明を完成するに到っ
た。尚、本明細書で、線幅とは、ポジ型フォトレジスト
膜を使用して配線形成する場合、露光、現像した後に残
留したフォトレジスト膜のパターン幅を言い、コンタク
ト形成の場合、露光、現像した後に下地層を露出させた
溝幅を言う。
Since the line width differs depending on the thickness of the photoresist film, the difference between the set line width and the formed line width in the wafer plane, that is, the line width deviation is normal to the distance from the wafer center. If the empirical rule of distribution according to the distribution curve holds, and if other conditions are the same, the exposure amount,
For example, the inventors have noticed that the exposure time and the line width have a certain correlation, and have repeated confirmation experiments to complete the present invention. In the present specification, the line width refers to the pattern width of the photoresist film remaining after exposure and development when wiring is formed using a positive photoresist film, and the exposure and development when forming a contact. The groove width that exposes the underlayer after the formation.

【0007】上記目的を達成するために、以上の知見に
基づき、本発明に係る露光装置は、ウエハ上のフォトレ
ジスト膜にパターンを露光する露光装置において、ウエ
ハ面内での設定線幅と形成線幅との差、即ち線幅偏差が
ウエハ中心からの距離に対して正規分布曲線に従って分
布するという関係と、及び、所定の露光、及び現像条件
で露光し、現像した試料ウエハの一の直径方向及びその
直径方向に直交する方向に沿って設定した複数の測定位
置で測定したパターンの線幅測定値とに基づき、試料ウ
エハの任意に選定した位置での予測線幅を算出する第1
の算出手段と、第1の算出手段で算出した予測線幅に基
づいて線幅と露光量との相関関係に従って、選定位置で
設定線幅を得るような、選定位置での所要露光量を算出
する第2の算出手段とを備えていることを特徴としてい
る。
In order to achieve the above object, based on the above findings, an exposure apparatus according to the present invention provides an exposure apparatus for exposing a pattern on a photoresist film on a wafer, wherein the exposure apparatus has a set line width and a predetermined line width within a wafer surface. The difference from the line width, that is, the relationship that the line width deviation is distributed according to the normal distribution curve with respect to the distance from the center of the wafer, and the diameter of one sample wafer exposed and developed under predetermined exposure and development conditions. Calculating a predicted line width at an arbitrarily selected position of the sample wafer based on the line width measurement values of the pattern measured at a plurality of measurement positions set along the direction and the direction orthogonal to the diameter direction thereof;
Calculating the required exposure amount at the selected position so as to obtain the set line width at the selected position according to the correlation between the line width and the exposure amount based on the predicted line width calculated by the first calculating unit. And a second calculating means for performing the calculation.

【0008】本発明では、試料ウエハの線幅を測定する
測定位置が等間隔になるように測定位置を設定すること
は必ずしも必要でなく、後述するように、間隔が異なっ
ていても良い。また、使用する線幅と露光量と相関関係
は、予め実験等で求められている関係である。第1及び
第2の算出手段には、既知の演算装置、例えば小型コン
ピュータを使用できる。露光量は、線幅長と一対一の関
係にある物理量であって、例えば、露光装置が、縮小投
影露光装置の場合には、所要露光量が露光時間で規定さ
れ、直接描画法による電子ビーム露光装置の場合には、
所要露光量が露光時間及び/又は露光エネルギーで規定
される。
In the present invention, it is not necessary to set the measurement positions so that the measurement positions for measuring the line width of the sample wafer are at equal intervals, and the intervals may be different as described later. Further, the correlation between the line width to be used and the exposure amount is a relationship previously obtained by an experiment or the like. As the first and second calculation means, a known arithmetic device, for example, a small computer can be used. The exposure amount is a physical amount that has a one-to-one relationship with the line width. For example, when the exposure apparatus is a reduction projection exposure apparatus, the required exposure amount is defined by the exposure time, and the electron beam by the direct writing method is used. In the case of an exposure device,
The required exposure is defined by the exposure time and / or the exposure energy.

