JPH10128112A - Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation - Google Patents

Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation

Info

Publication number
JPH10128112A
JPH10128112A JP8290087A JP29008796A JPH10128112A JP H10128112 A JPH10128112 A JP H10128112A JP 8290087 A JP8290087 A JP 8290087A JP 29008796 A JP29008796 A JP 29008796A JP H10128112 A JPH10128112 A JP H10128112A
Authority
JP
Japan
Prior art keywords
catalyst
isobutane
value
oxygen
oxidation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8290087A
Other languages
Japanese (ja)
Inventor
Akinori Okusako
顕仙 奥迫
Toshiaki Ui
利明 宇井
Koichi Nagai
功一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP8290087A priority Critical patent/JPH10128112A/en
Publication of JPH10128112A publication Critical patent/JPH10128112A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare an alkene such as isobutylene, methacrolein and methacrylic acid and an oxygen-contg. compd. from isobutane with high conversion rate and high selectivity by using a composite oxide catalyst wherein molybdenum-vanadium-antimony and/or tellurium are essential ingredients. SOLUTION: In preparing a catalyst used in preparation of an alkene and an oxygen-contg. compd., a precursor substance which can form a composite oxide of general formula MoaVbXcYdZeOf after calcination is treated by calcining it under inert gas atmosphere. In the formula, Mo, V, X, O, Y and Z are respectively molybdeum, vanadium, antimony or tellurium, oxygen, one element selected from arsenic, etc., and one element selected from potassium, etc., and in addition suffixes a-e are atomic ratios of each element and when a=12, (b) is a value of at most 6 except 0 and c is a value of at most 20 except 0 and (d) and (e) are each a value of at most 6 including 0 and f is a value determined by atomic valence and atomic ratio of each element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イソブタンと分子
状酸素を、気相接触酸化させることにより、工業的に有
用であるイソブチレン、酢酸、アクリル酸、メタクロレ
インおよびメタクリル酸等のアルケンおよび含酸素化合
物を製造するに用いる、イソブタンの気相接触酸化反応
用触媒およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to an industrially useful alkene such as isobutylene, acetic acid, acrylic acid, methacrolein and methacrylic acid and an oxygen-containing compound obtained by subjecting isobutane and molecular oxygen to gas phase catalytic oxidation. The present invention relates to a catalyst for a gas-phase catalytic oxidation reaction of isobutane used for producing a compound, and a method for producing the same.

【0002】[0002]

【従来の技術】イソブチレンまたはターシャリーブタノ
ールからメタクロレインを経由し、二段階酸化によりメ
タクリル酸を製造する方法は良く知られており既に工業
化が実施されている。他方、近年イソブチレンよりも安
価なイソブタンを原料として気相接触酸化によるメタク
ロレインやメタクリル酸の製造方法が提案されている。
2. Description of the Related Art A method for producing methacrylic acid from isobutylene or tertiary butanol via methacrolein by two-step oxidation is well known and has already been industrialized. On the other hand, in recent years, a method for producing methacrolein or methacrylic acid by gas phase catalytic oxidation using isobutane, which is less expensive than isobutylene, as a raw material has been proposed.

【0003】例えば、特開昭62−132832号公報
には「リンまたはヒ素を中心元素としモリブデンを含む
ヘテロポリ酸を含有する触媒にイソブタンと酸素を交互
に接触させメタクリル酸および/またはメタクロレイン
を得る方法、特開平2−42034号公報には「リンお
よび/またはヒ素を中心元素としモリブデンを含むヘテ
ロポリ酸および/またはその塩でAg、Zn、Cd T
i Zr Nb TaCr W Mn Fe Co N
i Rh Sn BiおよびTeからなる村から選ばれ
た少なくとも一種を触媒構成元素として含有する触媒
に、イソブタンを分子状酸素を含む混合ガスを気相で接
触させ、メタクリル酸および/またはメタクロレインを
得る方法等が知られている。また特開平5−17877
4号公報および特開平5−331085号公報にはイソ
ブタンを触媒の存在下に接触気相酸化してメタクリル酸
および/またはメタクロレインを製造するに於いて、ピ
ロリン酸バナジルを主成分とし、これに金や銀等の他の
金属元素を添加し活性、選択性を改良した複合酸化物系
触媒を用いることを特徴とする方法が開示されている。
For example, Japanese Patent Application Laid-Open No. 62-132832 discloses that “methacrylic acid and / or methacrolein are obtained by alternately contacting isobutane and oxygen with a catalyst containing a heteropolyacid containing phosphorus or arsenic as a central element and containing molybdenum. JP-A-2-42034 discloses that a heteropolyacid containing molybdenum containing phosphorus and / or arsenic as a central element and / or a salt thereof is made of Ag, Zn, CdT.
iZrNbTaCrWMnFeCoN
A mixed gas containing molecular oxygen containing isobutane is brought into contact with a catalyst containing at least one selected from the village consisting of iRhSnBi and Te as a catalyst constituent element to obtain methacrylic acid and / or methacrolein. Methods and the like are known. Further, Japanese Patent Application Laid-Open No. Hei 5-17877
No. 4 and JP-A-5-331085 disclose that in the production of methacrylic acid and / or methacrolein by catalytic gas-phase oxidation of isobutane in the presence of a catalyst, vanadyl pyrophosphate is used as a main component. There is disclosed a method characterized by using a composite oxide catalyst having improved activity and selectivity by adding another metal element such as gold or silver.

【0004】しかしながら、イソブタンはイソブチレン
等に比べ反応性が低いため、イソブチレンの酸化反応条
件では転化率が低い。それ故、酸化反応温度を上げ転化
率を高める方法が考えられるが、この場合には目的物質
であるメタクリル酸やメタクロレインの過剰酸化が生
じ、選択率が低下するとの欠点を有する。加えてこれら
リン−モリブデン系ケギン型ヘテロポリ酸系触媒は熱安
定性が乏しく、触媒として使用する場合、その熱安定性
に問題があった。また、ピロリン酸バナジルを主成分と
する複合酸化物系触媒を用いる場合も必ずしも満足する
選択性改良効果が得られないとの問題があった。
However, since isobutane has lower reactivity than isobutylene and the like, the conversion rate is low under the oxidation reaction conditions of isobutylene. Therefore, a method of raising the oxidation reaction temperature to increase the conversion is conceivable, but in this case, there is a drawback that excessive oxidation of methacrylic acid or methacrolein, which is the target substance, occurs, and the selectivity decreases. In addition, these phosphorus-molybdenum-based Keggin-type heteropolyacid catalysts have poor thermal stability, and have a problem in their thermal stability when used as a catalyst. In addition, when a composite oxide catalyst containing vanadyl pyrophosphate as a main component is used, a satisfactory selectivity improving effect cannot always be obtained.

