JPH10130810A - Production of titanium oxide coating for corrosion prevention and titanium oxide coating for corrosion prevention - Google Patents

Production of titanium oxide coating for corrosion prevention and titanium oxide coating for corrosion prevention

Info

Publication number
JPH10130810A
JPH10130810A JP8290889A JP29088996A JPH10130810A JP H10130810 A JPH10130810 A JP H10130810A JP 8290889 A JP8290889 A JP 8290889A JP 29088996 A JP29088996 A JP 29088996A JP H10130810 A JPH10130810 A JP H10130810A
Authority
JP
Japan
Prior art keywords
particles
titanium oxide
tio
layer
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8290889A
Other languages
Japanese (ja)
Other versions
JP3605969B2 (en
Inventor
Nobuhiko Kubota
伸彦 久保田
Ryoichi Katsuya
涼一 勝谷
Tsuneo Ayabe
統夫 綾部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP29088996A priority Critical patent/JP3605969B2/en
Publication of JPH10130810A publication Critical patent/JPH10130810A/en
Application granted granted Critical
Publication of JP3605969B2 publication Critical patent/JP3605969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase adhesion of TiO2 coating to a material to be applied for corrosion prevention, to increase the holdability of the shape of (n) type TiO2 particles and to increase the operability in the case of coating formation by thermally spraying (n) type TiO2 particles on the surface of the material to be applied for corrosion prevention through the method by which they are carried on a plasma flow to produce a melted and solidified layer of TiO2 , thereafter shifting the plasma thermal spraying temp. to a low one and forming its structure so that the ratio of the particles is increased. SOLUTION: In the producing process of (n) type TiO2 coating X, in which plasma current and the flow rate of plasma gas are changed, and (n) type TiO2 particles are welded to the material 1 to be applied for corrosion prevention while the temp. of the plasma flow is substantially reduced, the TiO2 coating X to be produced has a gradient structure shown in the fig. In the initial stage of thermal spraying, by the melting and solidifying of TiO2 , the ratio of the (n) type TiO2 particles reduces, but, as a half-melted layer 3 and a particle layer 4 are formed, the ratio occupied by the (n) type TiO2 particles gradually increases, and finally, the particle layer 4 in which the ratio of the (n) type TiO2 particles layer is increased can be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、防食用チタン酸化
膜の作製方法および防食用チタン酸化膜に係わり、特
に、原子炉構造材に対して光電極反応を利用して防食を
行う技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a titanium oxide film for corrosion protection and a titanium oxide film for corrosion protection, and more particularly to a technique for performing corrosion protection on a reactor structural material by utilizing a photoelectrode reaction. It is.

【0002】[0002]

【従来の技術】水を冷却材としている軽水炉では、炉心
を囲んでいる原子炉圧力容器内の内部構造物の大部分
が、高温状態の原子炉冷却水中に配され、炉心から放射
される放射線の雰囲気で使用されるため、構成材料にあ
っては、原子炉冷却水に対する耐食性を有するととも
に、放射線の水分解による影響等を考慮するなど品質管
理において格別な配慮が払われている。
2. Description of the Related Art In a light water reactor using water as a coolant, most of the internal structures in a reactor pressure vessel surrounding a reactor core are arranged in high-temperature reactor cooling water, and radiation emitted from the reactor core is emitted. Therefore, the constituent materials have corrosion resistance to the cooling water of the reactor, and special attention has been paid to quality control such as taking into account the effects of water decomposition of radiation.