【0009】フォトレジスト膜を塗布する際に同じロッ
トに属したウエハは、通常、同じフォトレジスト膜の膜
厚分布を有する。本発明者は、この経験則に基づき、上
述の露光装置を使用した露光方法を開発した。本発明に
係る露光方法は、上述の露光装置を使用して、ウエハ上
のフォトレジスト膜にパターンを露光する露光方法にお
いて、フォトレジスト膜を塗布した同じロットに属する
複数枚のウエハから一枚のウエハを選定して試料ウエハ
とし、試料ウエハ上のフォトレジスト膜に所定の露光条
件でパターンを露光し、現像する工程と、試料ウエハの
一の直径方向及びその直径方向に直交する方向に沿って
設定した複数の測定位置でパターンの形成線幅を測定す
る工程と、ウエハ面内での設定線幅と形成線幅との差、
即ち線幅偏差がウエハ中心からの距離に対して正規分布
曲線に従って分布するという関係に従って、線幅測定値
に基づき、試料ウエハの任意に選定した位置での予測線
幅を算出する工程と、次いで、線幅と露光量と相関関係
に従って予測線幅に基づき、選定位置で設定線幅を得る
ような、選定位置での所要露光量を算出する工程と、試
料ウエハ以外のウエハのフォトレジスト膜上であって、
試料ウエハ選定位置と同じ位置に算出した所要露光量で
パターンを露光する工程とを備えていることを特徴とし
ている。
When a photoresist film is applied, wafers belonging to the same lot usually have the same photoresist film thickness distribution. The present inventor has developed an exposure method using the above-described exposure apparatus based on this empirical rule. An exposure method according to the present invention uses the above-described exposure apparatus to expose a pattern on a photoresist film on a wafer, wherein one of a plurality of wafers belonging to the same lot coated with the photoresist film is exposed. A wafer is selected as a sample wafer, a pattern is exposed and developed on a photoresist film on the sample wafer under predetermined exposure conditions, and a process is performed along a diameter direction of one of the sample wafers and a direction orthogonal to the diameter direction. The step of measuring the pattern forming line width at a plurality of set measurement positions, and the difference between the set line width and the forming line width in the wafer plane,
That is, a step of calculating a predicted line width at an arbitrarily selected position on the sample wafer based on the line width measurement value, according to a relationship that the line width deviation is distributed according to a normal distribution curve with respect to the distance from the wafer center, Calculating the required exposure amount at the selected position to obtain the set line width at the selected position based on the predicted line width according to the correlation between the line width and the exposure amount; And
Exposing the pattern with the required exposure calculated at the same position as the sample wafer selection position.

【0010】本発明の露光方法は、その適用に制限はな
いが、特に、フォトリソグラフィによりパターニングし
てMOSトランジスタのゲートを形成する際に好適に適
用できる。
The exposure method of the present invention is not limited in its application, but can be suitably applied particularly when patterning by photolithography to form a gate of a MOS transistor.

【0011】[0011]

【発明の実施の形態】以下に、添付図面を参照し、実施
例を挙げて本発明の実施の形態を具体的かつ詳細に説明
する。露光装置の実施例 本実施例は、本発明に係る露光装置の実施例であって、
本発明を縮小投影露光装置に適用した例である。図1は
本実施例の露光装置の構成を示すブロック図である。本
実施例の露光装置10は、従来と同じ構成の縮小投影露
光装置12(以下、簡単にステッパ12と言う)と、第
1算出手段14と、第2算出手段16とを備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Example embodiment of the exposure apparatus is an embodiment of an exposure apparatus according to the present invention,
This is an example in which the present invention is applied to a reduction projection exposure apparatus. FIG. 1 is a block diagram showing the configuration of the exposure apparatus of the present embodiment. The exposure apparatus 10 of this embodiment includes a reduced projection exposure apparatus 12 (hereinafter simply referred to as a stepper 12) having the same configuration as that of the related art, a first calculation unit 14, and a second calculation unit 16.