【0005】[0005]

【発明が解決しようとする課題】かかる状況下に於い
て、本発明者等はイソブタンからイソブチレン、酢酸、
アクリル酸、メタクロレインおよびメタクリル酸等のア
ルケンおよび含酸素化合物を高転化率、高選択性を持っ
て製造することを目的として、鋭意検討した結果、気相
接触酸化反応に用いる触媒としてモリブデン−バナジン
−アンチモンおよび/またはテルルを必須成分とする複
合酸化物系触媒を用いる場合には、触媒として耐熱性に
優れ、かつ転化率、選択性も共に優れることを見出し、
本発明を完成するに至った。
Under these circumstances, the present inventors have determined from isobutane to isobutylene, acetic acid,
As a result of intensive studies on the purpose of producing alkenes and oxygenated compounds such as acrylic acid, methacrolein and methacrylic acid with high conversion and high selectivity, molybdenum-vanazine was used as a catalyst for the gas phase catalytic oxidation reaction. -When a composite oxide catalyst containing antimony and / or tellurium as an essential component is used, it has been found that the catalyst has excellent heat resistance, and that conversion and selectivity are both excellent.
The present invention has been completed.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、一般
式 MoaVbXcYdZeOf(式中、Moはモリブ
デン、Vはバナジウム、Xはアンチモンまたはテルル、
Oは酸素、Yはヒ素、ホウ素およびゲルマニウムからな
る群より選ばれた少なくとも1種の元素、Zはカリウ
ム、セシウム、ルビジウム、カルシウム、マグネシウ
ム、タリウム、クロム、マンガン、鉄、コバルト、ニッ
ケル、銅、銀、ビスマス、アルミニウム、ガリウム、イ
ンジウム、スズ、亜鉛、ランタン、セリウム、イットリ
ウム、タングステン、ニオブおよびタンタルからなる群
より選ばれた少なくとも1種の元素を表し、また添字
a、b、c、d及びeは各元素の原子比を表し、a=1
2としたとき、bは0を含まない6以下の値、cは0を
含まない20以下の値、dおよびeは0を含む6以下の
値、fは各元素の原子価および原子比によって決まる値
を表す)で示される複合酸化物よりなるイソブタンの気
相接触酸化反応用触媒を提供するにある。
That is, the present invention provides a compound represented by the general formula: MoaVbXcYdZeOf (where Mo is molybdenum, V is vanadium, X is antimony or tellurium,
O is oxygen, Y is at least one element selected from the group consisting of arsenic, boron and germanium, Z is potassium, cesium, rubidium, calcium, magnesium, thallium, chromium, manganese, iron, cobalt, nickel, copper, Represents at least one element selected from the group consisting of silver, bismuth, aluminum, gallium, indium, tin, zinc, lanthanum, cerium, yttrium, tungsten, niobium and tantalum, and subscripts a, b, c, d and e represents the atomic ratio of each element, and a = 1
When it is set to 2, b is a value of 6 or less not including 0, c is a value of 20 or less not including 0, d and e are values of 6 or less including 0, and f is a valence and an atomic ratio of each element. The present invention provides a catalyst for a gas phase catalytic oxidation reaction of isobutane comprising a composite oxide represented by the following formula:

【0007】さらに、本発明は、焼成後、一般式 Mo
aVbXcYdZeOfで示される複合酸化物(式中、
Moはモリブデン、Vはバナジウム、Xはアンチモンま
たはテルル、Oは酸素、Yはヒ素、ホウ素およびゲルマ
ニウムからなる群より選ばれた少なくとも1種の元素、
Zはカリウム、セシウム、ルビジウム、カルシウム、マ
グネシウム、タリウム、クロム、マンガン、鉄、コバル
ト、ニッケル、銅、銀、ビスマス、アルミニウム、ガリ
ウム、インジウム、スズ、亜鉛、ランタン、セリウム、
イットリウム、タングステン、ニオブおよびタンタルか
らなる群より選ばれた少なくとも1種の元素を表し、ま
た添字a、b、c、d及びeは各元素の原子比を表し、
a=12としたとき、bは0を含まない6以下の値、c
は0を含まない20以下の値、dおよびeは0を含む6
以下の値、fは各元素の原子価および原子比によって決
まる値を表す)を形成し得る前駆体物質を、不活性ガス
雰囲気下で焼成することを特徴とする、一般式 Moa
VbXcYdZeOf(式中の記載限定は前記と同じ)
で示されるイソブタンの気相接触酸化反応用触媒の製造
方法を提供するものである。
[0007] Further, the present invention provides a method of the present invention, wherein
a complex oxide represented by aVbXcYdZeOf (in the formula,
Mo is molybdenum, V is vanadium, X is antimony or tellurium, O is oxygen, Y is at least one element selected from the group consisting of arsenic, boron and germanium,
Z is potassium, cesium, rubidium, calcium, magnesium, thallium, chromium, manganese, iron, cobalt, nickel, copper, silver, bismuth, aluminum, gallium, indium, tin, zinc, lanthanum, cerium,
Represents at least one element selected from the group consisting of yttrium, tungsten, niobium and tantalum, and the subscripts a, b, c, d and e represent the atomic ratio of each element,
When a = 12, b is a value of 6 or less not including 0, c
Is a value of 20 or less that does not include 0, and d and e are 6 that include 0
The following formula, where f represents a value determined by the valence and atomic ratio of each element), is fired in an inert gas atmosphere.
VbXcYdZeOf (the limitations in the formula are the same as described above)
And a method for producing a catalyst for gas-phase catalytic oxidation reaction of isobutane represented by the formula:

【0008】[0008]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明の特徴は、イソブタンを分子状酸素を用い
て気相接触酸化させ、イソブチレン、メタクロレイン、
メタクリル酸等のアルケンおよび/または含酸素化合物
を製造するに際し、適用する触媒として、一般式 Mo
aVbXcYdZeOf(式中の記号は前記と同じ)で
示されるMo−V−Sb/Teを必須成分とする、即ち
a=12のとき、bは0<b≦6、好ましくは0<b≦
4、cは0<c≦20、好ましくは0<c≦12の原子
比よりなる複合酸化物を提供するにある。本発明に於い
ては、これら触媒組成のいずれの成分が欠如しても満足
し得る触媒効果、主として選択率の改善効果が見られな
い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The feature of the present invention is that gaseous catalytic oxidation of isobutane using molecular oxygen, isobutylene, methacrolein,
In producing an alkene and / or an oxygen-containing compound such as methacrylic acid, a catalyst to be applied includes a general formula Mo
Mo-V-Sb / Te represented by aVbXcYdZeOf (the symbols in the formula are the same as above) is an essential component, that is, when a = 12, b is 0 <b ≦ 6, preferably 0 <b ≦.
4, c is to provide a composite oxide having an atomic ratio of 0 <c ≦ 20, preferably 0 <c ≦ 12. In the present invention, a satisfactory catalytic effect, mainly an improvement in selectivity, is not observed even if any of these catalyst components is missing.

【0009】本発明の触媒はその使用に於いて、更に他
の元素を含むことにより、より優れ触媒性能を発揮する
ことがある。即ち、一般式に於いてYはヒ素、ホウ素、
ゲルマニウムからなる群より選ばれた少なくとも1種の
元素、Zはカリウム、セシウム、ルビジウム、カルシウ
ム、マグネシウム、タリウム、クロム、マンガン、鉄、
コバルト、ニッケル、銅、銀、ビスマス、アルミニウ
ム、ガリウム、インジウム、スズ、亜鉛、ランタン、セ
リウム、イットリウム、タングステン、ニオブ、タンタ
ルからなる群より選ばれた少なくとも1種の元素であ
り、またその原子比d及びeはa=12のとき、0〜
6、好ましくは0〜5の範囲内で含む触媒が優れる。こ
れら触媒成分が上記範囲より多い場合には触媒性能が低
下する。
The catalyst of the present invention may exhibit more excellent catalytic performance by further containing other elements in its use. That is, in the general formula, Y is arsenic, boron,
At least one element selected from the group consisting of germanium, Z is potassium, cesium, rubidium, calcium, magnesium, thallium, chromium, manganese, iron,
At least one element selected from the group consisting of cobalt, nickel, copper, silver, bismuth, aluminum, gallium, indium, tin, zinc, lanthanum, cerium, yttrium, tungsten, niobium, and tantalum, and their atomic ratios When a = 12, d and e are 0 to
A catalyst containing 6, preferably in the range of 0 to 5 is excellent. If the amount of these catalyst components is larger than the above range, the catalytic performance will decrease.