【0003】防食用チタン酸化膜の作製方法および防食
用チタン酸化膜に関連する技術として、例えば、特開平
07−270592号公報「原子炉構造材およびその防
食方法」に、原子炉圧力容器の内部構造物に採用される
チタン酸化膜の作製方法に関連する技術が提案されてい
る。この技術は、チタン酸化膜の光半導体特性を利用し
たもので、放射線またはチェレンコフ放射性光の照射時
に、非消耗型のアノード反応を生じさせ、チタン酸化膜
(光半導体膜)近傍の原子炉構造材の表面の腐食電位を
下げて金属の耐食性を高めるようにしている。
[0003] For example, Japanese Unexamined Patent Publication No. 07-270592 entitled "Reactor Structural Materials and Corrosion Prevention Method" discloses a method for producing a titanium oxide film for corrosion protection and a technique related to the titanium oxide film for corrosion protection. Techniques related to a method for manufacturing a titanium oxide film used for a structure have been proposed. This technology utilizes the photo-semiconductor properties of the titanium oxide film to generate a non-consumable anodic reaction when irradiated with radiation or Cherenkov radiant light, and the reactor structural material near the titanium oxide film (photo-semiconductor film) The corrosion potential of the surface is lowered to increase the corrosion resistance of the metal.

【0004】また、チタン酸化膜(TiO2 膜)は、酸
素の介在雰囲気においてTi粒子を溶射することによ
り、作製するようにしている。
Further, a titanium oxide film (TiO 2 film) is produced by spraying Ti particles in an atmosphere containing oxygen.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、Ti粒
子を溶射させながら酸化させることによりTiO2 膜を
作製する方法であると、良好な光半導体特性を効率的に
得ることが困難である。
However, it is difficult to efficiently obtain good optical semiconductor characteristics by the method of producing a TiO 2 film by spraying and oxidizing Ti particles.

【0006】一方、n型TiO2 は、光半導体特性を有
するものとして期待されるが、n型TiO2 粒子を例え
ば、プラズマ溶射する技術であると、プラズマ流が高温
であるために溶融状態となって光半導体としての結晶構
造が壊れ、光半導体特性が損なわれてしまうという課題
が残されている。
[0006] On the other hand, n-type TiO 2 is expected to have optical semiconductor characteristics. However, in the case of a technique for plasma-spraying n-type TiO 2 particles, for example, the plasma flow is at a high temperature, so that the n-type TiO 2 becomes molten. As a result, there remains a problem that the crystal structure of the optical semiconductor is broken and optical semiconductor characteristics are impaired.

【0007】本発明は、このような課題に鑑みてなされ
たものであり、以下の目的を達成するものである。 TiO2 膜の被防食材への密着性を高めること。 n型TiO2 粒子の形状の残存性を高め、n型Ti
2 膜の作製を容易にすること。 TiO2 膜の成膜時の作業性を向上させること。
[0007] The present invention has been made in view of such problems, and has the following objects. To improve the adhesion of the TiO 2 film to the material to be protected. The n-type TiO 2 particles have improved shape retention and n-type Ti 2
To facilitate the production of O 2 films. Improving workability when forming a TiO 2 film.

【0008】[0008]

【課題を解決するための手段】n型TiO2 粒子をプラ
ズマ流に乗せて被防食材の表面に溶射することにより光
半導体特性を有するTiO2 膜を作製する際に、TiO
2 粒子を溶融して被防食材に溶融凝固層を作製し、プラ
ズマ溶射温度を高温から低温にしてn型TiO 2 粒子を
溶着させることにより粒子層を作製する。この場合にあ
って、n型TiO2 粒子のみを供給して溶融凝固層およ
び粒子層の双方を形成してもよい。また、被防食材の表
面にあっては、プラズマ溶射温度を高温から低温にして
n型TiO2 粒子を溶着させるため、n型TiO2 粒子
比率が連続的または段階的に設定されたTiO2 膜が作
製される。
Means for Solving the Problems n-type TiOTwo Particles
Sprays on the surface of the material to be protected in a zuma flow
TiO with semiconductor propertiesTwo When fabricating the film, TiO
Two The particles are melted to form a molten solidified layer on the material to be protected,
N-type TiO Two Particles
A particle layer is prepared by welding. In this case
The n-type TiOTwo By supplying only particles, the molten solidified layer and
And both the particle layer and the particle layer. In addition, the table
On the surface, change the plasma spray temperature from high to low
n-type TiOTwo N-type TiO to weld the particlesTwo particle
TiO with ratio set continuously or stepwiseTwo Film made
Made.