【0012】形成されたパターンの予測線幅偏差と設定
線幅とが判れば、パターンの予測線幅を求めることがで
きる。そこで、第1算出手段14は、ウエハ面内での設
定線幅と形成線幅との差、即ち線幅偏差は、ウエハ中心
からの距離に対して正規分布曲線に従って分布するとい
う経験則と、及び、所定の露光、現像条件で露光し、現
像した試料ウエハの一の直径方向及びその直径方向に直
交する方向に沿ってほぼ等間隔に設定した複数の測定位
置で測定した線幅測定値とに基づき、試料ウエハの任意
に選定した位置での予測線幅を算出する。図2は、試料
ウエハ上に実際に形成されたパターンの形成線幅をオリ
エンテーション・フラットに平行な直径に沿った測定位
置P1からP5で測定した線幅測定値の分布を示す。図
3は、試料ウエハ上に実際に形成されたパターンの形成
線幅をオリエンテーション・フラットに直交する直径に
沿った測定位置P1´からP5´で測定した線幅測定値
の分布を示す。図2及び図3で、18は試料ウエハを示
す。
If the predicted line width deviation of the formed pattern and the set line width are known, the predicted line width of the pattern can be obtained. Therefore, the first calculating means 14 has an empirical rule that the difference between the set line width and the formed line width in the wafer plane, that is, the line width deviation is distributed according to a normal distribution curve with respect to the distance from the wafer center. And, predetermined exposure, the line width measurement value measured at a plurality of measurement positions set at substantially equal intervals along the diameter direction of one of the sample wafers exposed and developed under development conditions and a direction orthogonal to the diameter direction of one of the developed sample wafers , A predicted line width at an arbitrarily selected position of the sample wafer is calculated. FIG. 2 shows a distribution of line width measurement values obtained by measuring the line width of a pattern actually formed on a sample wafer at measurement positions P1 to P5 along a diameter parallel to the orientation flat. FIG. 3 shows a distribution of line width measurement values obtained by measuring the line width of a pattern actually formed on a sample wafer at measurement positions P1 'to P5' along a diameter orthogonal to the orientation flat. 2 and 3, reference numeral 18 denotes a sample wafer.

【0013】露光量、例えば露光時間と線幅とは、一定
の相関関係を有し、例えば、図4に示すようなグラフで
表される。第2算出手段16は、図4に示すような線幅
と露光時間と相関関係に従って、第1算出手段14で求
めた予測線幅に基づき、選定位置で設定線幅を得るよう
な、選定位置での所要露光量を算出する。例えば、図3
の星印の位置では、第2算出手段14により予測線幅が
0.38μm と算出でき、従って、図4から所要露光時
間は380msecになる。一方、図3の中央部P3の線幅
は0.35μm で、図4からその所要露光時間は400
msecと算出できる。よって、星印の位置で線幅を0.3
5μm にするのに必要な所要露光時間は、400msec+
(400msec−380msec)=420msecと算出でき
る。
The exposure amount, for example, the exposure time and the line width have a certain correlation, and are represented, for example, by a graph as shown in FIG. The second calculating means 16 selects a selected position based on the predicted line width obtained by the first calculating means 14 according to the correlation between the line width and the exposure time as shown in FIG. To calculate the required exposure. For example, FIG.
In the position of the star mark, the predicted line width can be calculated to be 0.38 μm by the second calculating means 14, and the required exposure time becomes 380 msec from FIG. On the other hand, the line width of the central portion P3 in FIG. 3 is 0.35 μm, and the required exposure time is 400
It can be calculated as msec. Therefore, the line width is 0.3
Exposure time required for 5 μm is 400 msec +
(400 msec-380 msec) = 420 msec.

【0014】本実施例では、露光装置本体は、ステッパ
であったが、ステッパに代えて直接描画法を使用した電
子ビーム露光装置を使用することもできる。その場合に
は、露光量を規定するものとして、露光時間に代えて、
露光時間(スキャン速度)及び/又は露光エネルギーを
使用する。
In this embodiment, the exposure apparatus main body is a stepper. However, an electron beam exposure apparatus using a direct writing method can be used instead of the stepper. In that case, instead of the exposure time,
Exposure time (scan speed) and / or exposure energy is used.