【0010】本発明の触媒調製方法に関しては特に制限
はなく、公知の種々の方法により調製できる。例えば、
モリブデン、バナジウム、アンチモンからなる複合酸化
物系触媒は、パラモリブデン酸アンモニウムとメタバナ
ジン酸アンモニウムとからなる水溶液に三酸化アンチモ
ンを添加し、乾燥した後、焼成することにより所定の触
媒を得ることができる。またモリブデン、バナジウム、
テルル複合酸化物系触媒は、パラモリブデン酸アンモニ
ウムとメタバナジン酸アンモニウムとからなる水溶液に
テルル酸水溶液を添加し、乾燥した後、焼成することに
より所定の触媒を得ることができる。モリブデン原料と
しては、三酸化モリブデン、モリブデン酸、パラモリブ
デン酸アンモニウム、モリブデン酸ナトリウム等を用い
てることができ、バナジウム原料としてはメタバナジン
酸アンモニウム、バナジン酸ナトリウム、五酸化バナジ
ウム等、5価バナジウム以外に、シュウ酸バナジル等の
4価のバナジウムを用いることもできる。また上記一般
式中Y、Zで表した元素をも含め、本発明の触媒構成物
質は、触媒調製過程で酸化物に分解され得る化合物、例
えば酸化物、水酸化物、硝酸塩、アンモニウム塩、炭酸
塩、塩化物、有機酸塩、金属酸アンモニウム塩等として
添加、使用される。触媒は担体および/または希釈混合
した形で用いることができる。担体および/または希釈
剤としては、例えばシリカ、アルミナ、シリカ−アルミ
ナ、マグネシア、チタニア、ゼオライト、ジルコニア、
シリコン−カーバイト等が挙げられ、担持量や希釈剤と
触媒との希釈混合比に制限はない。また、触媒の形状は
タブレット、リング、球、押し出し品等限定はない。成
型法は圧縮成形、押し出し成形、噴霧乾燥造粒等公知の
方法で行うことができる。焼成は約400℃〜約650
℃の温度で酸素雰囲気、或いは窒素ガス等を用いた不活
性ガス雰囲気下で実施される。就中、不活性ガス雰囲気
下での焼成は酸素雰囲気下での焼成に比較し触媒性能が
共に改良された触媒が得られる。このようにして得られ
た触媒は、イソブタンの気相接触酸化反応用として好適
である。
The method for preparing the catalyst of the present invention is not particularly limited, and can be prepared by various known methods. For example,
A composite oxide catalyst composed of molybdenum, vanadium and antimony can obtain a predetermined catalyst by adding antimony trioxide to an aqueous solution composed of ammonium paramolybdate and ammonium metavanadate, drying and calcining. . Molybdenum, vanadium,
As the tellurium composite oxide-based catalyst, a predetermined catalyst can be obtained by adding an aqueous solution of telluric acid to an aqueous solution comprising ammonium paramolybdate and ammonium metavanadate, followed by drying and firing. As a molybdenum raw material, molybdenum trioxide, molybdic acid, ammonium paramolybdate, sodium molybdate and the like can be used, and as a vanadium raw material, besides pentavalent vanadium such as ammonium metavanadate, sodium vanadate, vanadium pentoxide and the like. And tetravalent vanadium such as vanadyl oxalate can also be used. The catalyst constituents of the present invention, including the elements represented by Y and Z in the above general formula, are compounds that can be decomposed into oxides during the catalyst preparation process, such as oxides, hydroxides, nitrates, ammonium salts, and carbonates. They are added and used as salts, chlorides, organic acid salts, ammonium metal salts and the like. The catalyst can be used in the form of a support and / or a dilute mixture. As the carrier and / or diluent, for example, silica, alumina, silica-alumina, magnesia, titania, zeolite, zirconia,
Silicon-carbide and the like are mentioned, and there is no limitation on the amount of the carrier and the dilution mixture ratio of the diluent and the catalyst. The shape of the catalyst is not limited to tablets, rings, spheres, extruded products, and the like. The molding method can be performed by a known method such as compression molding, extrusion molding, spray drying granulation and the like. Baking is about 400 ° C to about 650
It is carried out at a temperature of ° C. in an oxygen atmosphere or an inert gas atmosphere using nitrogen gas or the like. In particular, calcination in an inert gas atmosphere can provide a catalyst with improved catalytic performance as compared to calcination in an oxygen atmosphere. The catalyst thus obtained is suitable for the gas-phase catalytic oxidation reaction of isobutane.

【0011】本発明の触媒を用いたイソブタンの気相接
触酸化反応に於いて、反応に供する原料ガスとしては、
イソブタンおよび分子状酸素が用いられる。該原料ガス
中のイソブタン濃度は、約1モル%〜約85モル%、好
ましくは約3モル%〜約70モル%である。
In the gas-phase catalytic oxidation reaction of isobutane using the catalyst of the present invention, the raw material gas used for the reaction includes:
Isobutane and molecular oxygen are used. The isobutane concentration in the feed gas is about 1 mol% to about 85 mol%, preferably about 3 mol% to about 70 mol%.

【0012】分子状酸素のイソブタンに対するモル比は
約0.05〜約4.0、好ましくは約0.1〜約3.5
が適当である。分子状酸素の供給源としては、空気、純
酸素、酸素富化空気などが用いられる。
The molar ratio of molecular oxygen to isobutane is from about 0.05 to about 4.0, preferably from about 0.1 to about 3.5.
Is appropriate. As a supply source of molecular oxygen, air, pure oxygen, oxygen-enriched air, or the like is used.

【0013】反応原料ガス中に水蒸気を含有させてもよ
いが、水蒸気は必ずしも必要としない。
Although steam may be contained in the reaction raw material gas, steam is not always required.

【0014】原料ガス中には、貴ガス、窒素、一酸化炭
素、二酸化炭素等が含まれていてもよい。また、イソブ
チレンが原料に含まれていても、イソブチレンはイソブ
タン同様メタクロレインやメタクリル酸に転換される。
The source gas may contain a noble gas, nitrogen, carbon monoxide, carbon dioxide or the like. Further, even if isobutylene is contained in the raw material, isobutylene is converted to methacrolein or methacrylic acid as in isobutane.

【0015】未反応のイソブタンは、燃料として使用す
ることもできるが、回収し再循環することもできる。イ
ソブチレンやメタクロレインも回収、再循環することに
よりメタクリル酸に転換できる。また、純酸素或いは酸
素富化空気を用いた場合には、未反応の酸素も回収し再
利用することが好ましい。
Unreacted isobutane can be used as fuel, but can also be recovered and recycled. Isobutylene and methacrolein can also be converted to methacrylic acid by collecting and recycling. When pure oxygen or oxygen-enriched air is used, it is preferable that unreacted oxygen is also collected and reused.

【0016】反応温度は約300〜約550℃の範囲で
選択できるが、好ましくは約330〜約500℃であ
る。反応圧力は減圧から加圧まで幅広く選べるが通常約
100〜約400kPa、好ましくは約100〜約20
0kPaの範囲である。
[0016] The reaction temperature can be selected in the range of about 300 to about 550 ° C, but is preferably about 330 to about 500 ° C. The reaction pressure can be selected from a wide range from reduced pressure to increased pressure, but is usually about 100 to about 400 kPa, preferably about 100 to about 20 kPa.
The range is 0 kPa.