【0009】[0009]

【発明の実施の形態】本発明に係る防食用チタン酸化膜
の作製方法および防食用チタン酸化膜の一実施形態につ
いて、図1ないし図2を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for producing a titanium oxide film for corrosion protection and an embodiment of a titanium oxide film for corrosion protection according to the present invention will be described with reference to FIGS.

【0010】図1は、防食用チタン酸化膜の作製工程例
を示すものである。また、図2において、1は被防食
材、2は溶融凝固層、3は半溶融層、4は粒子層(n型
TiO2 粒子層)、XはTiO2 膜である。
FIG. 1 shows an example of a manufacturing process of a titanium oxide film for corrosion protection. In FIG. 2, reference numeral 1 denotes a material to be protected, 2 denotes a melt-solidified layer, 3 denotes a semi-molten layer, 4 denotes a particle layer (n-type TiO 2 particle layer), and X denotes a TiO 2 film.

【0011】〔S1:n型TiO2 粒子の製造〕予め、
粒径が数μmないし数10μmのn型TiO2 粒子を製
造しておく。
[S1: Production of n-type TiO 2 particles]
N-type TiO 2 particles having a particle size of several μm to several tens μm are manufactured in advance.

【0012】〔S2:n型TiO2 粒子の供給〕S1で
製造した n型TiO2 粒子を、プラズマ溶射装置に供
給する。
[S2: Supply of n-type TiO 2 Particles] The n-type TiO 2 particles produced in S1 are supplied to a plasma spraying apparatus.

【0013】〔S3:プラズマ溶射〕プラズマガスとし
てArガス、2次ガスとしてHeガス、H2 ガス等を使
用してプラズマ化し、このときのプラズマ流にn型Ti
2 粒子を乗せて、鉄系合金やステンレス鋼等の防食材
1(図2参照)に、例えば100%溶解させた状態にし
て溶射する。
[S3: Plasma spraying] Ar gas is used as a plasma gas, He gas, H 2 gas or the like is used as a secondary gas to form a plasma.
O 2 particles are placed and sprayed in a state where, for example, 100% is dissolved in the anticorrosion material 1 (see FIG. 2) such as an iron alloy or stainless steel.

【0014】〔S4:被防食材へのTiO2 の溶着〕被
防食材1には、溶融状態のTiO2 が凝固することによ
り、溶融凝固層2が一体に形成される。
[S4: Welding of TiO 2 to Corrosion-Protected Material] The molten and solidified layer 2 is integrally formed on the corrosion-protected material 1 by solidifying the molten TiO 2 .

【0015】〔S5:プラズマ温度の調整〕プラズマ電
流を減少させ、かつ、プラズマガス流量を多くして、プ
ラズマ流の温度が低くなるように導く。この際に、n型
TiO2 粒子の供給を継続すると温度が低めに誘導され
るために、溶融状態のTiO2 に一部未溶解状態のTi
2 粒子が混合した半溶融層3(図2参照)が形成され
る。
[S5: Adjustment of Plasma Temperature] The plasma current is reduced and the flow rate of the plasma gas is increased so that the temperature of the plasma flow is reduced. At this time, since the temperature induced low is continued supply of n-type TiO 2 particles, some undissolved in TiO 2 in a molten state Ti
A semi-molten layer 3 (see FIG. 2) in which O 2 particles are mixed is formed.

【0016】〔S6:n型TiO2 粒子の供給〕以下、
プラズマ流の温度を低く誘導した状態でn型TiO2
子の供給を行う。
[S6: Supply of n-type TiO 2 particles]
The supply of the n-type TiO 2 particles is performed in a state where the temperature of the plasma flow is induced to be low.

【0017】〔S7:プラズマ溶射〕プラズマ流の温度
を低く導いたままn型TiO2 粒子を供給すると、n型
TiO2 粒子は、全量が溶解されることなく、一部が粒
子状態を保持したまま被防食材1に向けて溶射される。
[S7: Plasma Spraying] When n-type TiO 2 particles are supplied while the temperature of the plasma stream is kept low, the n-type TiO 2 particles are partially dissolved without being completely dissolved. It is sprayed toward the material 1 to be protected as it is.