【0015】露光方法の実施例 上述の露光装置10を使用して、MOSトランジスタの
ゲート電極パターンを形成するためにポジ型フォトレジ
スト・パターンを形成する場合を例にして、本露光方法
の実施を説明する。 1)先ず、フォトレジスト膜を塗布した同じロットに属
する複数枚のウエハから一枚のウエハを選定して試料ウ
エハとし、試料ウエハ上に所定の露光、及び現像条件で
パターンを露光し、現像する。 2)次いで、図2及び図3に示すように、試料ウエハの
一の直径方向及びその直径方向に直交する方向に沿って
ほぼ等間隔に設定した複数の測定位置P1からP5及び
P1´からP5´でパターンの形成線幅を測定する。
[0015] Using the example above exposure apparatus 10 of the exposure method, as an example case of forming a positive photoresist pattern to form a gate electrode pattern of the MOS transistor, the embodiment of the present exposure method explain. 1) First, one wafer is selected from a plurality of wafers belonging to the same lot on which a photoresist film has been applied to be a sample wafer, and a pattern is exposed and developed on the sample wafer under predetermined exposure and development conditions. . 2) Next, as shown in FIGS. 2 and 3, a plurality of measurement positions P1 to P5 and P1 'to P5 set at substantially equal intervals along one diameter direction of the sample wafer and a direction orthogonal to the diameter direction. ', The line width of the pattern is measured.

【0016】3)ウエハ面内での設定線幅と形成線幅と
の差、即ち線幅偏差がウエハ中心からの距離に対して正
規分布曲線に従って分布するという関係に従って、線幅
測定値に基づき試料ウエハの任意に選定した位置、例え
ば星印位置での予測線幅偏差を算出し、設定線幅と予測
線幅偏差から予測線幅を求める。 4)次いで、図4に示すような線幅と露光量と相関関係
に従って、予測線幅に基づき、選定位置で設定線幅を得
るような、選定位置での所要露光量、例えば所要露光時
間を前述のように算出する。続いて、例えば、図5に示
すように、各選定位置に対して所要露光時間をそれぞれ
算出する。本実施例の場合、ウエハの中心部は、ポジ型
フォトレジスト膜が周辺に比べて比較的薄くしかも均一
に形成されるので、例えば線幅長0.32μm の場合、
最適露光時間は400msecとなる。一方、ウエハ周辺部
では、フォトレジスト膜の膜厚が比較的厚くなるため
に、線幅を同じ0.32μm にするには、露光位置に応
じて420msecから450msecの露光時間が必要とな
る。図5中、20はパターニングを施すウエハ、22は
ウエハ20上の各チップを意味する。尚、図5中、各選
定位置に示した数値は、露光時間であって、単位のmsec
を省略している。 5)続いて、試料ウエハ以外のウエハ上であって、試料
ウエハ選定位置と同じ位置に算出した所要露光量でパタ
ーンを露光する。
3) The difference between the set line width and the formed line width in the wafer plane, that is, the line width deviation is distributed according to the normal distribution curve with respect to the distance from the wafer center, based on the measured line width. A predicted line width deviation at an arbitrarily selected position of the sample wafer, for example, a star mark position is calculated, and a predicted line width is obtained from the set line width and the predicted line width deviation. 4) Next, according to the correlation between the line width and the exposure amount as shown in FIG. 4, the required exposure amount at the selected position, for example, the required exposure time, is obtained so as to obtain the set line width at the selected position based on the predicted line width. It is calculated as described above. Subsequently, for example, as shown in FIG. 5, the required exposure time is calculated for each selected position. In the case of the present embodiment, the positive photoresist film is formed relatively thinly and uniformly at the center of the wafer as compared with the periphery thereof. For example, when the line width is 0.32 μm,
The optimal exposure time is 400 msec. On the other hand, in the peripheral portion of the wafer, since the thickness of the photoresist film is relatively large, an exposure time of 420 msec to 450 msec is required to make the line width the same at 0.32 μm, depending on the exposure position. In FIG. 5, reference numeral 20 denotes a wafer to be patterned, and reference numeral 22 denotes each chip on the wafer 20. In FIG. 5, the numerical value shown at each selected position is the exposure time, which is a unit of msec.
Is omitted. 5) Subsequently, the pattern is exposed on the wafer other than the sample wafer at the same position as the sample wafer selection position with the calculated required exposure amount.