【0017】本発明の触媒を用いた反応は、固定床、移
動床、流動床等いずれの反応形式でも実施できる。固定
床方式で使用する場合、空間速度に特に制限はないが、
空間速度が小さすぎると生産性が低下するため工業的に
不利である。また逆に空間速度が大きすぎると、反応活
性が低下するため反応温度を高くしなければならない。
そこで通常は約400〜約5000/hr、好ましくは
約600〜約2000/hrの範囲である。このように
して生成したアルケン及び各種含酸素化合物は抽出、蒸
留等の操作により、各々の生成物に分離精製することが
できる。
The reaction using the catalyst of the present invention can be carried out in any reaction mode such as a fixed bed, a moving bed and a fluidized bed. When using the fixed floor method, there is no particular limitation on the space velocity,
If the space velocity is too low, productivity is reduced, which is industrially disadvantageous. Conversely, if the space velocity is too high, the reaction activity will decrease, so the reaction temperature must be increased.
Thus, it is usually in the range of about 400 to about 5000 / hr, preferably about 600 to about 2000 / hr. The alkenes and various oxygen-containing compounds thus produced can be separated and purified into respective products by operations such as extraction and distillation.

【0018】[0018]

【発明の効果】以上詳述した本発明によれば、触媒の活
性が高く、イソブチレン、メタクロレイン、メタクリル
酸等のアルケンおよび含酸素化合物への選択性が高いの
で、廉価なイソブタンから効率よくアルケンおよび含酸
素化合物を製造することができる。
According to the present invention described in detail above, the activity of the catalyst is high and the selectivity to alkenes and oxygen-containing compounds such as isobutylene, methacrolein and methacrylic acid is high. And an oxygen-containing compound can be produced.

【0019】[0019]

【実施例】次に実施例により本発明をさらに詳細に説明
するが、本発明はこれらに限定されるものではない。
尚、転化率(%)および選択率(%)はそれぞれ以下の
如く定義した。 イソブタン転化率(%)=(反応したイソブタンのモル
数)÷(供給したイソブタンのモル数)×100 イソブチレン選択率(%)=(生成したイソブチレンの
モル数)÷(反応したイソブタンのモル数)×100 メタクロレイン選択率(%)=(生成したメタクロレイ
ンのモル数)÷(反応したイソブタンのモル数)×10
0 メタクリル酸選択率(%)=(生成したメタクリル酸の
モル数)÷(反応したイソブタンのモル数)×100 有効成分の選択率(%)=(生成したイソブチレンのモ
ル数+生成したメタクロレインのモル数+生成したメタ
クリル酸のモル数)÷(反応したイソブタンのモル数)
×100) また、反応生成物はガスクロマトグラフィーを用いて分
析した。
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
The conversion (%) and the selectivity (%) were defined as follows. Isobutane conversion (%) = (moles of reacted isobutane) ÷ (moles of supplied isobutane) × 100 Isobutylene selectivity (%) = (moles of generated isobutylene) ÷ (moles of reacted isobutane) × 100 methacrolein selectivity (%) = (mol number of generated methacrolein) ÷ (mol number of reacted isobutane) × 10
0 Selectivity of methacrylic acid (%) = (mol number of methacrylic acid generated) / (mol number of reacted isobutane) × 100 Selectivity of active ingredient (%) = (mol number of generated isobutylene + methacryloline generated) Number of moles of methacrylic acid generated) / (number of moles of reacted isobutane)
× 100) The reaction product was analyzed using gas chromatography.

【0020】実施例1 イオン交換水800mlにシュウ酸水素ニオブ{Nb
(HC2 4 5 ・nH 2 O}141.96gを加え撹
拌溶解後、バナジウム濃度が2mol/lであるシュウ
酸バナジル水溶液150mlを添加し、均一な水溶液と
した(A液)。次いでイオン交換水300mlにパラモ
リブデン酸アンモニウム{((NH4 6Mo7 24
4H2 O)}212.10gを添加し撹拌溶解した(B
液)後、B液をA液に全量注入し、更に三酸化アンチモ
ン(Sb2 3 )131.24gを添加し、この混合液
に25%アンモニア水を入れpHをほぼ中性に調整し
た。このようにして得られたスラリー溶液を加熱撹拌し
つつ濃縮乾固し、更に120℃にて14.5時間乾燥
し、粉砕・篩別して4〜8メッシュの粒子を得、これを
窒素気流中600℃で2時間焼成してMo123 Sb9
Nb1.5 X の組成を有する触媒を得た。このようにし
て得た触媒6gを直径15mmのパイレックスガラス製
反応管に充填し、これにイソブタン/酸素/窒素/水蒸
気の割合(モル%)が25/12/33/30からなる
原料ガスを供給し反応圧力152kPa、空間速度10
00/hrの条件で加熱して酸化反応を行ったところ、
反応温度425℃においてのイソブタン転化率は6.3
%、イソブチレン、メタクロレイン及びメタクリル酸の
選択率はそれぞれ11.9%、23.8%及び7.8%
であった。反応温度(反応器壁温度)400〜450℃
の間を詳細に検討した結果、イソブタン転化率5%時の
有効成分への選択率は47.5%であった。
Example 1 Niobium hydrogen oxalate @ Nb was added to 800 ml of ion-exchanged water.
(HCTwoOFour)Five・ NH TwoO} 141.96 g was added and stirred.
After stirring and dissolving, a vanadium concentration of 2 mol / l
Add 150 ml of vanadyl acid aqueous solution to obtain a uniform aqueous solution.
(Solution A). Then add paramo to 300 ml of ion-exchanged water.
Ammonium lybdate {((NHFour)6Mo7Otwenty four
4HTwoO)} 212.10 g was added and dissolved by stirring (B
Solution), then inject the entire amount of solution B into solution A, and further add antimony trioxide.
(SbTwoOThree) 131.24 g was added and the mixture
Add 25% aqueous ammonia to the water and adjust the pH to almost neutral.
Was. The slurry solution thus obtained is heated and stirred.
Concentrate to dryness while drying at 120 ° C for 14.5 hours
And crushing and sieving to obtain 4-8 mesh particles,
Mo is fired at 600 ° C for 2 hours in a nitrogen stream.12VThreeSb9
Nb1.5OXA catalyst having the following composition was obtained. Like this
6g of the catalyst obtained from Pyrex glass with a diameter of 15mm
Fill a reaction tube, add isobutane / oxygen / nitrogen / water vapor
The ratio (molar%) of qi is 25/12/33/30
Source gas is supplied, reaction pressure is 152 kPa, space velocity is 10
When the oxidation reaction was performed by heating under the condition of 00 / hr,
The conversion of isobutane at a reaction temperature of 425 ° C. is 6.3.
%, Isobutylene, methacrolein and methacrylic acid
Selectivity is 11.9%, 23.8% and 7.8% respectively
Met. Reaction temperature (reactor wall temperature) 400-450 ° C
Of the isobutane conversion rate of 5%
The selectivity to the active ingredient was 47.5%.