【0018】〔S8:被防食材への粒状n型TiO2
溶着〕粒状のn型TiO2 粒子と溶融状態のTiO2
が、混合状態で被防食材1の表面に送り込まれると、溶
融状態のTiO2 の凝固にともないn型TiO2 粒子の
形状が残されたまま溶着され、半溶融層3の上に粒子層
(n型TiO2 粒子層)4が形成される。
[0018]: If the TiO 2 in a molten state and [S8 particulate n-type TiO 2 of soldering to the anticorrosion material] granular n-type TiO 2 particles are fed into the sacrificial material first surface in a mixed state, the molten As the TiO 2 in the solidified state solidifies, the n-type TiO 2 particles are welded while their shapes remain, and a particle layer (n-type TiO 2 particle layer) 4 is formed on the semi-molten layer 3.

【0019】このように、プラズマ電流,プラズマガス
流量を変えて、実質的にプラズマ流の温度を下げながら
n型TiO2 粒子を溶着させるようにすると、作製され
るTiO2 膜Xが図2に示すように傾斜構造を有するよ
うになる。つまり、溶射当初にあっては、TiO2 の溶
融凝固によりn型TiO2 粒子の比率が低くなるが、半
溶融層3,粒子層(n型TiO2 粒子層)4が形成され
るにしたがって次第にn型TiO2 粒子の占める割合が
多くなり、最終的にはn型TiO2 粒子層の比率が高め
られた粒子層(n型TiO2 粒子層)4が作製される。
As described above, when the n-type TiO 2 particles are deposited while changing the plasma current and the flow rate of the plasma gas to substantially lower the temperature of the plasma flow, the TiO 2 film X to be produced becomes as shown in FIG. As shown, it has a tilted structure. That, in the initial spraying, gradually according although the ratio of n-type TiO 2 particles by melting and solidification of TiO 2 is lower, semi-molten layer 3, the particle layer (n-type TiO 2 particle layer) 4 is formed The proportion of the n-type TiO 2 particles increases, and finally, a particle layer (n-type TiO 2 particle layer) 4 in which the proportion of the n-type TiO 2 particle layer is increased is produced.

【0020】〔他の実施の形態〕本発明に係わる防食用
チタン酸化膜の作製方法にあっては、S9に示すように
S2におけるn型TiO2 粒子の供給に代えて、n型T
iO2 以外のTiO2 粒子を供給し、溶融凝固層2を介
在させるようにしてもよい。
[Other Embodiments] In the method for producing a corrosion-resistant titanium oxide film according to the present invention, as shown in S9, instead of supplying n-type TiO 2 particles in S2, n-type T
TiO 2 particles other than iO 2 may be supplied so that the melt-solidified layer 2 is interposed.

【0021】[0021]

〔サンプルA〕[Sample A]

プラズマ電流 400A,プラズマガス流量 60リッ
トル/分 〔サンプルB〕 プラズマ電流 600A,プラズマガス流量 50リッ
トル/分および、 プラズマ電流 400A,プラズマガス流量 60リッ
トル/分 (サンプルBにあっては、溶融凝固層形成後に粒子層を
形成)
Plasma current 400A, plasma gas flow rate 60 liters / min [Sample B] Plasma current 600A, plasma gas flow rate 50 liters / minute, and plasma current 400A, plasma gas flow rate 60 liters / minute (Particle layer is formed after formation)