【0017】尚、上述の実施例では、測定位置P1から
P5を等間隔に設定しているが、必ずしも等間隔に設定
する必要はない。例えば、P1とP5をウエハ周辺部に
設け、P1とP5の間の任意の位置にP3を設け、P2
をP1とP3との間の任意の位置に、またP4をP3と
P5の間の任意の位置に設けても良い。また、フォトレ
ジスト膜の膜厚分布は、ウエハ上に形成したデバイスチ
ップの表面パターンにも多少依存するが、寧ろ、フォト
レジスト液を塗布するスピンコータの型式及び回転数に
依存していることが多い。従って、工程で使用するスピ
ンコータを設定回転数で運転して、試料ウエハ上にフォ
トレジスト液を塗布し、図6に示す下のグラフのよう
に、予め、線幅分布についてデータを取っておく。そう
すれば、試料ウエハと同じウエハに対しては、実工程で
P1、P2、P3のいずれか一つの測定位置で線幅を測
定し、下のグラフと同じ波形で測定値を通るグラフを図
6に示す上のグラフのように描くことにより、全てのウ
エハ領域の線幅分布を推定することができる。
In the above-described embodiment, the measurement positions P1 to P5 are set at equal intervals, but need not necessarily be set at equal intervals. For example, P1 and P5 are provided around the wafer, P3 is provided at an arbitrary position between P1 and P5, and P2 is provided.
May be provided at any position between P1 and P3, and P4 may be provided at any position between P3 and P5. Further, the thickness distribution of the photoresist film slightly depends on the surface pattern of the device chip formed on the wafer, but rather depends on the type and rotation speed of the spin coater for applying the photoresist liquid. . Therefore, the spin coater used in the process is operated at the set number of revolutions to apply a photoresist liquid on the sample wafer, and data on the line width distribution is obtained in advance as shown in the lower graph of FIG. Then, for the same wafer as the sample wafer, the line width is measured at any one of the measurement positions P1, P2, and P3 in the actual process, and a graph passing the measurement value with the same waveform as the lower graph is shown. By drawing like the upper graph shown in FIG. 6, the line width distribution of all the wafer regions can be estimated.

【0018】[0018]

【発明の効果】本発明の構成によれば、線幅偏差がウエ
ハ中心からの距離に対して正規分布曲線に従って分布す
るという経験則に従って、露光、現像した試料ウエハの
線幅測定値に基づき、試料ウエハの任意に選定した位置
での予測線幅を算出し、線幅と露光量と相関関係に従っ
て、予測線幅に基づき、選定位置で設定線幅を得るよう
な、選定位置での所要露光量を算出し、その露光量でウ
エハの選定位置にパターンを露光する。本発明を適用す
ることにより、ウエハ面内で均一な線幅のパターンをウ
エハ上に形成することができるので、高速で動作する高
密度の半導体装置を高い製品歩留りで製造することがで
きる。
According to the structure of the present invention, the line width deviation is distributed according to the normal distribution curve with respect to the distance from the wafer center, based on the line width measurement value of the exposed and developed sample wafer. Calculate the predicted line width at an arbitrarily selected position on the sample wafer, and obtain the required line width at the selected position based on the predicted line width according to the correlation between the line width and the exposure amount. The amount is calculated, and the pattern is exposed at a selected position on the wafer with the exposure amount. By applying the present invention, a pattern with a uniform line width can be formed on a wafer in the plane of the wafer, so that a high-density semiconductor device operating at a high speed can be manufactured with a high product yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る露光装置の実施例の構成を示すブ
ロック図である。
FIG. 1 is a block diagram illustrating a configuration of an embodiment of an exposure apparatus according to the present invention.

【図2】オリエンテーション・フラットに平行な方向の
直径に沿った測定位置での線幅測定値を示すグラフであ
る。
FIG. 2 is a graph showing line width measurements at measurement locations along the diameter in a direction parallel to the orientation flat.

【図3】オリエンテーション・フラットに直交する方向
の直径に沿った測定位置での線幅測定値を示すグラフで
ある。
FIG. 3 is a graph showing line width measurements at measurement locations along a diameter in a direction perpendicular to the orientation flat.

【図4】露光時間と線幅との関係を示すグラフである。FIG. 4 is a graph showing a relationship between an exposure time and a line width.

【図5】ウエハ上の各チップの露光時間の分布を示す図
である。
FIG. 5 is a diagram showing a distribution of exposure time of each chip on a wafer.

【図6】線幅分布を示すグラフである。FIG. 6 is a graph showing a line width distribution.