【0021】実施例2 原料ガスとしてイソブタン/酸素/窒素の割合(モル
%)が37/17/46のものに代えた他は実施例1と
同様の方法で接触酸化反応を行った。その結果、反応温
度425℃においてのイソブタン転化率は6.2%、イ
ソブチレン、メタクロレイン及びメタクリル酸の選択率
はそれぞれ15.6%、21.2%及び4.5%であっ
た。反応温度400〜450℃に於けるイソブタン転化
率5%時の有効成分への選択率は45.0%であった。
Example 2 A catalytic oxidation reaction was carried out in the same manner as in Example 1 except that the ratio (mol%) of isobutane / oxygen / nitrogen was 37/17/46 as the raw material gas. As a result, the isobutane conversion at a reaction temperature of 425 ° C. was 6.2%, and the selectivities of isobutylene, methacrolein and methacrylic acid were 15.6%, 21.2% and 4.5%, respectively. The selectivity to the active ingredient at a reaction temperature of 400 to 450 ° C. and an isobutane conversion of 5% was 45.0%.

【0022】実施例3 シュウ酸水素ニオブの代わりに五酸化ニオブ{Nb2
5 }を用いた以外は実施例1と同様にして同一組成の触
媒を調製した。この触媒を用い、実施例1と同一条件で
反応を行った。その結果、反応温度425℃においての
イソブタン転化率は6.5%、イソブチレン、メタクロ
レイン及びメタクリル酸の選択率はそれぞれ11.0
%、16.7%及び3.1%であった。また、反応温度
400〜450℃に於けるイソブタン転化率5%時の有
効成分への選択率は32.3%であった。
Example 3 Instead of niobium hydrogen oxalate, niobium pentoxide @ Nb 2 O
A catalyst having the same composition was prepared in the same manner as in Example 1 except that 5 % was used. Using this catalyst, a reaction was carried out under the same conditions as in Example 1. As a result, the conversion of isobutane at a reaction temperature of 425 ° C. was 6.5%, and the selectivities of isobutylene, methacrolein and methacrylic acid were 11.0, respectively.
%, 16.7% and 3.1%. The selectivity to the active ingredient at a reaction temperature of 400 to 450 ° C. and a conversion of isobutane of 5% was 32.3%.

【0023】実施例4 実施例1の方法に於いて、三酸化アンチモン(Sb2
3 )の添加量を代えた他は実施例1と同一方法によりM
123 Nb1.5 Sb6 Oxの組成を有する触媒を得
た。この触媒を用い、実施例1と同一条件で反応を行っ
た。その結果、反応温度425℃においてのイソブタン
転化率は4.9%、イソブチレン、メタクロレイン及び
メタクリル酸の選択率はそれぞれ21.5%、10.7
%及び1.9%であった。また、反応温度400〜45
0℃に於けるイソブタン転化率5%時の有効成分への選
択率は34.0%であった。
Example 4 In the method of Example 1, antimony trioxide (Sb 2 O
3 ) M was changed in the same manner as in Example 1 except that the amount of addition was changed.
A catalyst having a composition of o 12 V 3 Nb 1.5 Sb 6 Ox was obtained. Using this catalyst, a reaction was carried out under the same conditions as in Example 1. As a result, the conversion of isobutane at a reaction temperature of 425 ° C. was 4.9%, and the selectivities of isobutylene, methacrolein and methacrylic acid were 21.5% and 10.7%, respectively.
% And 1.9%. Further, the reaction temperature is 400 to 45.
The selectivity to the active ingredient at a conversion of isobutane of 5% at 0 ° C. was 34.0%.

【0024】実施例5 イオン交換水150mlにパラモリブデン酸アンモニウ
ム{((NH4 6 Mo7 24・4H2 O)}53.0
5gを添加、撹拌溶解後、バナジウム濃度が1mol/
lであるシュウ酸バナジル水溶液75mlを添加し、次
いで三酸化アンチモン(Sb2 3 )32.80gを添
加した。この混合液に25%アンモニア水を添加しpH
をほぼ中性に調整した。このようにして得られたスラリ
ー溶液を加熱撹拌しつつ濃縮乾固し、更に120℃にて
3時間乾燥し、粉砕・篩別して4〜8メッシュの粒子を
得、これを窒素気流中600℃で2時間焼成してMo12
3 Sb9 Oxの組成を有する触媒を得た。この触媒を
用い、実施例1と同じ条件で酸化反応を行ったところ、
反応温度425℃においてのイソブタン転化率は2.2
%、イソブチレン、メタクロレイン及びメタクリル酸の
選択率はそれぞれ23.6%、26.2%及び3.7%
であった。反応温度400〜450℃に於けるイソブタ
ン転化率5%時の有効成分への選択率は44.4%であ
った。
[0024] Example 5 Ion-exchanged water 150ml into ammonium paramolybdate {((NH 4) 6 Mo 7 O 24 · 4H 2 O)} 53.0
After adding 5 g and stirring and dissolving, the vanadium concentration was 1 mol /
Then, 75 ml of an aqueous solution of vanadyl oxalate ( 1 ) was added, and then 32.80 g of antimony trioxide (Sb 2 O 3 ) was added. 25% ammonia water is added to this mixture to adjust the pH.
Was adjusted to almost neutral. The slurry solution thus obtained is concentrated to dryness while heating and stirring, and further dried at 120 ° C. for 3 hours, and pulverized and sieved to obtain 4 to 8 mesh particles. Mo 12 was fired for 2 hours
A catalyst having a composition of V 3 Sb 9 Ox was obtained. Using this catalyst, an oxidation reaction was performed under the same conditions as in Example 1.
The isobutane conversion at a reaction temperature of 425 ° C was 2.2.
%, Isobutylene, methacrolein and methacrylic acid selectivities of 23.6%, 26.2% and 3.7%, respectively.
Met. The selectivity to the active ingredient at a reaction temperature of 400 to 450 ° C. and a conversion of isobutane of 5% was 44.4%.

【0025】実施例6 実施例1のA液中に二酸化ゲルマニウム(GeO2 )を
添加した以外は実施例1と同一方法によりMo123
9 Nb1.5 Ge3 Oxの組成を有する触媒を得た。こ
の触媒を用い、実施例2と同じ条件で酸化反応を行った
ところ、反応温度425℃に於いてのイソブタン転化率
は2.9%、イソブチレン、メタクロレイン及びメタク
リル酸の選択率はそれぞれ34.1%、18.4%及び
0.6%であった。反応温度400〜450℃に於ける
イソブタン転化率5%時の有効成分への選択率は47.
9%であった。
Example 6 Mo 12 V 3 S was prepared in the same manner as in Example 1 except that germanium dioxide (GeO 2 ) was added to the solution A of Example 1.
A catalyst having a composition of b 9 Nb 1.5 Ge 3 Ox was obtained. When an oxidation reaction was carried out using this catalyst under the same conditions as in Example 2, the conversion of isobutane at a reaction temperature of 425 ° C. was 2.9%, and the selectivity of isobutylene, methacrolein and methacrylic acid was 34. 1%, 18.4% and 0.6%. When the isobutane conversion is 5% at a reaction temperature of 400 to 450 ° C., the selectivity to the active ingredient is 47.
9%.

【0026】実施例7 実施例1のA液中に酢酸スズ〔Sn(CH3 CO
O)2 〕を添加した以外は実施例1と同一方法によりM
123 Sb9 Nb1.5 Sn3 Oxの組成を有する触媒
を得た。この触媒を用い、実施例2と同じ条件で酸化反
応を行ったところ、反応温度425℃に於いてのイソブ
タン転化率は7.4%、イソブチレン、メタクロレイン
及びメタクリル酸の選択率はそれぞれ8.7%、21.
8%及び3.8%であった。反応温度400〜450℃
に於けるイソブタン転化率5%時の有効成分への選択率
は42.2%であった。
Example 7 Tin solution [Sn (CH 3 CO 3)
O) 2 ] was added in the same manner as in Example 1 except that M) was added.
A catalyst having a composition of o 12 V 3 Sb 9 Nb 1.5 Sn 3 Ox was obtained. When an oxidation reaction was carried out using this catalyst under the same conditions as in Example 2, the conversion of isobutane at a reaction temperature of 425 ° C. was 7.4%, and the selectivities of isobutylene, methacrolein and methacrylic acid were each 8. 7%, 21.
8% and 3.8%. Reaction temperature 400-450 ° C
Was 42.2% when the isobutane conversion was 5%.