【0022】上記サンプルA,Bにクロスカットを入
れ、セロハンテープを貼り付けて剥離の有無について調
べた。サンプルAは、セロハンテープの貼付面積のおよ
そ20%に剥離が認められた。サンプルBは、セロハン
テープの貼付部分に剥離が認められなかった。また、表
面状況を観察したところサンプルA,Bとも粒状のTi
2 が多量に付着していることが認められた。これらの
結果から、サンプルBのようにプラズマ流量の条件を変
えて溶射することにより、粒子比率を徐々に高くする方
法が有効であると結論付けられる。
A cross cut was made in each of the samples A and B, and a cellophane tape was stuck thereon to examine the presence or absence of peeling. In Sample A, peeling was observed in about 20% of the area where the cellophane tape was stuck. In Sample B, no peeling was observed at the portion where the cellophane tape was stuck. In addition, observation of the surface condition revealed that both samples A and B had granular Ti
It was recognized that a large amount of O 2 was attached. From these results, it can be concluded that a method of gradually increasing the particle ratio by spraying while changing the conditions of the plasma flow rate as in Sample B is effective.

【0023】[0023]

【発明の効果】本発明に係る防食用チタン酸化膜の作製
方法および防食用チタン酸化膜によれば、以下の効果を
奏する。 (1) TiO2 膜の表面の粒子比率を高くすることに
より光半導体としての機能を向上させて、防食性を高め
ることができる。 (2) 被防食材の表面にTiO2 の溶融凝固層を作製
し、その後、粒子比率を高めた傾斜構造とすることによ
り、TiO2 膜の密着性を高めることができる。 (3) n型TiO2 粒子を連続的に使用して成膜条件
を変えることにより、成膜時の作業性を高めることがで
きる。
According to the method for producing the anticorrosion titanium oxide film and the anticorrosion titanium oxide film of the present invention, the following effects can be obtained. (1) By increasing the particle ratio on the surface of the TiO 2 film, the function as an optical semiconductor can be improved, and the anticorrosion property can be improved. (2) The adhesion of the TiO 2 film can be enhanced by forming a melt-solidified layer of TiO 2 on the surface of the material to be protected and then forming an inclined structure with an increased particle ratio. (3) By continuously using the n-type TiO 2 particles and changing the film forming conditions, the workability at the time of film forming can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わる防食用チタン酸化膜の作製方
法の一実施形態を示すフローチャートである。
FIG. 1 is a flowchart showing one embodiment of a method for producing a corrosion-resistant titanium oxide film according to the present invention.

【図2】 本発明に係わる防食用チタン酸化膜の一実施
形態を示す正断面図である。
FIG. 2 is a front sectional view showing one embodiment of a titanium oxide film for corrosion protection according to the present invention.

【符号の説明】[Explanation of symbols]