【符号の説明】[Explanation of symbols]

10……本発明に係る露光装置の実施例、12……ステ
ッパ、14……第1算出手段、16……第2算出手段、
18……ウエハ、20……パターニングするチップ、2
2……チップ。
10 an embodiment of the exposure apparatus according to the present invention, 12 stepper, 14 first calculating means, 16 second calculating means,
18 wafer, 20 chip to be patterned, 2
2 ... Tip.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ウエハ上のフォトレジスト膜にパターン
を露光する露光装置において、 ウエハ面内での設定線幅と形成線幅との差、即ち線幅偏
差がウエハ中心からの距離に対して正規分布曲線に従っ
て分布するという関係と、及び、所定の露光、及び現像
条件で露光し、現像した試料ウエハの一の直径方向及び
その直径方向に直交する方向に沿って設定した複数の測
定位置で測定したパターンの線幅測定値とに基づき、試
料ウエハの任意に選定した位置での予測線幅を算出する
第1の算出手段と、 第1の算出手段で算出した予測線幅に基づいて線幅と露
光量との相関関係に従って、選定位置で設定線幅を得る
ような、選定位置での所要露光量を算出する第2の算出
手段とを備えていることを特徴とする露光装置。
In an exposure apparatus for exposing a pattern on a photoresist film on a wafer, a difference between a set line width and a formed line width in a wafer surface, that is, a line width deviation is normalized with respect to a distance from the wafer center. The relationship of being distributed according to the distribution curve, and measurement at a plurality of measurement positions set along one diameter direction of the sample wafer exposed and developed under predetermined exposure and development conditions and a direction orthogonal to the diameter direction. First calculating means for calculating a predicted line width at an arbitrarily selected position on the sample wafer based on the measured line width of the pattern, and a line width based on the predicted line width calculated by the first calculating means. And a second calculating means for calculating a required exposure amount at the selected position so as to obtain a set line width at the selected position in accordance with a correlation between the exposure value and the exposure amount.
【請求項2】 露光装置が、縮小投影露光装置の場合に
は、所要露光量が露光時間で規定され、直接描画法によ
る電子ビーム露光装置の場合には、所要露光量が露光時
間及び/又は露光エネルギーで規定されることを特徴と
する請求項1に記載の露光装置。
2. When the exposure apparatus is a reduction projection exposure apparatus, the required exposure amount is defined by an exposure time. When the exposure apparatus is an electron beam exposure apparatus using a direct writing method, the required exposure amount is determined by an exposure time and / or an exposure time. 2. The exposure apparatus according to claim 1, wherein the exposure apparatus is defined by exposure energy.
【請求項3】 ウエハ上のフォトレジスト膜にパターン
を露光する露光方法において、 フォトレジスト膜を塗布した同じロットに属する複数枚
のウエハから一枚のウエハを選定して試料ウエハとし、
試料ウエハ上のフォトレジスト膜に所定の露光条件でパ
ターンを露光し、現像する工程と、 試料ウエハの一の直径方向及びその直径方向に直交する
方向に沿って設定した複数の測定位置でパターンの形成
線幅を測定する工程と、 ウエハ面内での設定線幅と形成線幅との差、即ち線幅偏
差がウエハ中心からの距離に対して正規分布曲線に従っ
て分布するという関係に従って、線幅測定値に基づき、
試料ウエハの任意に選定した位置での予測線幅を算出す
る工程と、 次いで、線幅と露光量と相関関係に従って予測線幅に基
づき、選定位置で設定線幅を得るような、選定位置での
所要露光量を算出する工程と、 試料ウエハ以外のウエハのフォトレジスト膜上であっ
て、試料ウエハ選定位置と同じ位置に算出した所要露光
量でパターンを露光する工程とを備えていることを特徴
とする露光方法。
3. An exposure method for exposing a pattern on a photoresist film on a wafer, wherein one wafer is selected from a plurality of wafers belonging to the same lot coated with the photoresist film and used as a sample wafer.
Exposing and developing a pattern on a photoresist film on a sample wafer under predetermined exposure conditions; and developing a pattern at a plurality of measurement positions set along one diameter direction of the sample wafer and a direction orthogonal to the diameter direction. The step of measuring the formed line width, and the difference between the set line width and the formed line width in the wafer plane, that is, the line width according to the relationship that the line width deviation is distributed according to the normal distribution curve with respect to the distance from the wafer center. Based on the measurements,
Calculating a predicted line width at an arbitrarily selected position on the sample wafer; and then obtaining a set line width at the selected position based on the predicted line width according to the correlation between the line width and the exposure. Calculating the required exposure amount, and exposing the pattern with the calculated required exposure amount on the photoresist film of the wafer other than the sample wafer and at the same position as the sample wafer selection position. Characteristic exposure method.
【請求項4】 ウエハが、ゲート層として成膜されたポ
リシリコン層上にフォトレジスト膜を成膜したものであ
って、フォトリソグラフィによりパターニングしてMO
Sトランジスタのゲートを形成する際に適用することを
特徴とする請求項3に記載の露光方法。
4. A wafer in which a photoresist film is formed on a polysilicon layer formed as a gate layer, and is patterned by photolithography.
The exposure method according to claim 3, wherein the method is applied when forming a gate of an S transistor.
JP8283678A 1996-10-25 1996-10-25 Exposure device and exposure method Pending JPH10135099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8283678A JPH10135099A (en) 1996-10-25 1996-10-25 Exposure device and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8283678A JPH10135099A (en) 1996-10-25 1996-10-25 Exposure device and exposure method

Publications (1)

Publication Number Publication Date
JPH10135099A true JPH10135099A (en) 1998-05-22

Family

ID=17668659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8283678A Pending JPH10135099A (en) 1996-10-25 1996-10-25 Exposure device and exposure method

Country Status (1)

Country Link
JP (1) JPH10135099A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532306A (en) * 2000-05-04 2003-10-28 ケーエルエー・テンコール・テクノロジーズ・コーポレーション Method and system for lithographic process control
US6730925B1 (en) 1999-11-16 2004-05-04 Nikon Corporation Method and apparatus for projection exposure and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730925B1 (en) 1999-11-16 2004-05-04 Nikon Corporation Method and apparatus for projection exposure and device manufacturing method
JP2012009890A (en) * 2000-05-04 2012-01-12 Kla-Encor Corp Method and system for lithography process control
JP2003532306A (en) * 2000-05-04 2003-10-28 ケーエルエー・テンコール・テクノロジーズ・コーポレーション Method and system for lithographic process control
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
CN101432658B (en) Method and system for controlling critical dimensions of structures formed on a wafer in semiconductor processing
JP2004118194A (en) 3d opc by substrate topography compensation:anchored topography in mask design
JP2002134395A (en) Method for manufacturing semiconductor device and system for manufacturing semiconductor device
JPH10135099A (en) Exposure device and exposure method
US6733936B1 (en) Method for generating a swing curve and photoresist feature formed using swing curve
US6399260B1 (en) Pattern exposure method having no uniformity in pattern density or configuration
US5903011A (en) Semiconductor device having monitor pattern formed therein
US6529282B1 (en) Method of controlling photolithography processes based upon scatterometric measurements of photoresist thickness, and system for accomplishing same
US7740994B2 (en) Method for selecting photomask substrate, method for manufacturing photomask, and method for manufacturing semiconductor device
US6866974B2 (en) Semiconductor process using delay-compensated exposure
JPH04282820A (en) Forming method for pattern
JPH10256114A (en) Method for forming patterns on photoresist film
KR100366615B1 (en) Spinner Apparatus With Chemical Supply Nozzle, Method Of Forming Pattern And Method Of Etching Using The Same
US20040165164A1 (en) Method and system for improving exposure uniformity in a step and repeat process
JPH0955352A (en) Apparatus and method for exposure
JPH10256149A (en) Method of forming resist pattern
CN106610563A (en) Mask and double graphical method
US5043236A (en) Process for determining the focussing of a photolithographic apparatus
JP3734450B2 (en) Edge roughness analysis reticle and edge roughness analysis method using the same
JP3013393B2 (en) Photoresist coating means
JPH1180974A (en) Method for measuring etching rate
US6417912B1 (en) Method and apparatus for controlling optical-parameters in a stepper
JPH0864494A (en) Resist pattern forming method and apparatus therefor
KR960011469B1 (en) Determining mehtod of photoresist film thickness
JPH0567550A (en) Pattern formation method