【0027】実施例8 実施例1のA液中に硝酸鉄〔Fe(NO3 )・9H2
を添加した以外は実施例1と同一方法によりMo123
Sb9 Nb1.5 Fe3 Oxの組成を有する触媒を得た。
この触媒を用い、実施例2と同じ条件で酸化反応を行っ
たところ、反応温度425℃に於いてのイソブタン転化
率は7.5%、イソブチレン、メタクロレイン及びメタ
クリル酸の選択率はそれぞれ13.7%、17.2%及
び2.3%であった。反応温度380〜450℃に於け
るイソブタン転化率5%時の有効成分への選択率は3
7.5%であった。
Example 8 In solution A of Example 1, iron nitrate [Fe (NO 3 ) .9H 2 O
Except that Mo 12 V 3 was added in the same manner as in Example 1.
A catalyst having a composition of Sb 9 Nb 1.5 Fe 3 Ox was obtained.
When an oxidation reaction was carried out using this catalyst under the same conditions as in Example 2, the isobutane conversion at a reaction temperature of 425 ° C. was 7.5%, and the selectivity of isobutylene, methacrolein and methacrylic acid was 13. 7%, 17.2% and 2.3%. At a reaction temperature of 380 to 450 ° C., the selectivity to the active ingredient at a conversion of isobutane of 5% is 3
7.5%.

【0028】実施例9 実施例1に於いてシュウ酸バナジルの代わりにメタバナ
ジン酸アンモニウム{NH4 VO3 }を用い、Sb2
3 の代わりにH6 TeO6 を用いた以外は実施例1と同
一方法によりMo123.6 Te2.8 Nb1.4 Oxの組成
を有する触媒を得た。この触媒を用い、反応温度を35
0℃にした以外は実施例1と同じ条件で酸化反応を行っ
たところ、反応温度を350℃に於いてのイソブタン転
化率は4.9%、イソブチレン、メタクロレイン及びメ
タクリル酸の選択率はそれぞれ4.3%、13.9%及
び11.8%であった。反応温度330〜400℃に於
けるイソブタン転化率5%時の有効成分への選択率は3
0.0%であった。
Example 9 In Example 1, ammonium metavanadate {NH 4 VO 3 } was used instead of vanadyl oxalate, and Sb 2 O
A catalyst having a composition of Mo 12 V 3.6 Te 2.8 Nb 1.4 Ox was obtained in the same manner as in Example 1 except that H 6 TeO 6 was used instead of 3 . Using this catalyst, the reaction temperature was 35
When the oxidation reaction was carried out under the same conditions as in Example 1 except that the temperature was changed to 0 ° C., the conversion of isobutane at a reaction temperature of 350 ° C. was 4.9%, and the selectivities of isobutylene, methacrolein and methacrylic acid were respectively 4.3%, 13.9% and 11.8%. At a reaction temperature of 330 to 400 ° C., the selectivity to the active ingredient at an isobutane conversion of 5% is 3
0.0%.

【0029】実施例10 実施例3に於いて得られたスラリー乾燥品を、空気中、
600℃で2時間焼成した。この触媒を用い、反応温度
を330℃とした以外は、実施例1と同じ反応条件で反
応をおこなったところ、イソブタン転化率は4.8%で
あった。この時のイソブチレン、メタクロレイン及びメ
タクリル酸の選択率はそれぞれ1.4%、16.2%及
び5.7%であった。反応温度290〜350℃に於け
るイソブタン転化率5%時の有効成分への選択率は2
2.9%であった。
Example 10 The dried slurry obtained in Example 3 was dried in air.
It was baked at 600 ° C. for 2 hours. The reaction was carried out under the same reaction conditions as in Example 1 except that the reaction temperature was 330 ° C. using this catalyst, and the conversion of isobutane was 4.8%. At this time, selectivities of isobutylene, methacrolein and methacrylic acid were 1.4%, 16.2% and 5.7%, respectively. At a reaction temperature of 290 to 350 ° C., the selectivity to the active ingredient when the isobutane conversion is 5% is 2
2.9%.

【0030】比較例1 実験組成Mo123 Ox(xは各元素の原子価および原
子比によって決まる値を表す)を有する複合酸化物系触
媒は、以下の方法により調製した。イオン交換水120
0mlにパラモリブデン酸アンモニウム{((NH4
6Mo7 24・4H2 O)}211.9gを添加し、撹
拌溶解させた後、バナジウム濃度が1mol/lである
シュウ酸バナジル水溶液300mlを添加、混合し、こ
の混合液のPHが中性になるよう25%アンモニア水を
添加した。その後、120℃の乾燥機中で水分を蒸発さ
せ、これを窒素気流中、600℃で3時間焼成した。こ
の触媒を用い、反応温度を350℃とした以外は、実施
例1と同じ条件で酸化反応を行ったところ、反応温度を
350℃に於いてのイソブタン転化率は5.0%、イソ
ブチレン、メタクロレイン及びメタクリル酸の選択率は
それぞれ6.7%、3.1%及び0.7%であった。反
応温度310〜350℃に於けるイソブタン転化率5%
時の有効成分への選択率は10.6%であった。
Comparative Example 1 A composite oxide catalyst having the experimental composition Mo 12 V 3 Ox (x represents a value determined by the valence and atomic ratio of each element) was prepared by the following method. Ion exchange water 120
Add 0 ml of ammonium paramolybdate {((NH 4 )
6 Mo 7 O 24 · 4H 2 O)} was added 211.9G, After stirring and dissolution. Added vanadyl oxalate solution 300ml vanadium concentration of 1 mol / l, were mixed, medium PH of the mixed solution Aqueous 25% ammonia was added to make it more acidic. Thereafter, the water was evaporated in a dryer at 120 ° C., which was baked at 600 ° C. for 3 hours in a nitrogen stream. Using this catalyst, an oxidation reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 350 ° C. At a reaction temperature of 350 ° C, the conversion of isobutane was 5.0%, The selectivities of rhein and methacrylic acid were 6.7%, 3.1% and 0.7%, respectively. Isobutane conversion rate 5% at a reaction temperature of 310 to 350 ° C
At that time, the selectivity to the active ingredient was 10.6%.

【0031】比較例2 イオン交換水400mlにシュウ酸水素ニオブ{Nb
(HC2 4 5 ・nH 2 O}35.59gを加え撹拌
溶解後、バナジウム濃度が1mol/lであるシュウ酸
バナジル水溶液75mlを添加し、均一な水溶液とした
(A液)。次いでイオン交換水150mlにパラモリブ
デン酸アンモニウム{((NH4 6 Mo 7 24・4H
2 O)}53.00gを添加し撹拌溶解した(B液)
後、B液をA液に全量注入混合し、この混合液に25%
アンモニア水を入れpHをほぼ中性に調整した。このよ
うにして得られたスラリー溶液を加熱撹拌しつつ濃縮乾
固し、更に120℃にて14.5時間乾燥し、粉砕・篩
別して4〜8メッシュの粒子を得、これを窒素気流中6
00℃で2時間焼成してMo123 Nb1.5 X の組成
を有する触媒を得た。この触媒を用い、反応温度を29
0℃とした以外は、実施例1と同じ条件で酸化反応を行
ったところ、反応温度を290℃に於いてのイソブタン
転化率は7.2%、イソブチレン、メタクロレイン及び
メタクリル酸の選択率はそれぞれ5.1%、1.9%及
び1.1%であった。反応温度250〜300℃に於け
るイソブタン転化率5%時の有効成分への選択率は9.
3%であった。
Comparative Example 2 Niobium hydrogen oxalate @ Nb was added to 400 ml of ion-exchanged water.
(HCTwoOFour)Five・ NH TwoAdd 35.59 g of O and stir
After dissolution, oxalic acid with a vanadium concentration of 1 mol / l
75 ml of vanadyl aqueous solution was added to make a uniform aqueous solution.
(Solution A). Then add paramolyb to 150 ml of deionized water.
Ammonium denate {((NHFour)6Mo 7Otwenty four・ 4H
TwoO) $ 53.00 g was added and dissolved by stirring (Solution B)
Thereafter, the entire amount of the solution B was injected and mixed into the solution A, and 25%
Aqueous ammonia was added to adjust the pH to almost neutral. This
The resulting slurry solution was concentrated and dried while heating and stirring.
Hardened, further dried at 120 ° C for 14.5 hours, pulverized and sieved
Separately, particles of 4 to 8 mesh were obtained,
Baking at 00 ° C for 2 hours, Mo12VThreeNb1.5OXComposition of
Was obtained. Using this catalyst, the reaction temperature was 29
The oxidation reaction was carried out under the same conditions as in Example 1 except that the temperature was 0 ° C.
The isobutane at a reaction temperature of 290 ° C.
The conversion is 7.2%, isobutylene, methacrolein and
The selectivity of methacrylic acid was 5.1%, 1.9%, respectively.
And 1.1%. At a reaction temperature of 250-300 ° C
When the isobutane conversion is 5%, the selectivity to the active ingredient is 9.
3%.

【0032】比較例3 イオン交換水400mlにヒドロキシルアミン塩酸塩
(NH2 OH/HCI)27.8g、80%リン酸(H
3 PO4 )58.8gを溶解し、均一な溶液とした後、
ホットスターラーにて80℃まで加熱した。この溶液に
五酸化バナジウム(V2 5 )36.4gを徐々に添加
した。五酸化バナジウム添加終了から約6時間攪拌をつ
ずけ、120℃の乾燥器中で15時間乾燥させ、水分を
蒸発させた。得られた乾固物を空気500℃で15時間
焼成して(VO)2 2 7 の組成を有する触媒を得
た。上記方法により得た触媒9gを直径15mmのパイ
レックスガラス製反応管に充填し、これにイソブタン/
酸素/窒素/水蒸気の割合(モル%)が47/36/1
7/0からなる原料ガスを供給し反応圧力152kP
a、空間速度1000/hrの条件で加熱して酸化反応
を行ったところ、反応温度360℃においてのイソブタ
ン転化率は2.1%、イソブチレン、メタクロレイン及
びメタクリル酸の選択率はそれぞれ1.7%、2.5
%、8.8%であった。
Comparative Example 3 27.8 g of hydroxylamine hydrochloride (NH 2 OH / HCI) and 400% phosphoric acid (H) were added to 400 ml of ion-exchanged water.
After dissolving 58.8 g of 3 PO 4 ) to form a uniform solution,
Heated to 80 ° C. with a hot stirrer. To this solution, 36.4 g of vanadium pentoxide (V 2 O 5 ) was gradually added. Stirring was continued for about 6 hours after the completion of the addition of vanadium pentoxide, and the resultant was dried in a dryer at 120 ° C. for 15 hours to evaporate water. The obtained dried product was calcined at 500 ° C. for 15 hours to obtain a catalyst having a composition of (VO) 2 P 2 O 7 . 9 g of the catalyst obtained by the above method was charged into a Pyrex glass reaction tube having a diameter of 15 mm, and isobutane /
Oxygen / nitrogen / water vapor ratio (mol%) is 47/36/1
7/0 source gas is supplied and the reaction pressure is 152 kP
a, When the oxidation reaction was carried out by heating at a space velocity of 1000 / hr, the isobutane conversion at a reaction temperature of 360 ° C. was 2.1%, and the selectivities of isobutylene, methacrolein and methacrylic acid were 1.7, respectively. %, 2.5
%, 8.8%.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 27/057 B01J 27/057 Z C07B 61/00 300 C07B 61/00 300 C07C 11/09 C07C 11/09 27/12 310 27/12 310 47/22 47/22 B 57/05 57/05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI B01J 27/057 B01J 27/057 Z C07B 61/00 300 C07B 61/00 300 C07C 11/09 C07C 11/09 27/12 310 27 / 12 310 47/22 47/22 B 57/05 57/05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式 MoaVbXcYdZeOf (式中、Moはモリブデン、Vはバナジウム、Xはアン
チモンまたはテルル、Oは酸素、Yはヒ素、ホウ素およ
びゲルマニウムからなる群より選ばれた少なくとも1種
の元素、Zはカリウム、セシウム、ルビジウム、カルシ
ウム、マグネシウム、タリウム、クロム、マンガン、
鉄、コバルト、ニッケル、銅、銀、ビスマス、アルミニ
ウム、ガリウム、インジウム、スズ、亜鉛、ランタン、
セリウム、イットリウム、タングステン、ニオブおよび
タンタルからなる群より選ばれた少なくとも1種の元素
を表し、また添字a、b、c、d及びeは各元素の原子
比を表し、a=12としたとき、bは0を含まない6以
下の値、cは0を含まない20以下の値、dおよびeは
0を含む6以下の値、fは各元素の原子価および原子比
によって決まる値を表す)で示される複合酸化物よりな
るイソブタンの気相接触酸化反応用触媒。
1. General formula MoaVbXcYdZeOf (where Mo is molybdenum, V is vanadium, X is antimony or tellurium, O is oxygen, Y is at least one element selected from the group consisting of arsenic, boron and germanium, Z is potassium, cesium, rubidium, calcium, magnesium, thallium, chromium, manganese,
Iron, cobalt, nickel, copper, silver, bismuth, aluminum, gallium, indium, tin, zinc, lanthanum,
When at least one element selected from the group consisting of cerium, yttrium, tungsten, niobium and tantalum is represented, and subscripts a, b, c, d and e represent the atomic ratio of each element, and when a = 12 , B is a value of 6 or less not including 0, c is a value of 20 or less not including 0, d and e are values of 6 or less including 0, and f is a value determined by the valence and atomic ratio of each element. A catalyst for a gas phase catalytic oxidation reaction of isobutane, comprising a composite oxide represented by the formula (1).
【請求項2】 焼成後、一般式 MoaVbXcYdZ
eOfで示される複合酸化物(式中、Moはモリブデ
ン、Vはバナジウム、Xはアンチモンまたはテルル、O
は酸素、Yはヒ素、ホウ素およびゲルマニウムからなる
群より選ばれた少なくとも1種の元素、Zはカリウム、
セシウム、ルビジウム、カルシウム、マグネシウム、タ
リウム、クロム、マンガン、鉄、コバルト、ニッケル、
銅、銀、ビスマス、アルミニウム、ガリウム、インジウ
ム、スズ、亜鉛、ランタン、セリウム、イットリウム、
タングステン、ニオブおよびタンタルからなる群より選
ばれた少なくとも1種の元素を表し、また添字a、b、
c、d及びeは各元素の原子比を表し、a=12とした
とき、bは0を含まない6以下の値、cは0を含まない
20以下の値、dおよびeは0を含む6以下の値、fは
各元素の原子価および原子比によって決まる値を表す)
を形成し得る前駆体物質を、不活性ガス雰囲気下で焼成
することを特徴とする、一般式 MoaVbXcYdZ
eOf(式中の記載は前記と同じ)で示されるイソブタ
ンの気相接触酸化反応用触媒の製造方法。
2. After firing, the general formula MoaVbXcYdZ
a complex oxide represented by eOf (where Mo is molybdenum, V is vanadium, X is antimony or tellurium, O
Is oxygen, Y is at least one element selected from the group consisting of arsenic, boron and germanium, Z is potassium,
Cesium, rubidium, calcium, magnesium, thallium, chromium, manganese, iron, cobalt, nickel,
Copper, silver, bismuth, aluminum, gallium, indium, tin, zinc, lanthanum, cerium, yttrium,
Represents at least one element selected from the group consisting of tungsten, niobium, and tantalum;
c, d and e represent the atomic ratio of each element, and when a = 12, b is a value of 6 or less not including 0, c is a value of 20 or less not including 0, and d and e include 0 6 or less, f represents a value determined by the valence and atomic ratio of each element)
Wherein the precursor substance capable of forming the compound is calcined in an inert gas atmosphere. The general formula: MoaVbXcYdZ
A method for producing a catalyst for gas-phase catalytic oxidation reaction of isobutane represented by eOf (the description in the formula is the same as described above).
【請求項3】 不活性ガス雰囲気が窒素雰囲気であるこ
とを特徴とする請求項2記載のイソブタンの気相接触酸
化反応用触媒の製造方法。
3. The method for producing a catalyst for gas phase catalytic oxidation reaction of isobutane according to claim 2, wherein the inert gas atmosphere is a nitrogen atmosphere.
JP8290087A 1996-10-31 1996-10-31 Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation Pending JPH10128112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8290087A JPH10128112A (en) 1996-10-31 1996-10-31 Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8290087A JPH10128112A (en) 1996-10-31 1996-10-31 Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation

Publications (1)

Publication Number Publication Date
JPH10128112A true JPH10128112A (en) 1998-05-19

Family

ID=17751639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8290087A Pending JPH10128112A (en) 1996-10-31 1996-10-31 Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation

Country Status (1)

Country Link
JP (1) JPH10128112A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114418A (en) * 1997-09-30 1999-04-27 Sumitomo Chem Co Ltd Catalyst for gas-phase catalytic oxidation reaction of isobutane and manufacturing of alkene and/or oxygen-containing compound using this catalyst
EP0962253A2 (en) 1998-05-21 1999-12-08 Rohm And Haas Company A process for preparing a multi-metal oxide catalyst
JP2001079412A (en) * 1999-09-15 2001-03-27 Rohm & Haas Co Catalyst useful for oxidizing alkane
JP2002239382A (en) * 2000-12-13 2002-08-27 Asahi Kasei Corp Oxide catalyst for oxidation or ammoxidation
EP1260495A3 (en) * 1998-05-21 2003-01-15 Rohm And Haas Company A process for preparing a multi-metal oxide catalyst
US6747172B1 (en) 1999-10-12 2004-06-08 Nippon Shokubai Co., Ltd. Method for preparing methacrylic acid
WO2005000463A3 (en) * 2003-06-06 2005-03-03 Standard Oil Co Mixed metal oxide catalysts for propane and isobutane oxidation and ammoxidation, and methods of preparing same
JP2010526765A (en) * 2007-01-19 2010-08-05 エバーヌ・テクノロジー・リミテッド・ライアビリティ・カンパニー Selective oxidation of alkanes and / or alkenes to beneficial oxygenates
KR101446851B1 (en) * 2010-05-13 2014-10-01 아사히 가세이 케미칼즈 가부시키가이샤 Mixed catalyst
CN112805090A (en) * 2018-09-18 2021-05-14 三菱化学株式会社 Catalyst for methacrylic acid production, method for producing same, and method for producing methacrylic acid and methacrylic acid ester

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114418A (en) * 1997-09-30 1999-04-27 Sumitomo Chem Co Ltd Catalyst for gas-phase catalytic oxidation reaction of isobutane and manufacturing of alkene and/or oxygen-containing compound using this catalyst
EP1260495A3 (en) * 1998-05-21 2003-01-15 Rohm And Haas Company A process for preparing a multi-metal oxide catalyst
EP0962253A2 (en) 1998-05-21 1999-12-08 Rohm And Haas Company A process for preparing a multi-metal oxide catalyst
EP0962253A3 (en) * 1998-05-21 2000-03-08 Rohm And Haas Company A process for preparing a multi-metal oxide catalyst
JP2001079412A (en) * 1999-09-15 2001-03-27 Rohm & Haas Co Catalyst useful for oxidizing alkane
US6747172B1 (en) 1999-10-12 2004-06-08 Nippon Shokubai Co., Ltd. Method for preparing methacrylic acid
JP2002239382A (en) * 2000-12-13 2002-08-27 Asahi Kasei Corp Oxide catalyst for oxidation or ammoxidation
US7109144B2 (en) 2000-12-13 2006-09-19 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7378541B2 (en) 2000-12-13 2008-05-27 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7498463B2 (en) 2000-12-13 2009-03-03 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
WO2005000463A3 (en) * 2003-06-06 2005-03-03 Standard Oil Co Mixed metal oxide catalysts for propane and isobutane oxidation and ammoxidation, and methods of preparing same
JP2010526765A (en) * 2007-01-19 2010-08-05 エバーヌ・テクノロジー・リミテッド・ライアビリティ・カンパニー Selective oxidation of alkanes and / or alkenes to beneficial oxygenates
US7888281B2 (en) 2007-01-19 2011-02-15 Evernu Technology, Llc Selective oxidation of alkanes and/or alkenes to valuable oxygenates
KR101446851B1 (en) * 2010-05-13 2014-10-01 아사히 가세이 케미칼즈 가부시키가이샤 Mixed catalyst
CN112805090A (en) * 2018-09-18 2021-05-14 三菱化学株式会社 Catalyst for methacrylic acid production, method for producing same, and method for producing methacrylic acid and methacrylic acid ester

Similar Documents

Publication Publication Date Title
EP1771405B1 (en) Process for the selective conversion of alkanes to unsaturated carboxylic acids
US7345199B2 (en) Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
JPH0753448A (en) Production of acrylic acid
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
JPS5946934B2 (en) Method for manufacturing methacrylic acid
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JP4081824B2 (en) Acrylic acid production method
JP4182237B2 (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
JPS6048496B2 (en) Method for producing methacrylic acid
JPH0791212B2 (en) Method for producing methacrylic acid
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JP3772392B2 (en) Composite oxide catalyst and method for producing methacrylic acid
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
JP3316880B2 (en) Method for producing catalyst for producing methacrylic acid
JP2671040B2 (en) Method for preparing catalyst for producing unsaturated carboxylic acid
JPS62132832A (en) Production of methacrylic acid and/or methacrolein
JPH0924277A (en) Catalyst and process for preparing methacrylic acid
JPS6154013B2 (en)
JPH09290161A (en) Production of oxidation catalyst and production of methacrylic acid
JP2002088012A (en) Method for producing (meth)acrylic acid
JP2002095972A (en) Catalyst for producing methacrylic acid, method for producing the catalyst, and method for producing methacrylic acid