1 被防食材 2 溶融凝固層 3 半溶融層 4 粒子層(n型TiO2 粒子層) X TiO2DESCRIPTION OF SYMBOLS 1 Corrosion-proof material 2 Melted solidified layer 3 Semi-solid layer 4 Particle layer (n-type TiO 2 particle layer) X TiO 2 film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 n型TiO2 粒子をプラズマ流に乗せて
被防食材(1)の表面に溶射することにより光半導体特
性を有するTiO2 膜(X)を作製する方法であって、
TiO2 粒子を溶融して被防食材に溶融凝固層(2)を
作製する工程と、プラズマ溶射温度を高温から低温にし
てn型TiO2 粒子を溶着させることにより粒子層
(4)を作製する工程とを有することを特徴とする防食
用チタン酸化膜の作製方法。
1. A method of producing a TiO 2 film (X) having optical semiconductor properties by spraying n-type TiO 2 particles on a surface of a material to be protected (1) by putting the particles in a plasma flow.
Step of melting the TiO 2 particles to form a melt-solidified layer (2) on the material to be protected, and forming the particle layer (4) by welding the n-type TiO 2 particles by lowering the plasma spraying temperature from high to low. And a method for producing a titanium oxide film for anticorrosion.
【請求項2】 n型TiO2 粒子のみを供給して溶融凝
固層(2)および粒子層(4)の双方を形成することを
特徴とする請求項1記載の防食用チタン酸化膜の作製方
法。
2. The method for producing a titanium oxide film for anticorrosion according to claim 1, wherein only the n-type TiO 2 particles are supplied to form both the melt-solidified layer (2) and the particle layer (4). .
【請求項3】 被防食材(1)の表面に一体に形成され
る光半導体特性を有するTiO2 膜(X)であって、被
防食材に一体に形成されTiO2 粒子を溶融凝固させて
なる溶融凝固層(2)と、概溶融凝固層の上に一体に形
成されn型TiO2 粒子比率を高めた粒子層(4)とを
具備することを特徴とする防食用チタン酸化膜。
3. A TiO 2 film (X) having optical semiconductor properties formed integrally on the surface of the material to be protected (1), wherein the TiO 2 particles formed integrally with the material to be protected are melted and solidified. 1. A corrosion-resistant titanium oxide film comprising: a molten solidified layer (2); and a particle layer (4) integrally formed on the substantially molten solidified layer and having an increased n-type TiO 2 particle ratio.
【請求項4】 溶融凝固層(2)と粒子層(4)との間
に、これらの中間の粒子比率を有する半溶融層(3)が
配されることを特徴とする請求項3記載の防食用チタン
酸化膜。
4. The semi-molten layer (3) having a particle ratio intermediate between the melt-solidified layer (2) and the particle layer (4). Titanium oxide film for corrosion protection.
【請求項5】 粒子比率が連続的に設定されることを特
徴とする請求項4記載の防食用チタン酸化膜。
5. The anticorrosion titanium oxide film according to claim 4, wherein the particle ratio is set continuously.
【請求項6】 粒子比率が段階的に設定されることを特
徴とする請求項4記載の防食用チタン酸化膜。
6. The anticorrosion titanium oxide film according to claim 4, wherein the particle ratio is set stepwise.
JP29088996A 1996-10-31 1996-10-31 Method of producing titanium oxide film for corrosion protection and titanium oxide film for corrosion protection Expired - Fee Related JP3605969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29088996A JP3605969B2 (en) 1996-10-31 1996-10-31 Method of producing titanium oxide film for corrosion protection and titanium oxide film for corrosion protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29088996A JP3605969B2 (en) 1996-10-31 1996-10-31 Method of producing titanium oxide film for corrosion protection and titanium oxide film for corrosion protection

Publications (2)

Publication Number Publication Date
JPH10130810A true JPH10130810A (en) 1998-05-19
JP3605969B2 JP3605969B2 (en) 2004-12-22

Family

ID=17761828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29088996A Expired - Fee Related JP3605969B2 (en) 1996-10-31 1996-10-31 Method of producing titanium oxide film for corrosion protection and titanium oxide film for corrosion protection

Country Status (1)

Country Link
JP (1) JP3605969B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276628A (en) * 2000-03-31 2001-10-09 Toshiba Corp Method of sticking photocatalyst onto structural material of nuclear reactor
JP2006194873A (en) * 2004-12-30 2006-07-27 General Electric Co <Ge> Dielectric coating for surface exposed to high temperature water
JP2006226898A (en) * 2005-02-18 2006-08-31 Tokyo Univ Of Marine Science & Technology Method for forming functional coating excellent in corrosion resistance
JP2006242577A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Radiation-resistant member and nuclear power generation system using it
JP2006343202A (en) * 2005-06-08 2006-12-21 Central Res Inst Of Electric Power Ind Reactor structure material
JP2007232432A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Chimney of natural circulation type boiling water reactor
JP2007533861A (en) * 2004-04-19 2007-11-22 エスディーシー マテリアルズ リミテッド ライアビリティ カンパニー High-throughput material discovery method by vapor phase synthesis
JP2009047692A (en) * 2007-08-16 2009-03-05 Ge-Hitachi Nuclear Energy Americas Llc Protective coating applied to metallic reactor component for reducing corrosion product released into nuclear reactor environment
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276628A (en) * 2000-03-31 2001-10-09 Toshiba Corp Method of sticking photocatalyst onto structural material of nuclear reactor
JP2007533861A (en) * 2004-04-19 2007-11-22 エスディーシー マテリアルズ リミテッド ライアビリティ カンパニー High-throughput material discovery method by vapor phase synthesis
JP2006194873A (en) * 2004-12-30 2006-07-27 General Electric Co <Ge> Dielectric coating for surface exposed to high temperature water
US8675806B2 (en) 2004-12-30 2014-03-18 General Electric Company Dielectric coating for surfaces exposed to high temperature water
JP4604153B2 (en) * 2005-02-18 2010-12-22 国立大学法人東京海洋大学 Forming functional coatings with excellent anticorrosion properties
JP2006226898A (en) * 2005-02-18 2006-08-31 Tokyo Univ Of Marine Science & Technology Method for forming functional coating excellent in corrosion resistance
JP2006242577A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Radiation-resistant member and nuclear power generation system using it
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
JP2006343202A (en) * 2005-06-08 2006-12-21 Central Res Inst Of Electric Power Ind Reactor structure material
JP2007232432A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Chimney of natural circulation type boiling water reactor
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
US8906316B2 (en) 2007-05-11 2014-12-09 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
JP2009047692A (en) * 2007-08-16 2009-03-05 Ge-Hitachi Nuclear Energy Americas Llc Protective coating applied to metallic reactor component for reducing corrosion product released into nuclear reactor environment
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US8992820B1 (en) 2009-12-15 2015-03-31 SDCmaterials, Inc. Fracture toughness of ceramics
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US8877357B1 (en) 2009-12-15 2014-11-04 SDCmaterials, Inc. Impact resistant material
US8906498B1 (en) 2009-12-15 2014-12-09 SDCmaterials, Inc. Sandwich of impact resistant material
US8932514B1 (en) 2009-12-15 2015-01-13 SDCmaterials, Inc. Fracture toughness of glass
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Also Published As

Publication number Publication date
JP3605969B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
JPH10130810A (en) Production of titanium oxide coating for corrosion prevention and titanium oxide coating for corrosion prevention
Sexton et al. Laser cladding of aerospace materials
EP0511318B1 (en) Plasma spraying of rapidly solidified aluminum base alloys
Meng et al. Solidification behavior and morphological evolution in laser surface forming of AlCoCrCuFeNi multi-layer high-entropy alloy coatings on AZ91D
US20120223057A1 (en) Gas tungsten arc welding using flux coated electrodes
US10131969B2 (en) Method to form oxide dispersion strengthended (ODS) alloys
JP2678804B2 (en) Method for forming pure Cu build-up layer on iron alloy substrate
Tuominen et al. Corrosion behavior of HVOF-sprayed and Nd-YAG laser-remelted high-chromium, nickel-chromium coatings
JP2004263280A (en) Corrosionproof magnesium alloy member, corrosionproofing treatment method for magnesium alloy member, and corrosionproofing method for magnesium alloy member
Chen et al. Effect of kerf characteristics on weld porosity of laser cutting-welding of AA2219 aluminum alloy
Shao et al. Crystal growth control of Ni-based alloys by modulation of the melt pool morphology in DED
Guo et al. Microstructure and properties of Ti-6Al-4V titanium alloy prepared by underwater wire feeding laser deposition
Cheng et al. Underwater wire-feed laser deposition of thin-Walled tubular structure of aluminum alloy
JP3242949B2 (en) Control method of working conditions in continuous alloy manufacturing process
Donatus et al. Effect of prior sputter deposition of pure aluminium on the corrosion behaviour of anodized friction stir weld of dissimilar aluminium alloys
JP2001232447A (en) Manufacturing method for cathode and cathode for cathodic arc deposition
JPS58188585A (en) Joining method of al material and dissimilar metallic material
JP2621448B2 (en) Cladding method
JP3582259B2 (en) Preparation method of anticorrosion titanium oxide film
Haemers et al. Hardfacing of stainless steel with laser melted colmonoy
TWI360453B (en) Welding flux for carbon steels
Habibi et al. A Review on Aluminum Arc Welding and It’s Problems
TW202012645A (en) Use of powders of highly reflective metals for additive manufacturing
JPH0122080B2 (en)
JPS62166074A (en) Manufacture of sleeve by overlay welding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees