JPH10127592A - Biomagnetism measuring device - Google Patents

Biomagnetism measuring device

Info

Publication number
JPH10127592A
JPH10127592A JP8288631A JP28863196A JPH10127592A JP H10127592 A JPH10127592 A JP H10127592A JP 8288631 A JP8288631 A JP 8288631A JP 28863196 A JP28863196 A JP 28863196A JP H10127592 A JPH10127592 A JP H10127592A
Authority
JP
Japan
Prior art keywords
time
magnetic field
symbol waveform
waveform
current source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8288631A
Other languages
Japanese (ja)
Other versions
JP3651146B2 (en
Inventor
Shoichi Okamura
昇一 岡村
Tsukasa Tomita
司 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP28863196A priority Critical patent/JP3651146B2/en
Publication of JPH10127592A publication Critical patent/JPH10127592A/en
Application granted granted Critical
Publication of JP3651146B2 publication Critical patent/JP3651146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biomagnetism measuring device capable of quickly and objectively obtaining the time living body activity current is assumed to be generated. SOLUTION: A micromagnetic field generated together with living body activity current in a subject M is detected by magnetic flux meter S1-Sm with plural magnetism detecting elements and is inputted into a symbol waveform preparing part 3a via a data collecting unit 2. The symbol waveform preparing part 3a calculates differences between the maximum value and the minimum value at each time from each obtained time-magnetic field intensity waveform to make the difference as a symbol waveform, an automatic analysis latency determining part 3b calculates a time to exceed a prescribed value of an obtained symbol waveform as the analysis latency, and a magnetic field analyzing part 3c calculates information on a living body activity current source from magnetic field data at the analyzing latency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検体内の生体活
動電流源に伴って発生する微小磁場を計測し、その計測
データに基づいて前記被検体内の生体活動電流源を求め
る生体磁気計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biomagnetic measurement for measuring a minute magnetic field generated with a living body current source in a subject and obtaining the living body current source in the subject based on the measurement data. Related to the device.

【0002】[0002]

【従来の技術】近年の超伝導デバイス技術の発展に伴
い、SQUID(Superconducting QUantum Interferen
ce Device )と呼ばれる高感度な磁束計を利用した生体
磁気計測装置が、医療診断装置の一つとして実用化され
つつあり、脳機能の解明や循環器疾患の診断に役立つも
のと期待されている。
2. Description of the Related Art With the development of superconducting device technology in recent years, SQUIDs (Superconducting Quantum Interferen
A biomagnetic measurement device using a high-sensitivity magnetometer called ce Device) is being put to practical use as one of medical diagnostic devices, and is expected to be useful for elucidating brain functions and diagnosing cardiovascular diseases. .

【0003】この生体磁気計測装置では、被検体に与え
られた光や電気的な刺激により発生した磁場データを複
数の磁気検出素子からなる磁束計によって計測し、計測
した磁場データに基づき、例えば、最小自乗法や最小ノ
ルム法等によって、磁束計を基準とした座標系における
生体活動電流源の位置、向き、大きさなどの推定がなさ
れる(Jukka Sarvas "Basic mathematical and elect
romagnetic conceptsf the biomagnetic inverse probl
em" , Phys. Med. Biol., 1987, vol.32, No.1, 11-22,
Printed by the UK )。
In this biomagnetism measuring apparatus, magnetic field data generated by light or electrical stimulation applied to a subject is measured by a magnetometer composed of a plurality of magnetic detecting elements, and based on the measured magnetic field data, for example, The position, direction, and size of the bioactive current source in the coordinate system based on the magnetometer are estimated by the least square method or the minimum norm method (Jukka Sarvas "Basic mathematical and election").
romagnetic conceptsf the biomagnetic inverse probl
em ", Phys. Med. Biol., 1987, vol.32, No.1, 11-22,
Printed by the UK).

【0004】かかる場合、計測対象となる磁場には、光
や電気的な刺激により発生した生体活動電流源に基づく
誘発脳磁や、特に刺激などを与えることなく発生した生
体活動電流源に基づく自発脳磁があるが、これらを計測
するには、被検体内で生体活動電流が強く発生している
時刻における磁束計で得られた検知データに対して上記
最小自乗法や最小ノルム法等を適用する必要が生じる。
[0004] In such a case, the magnetic field to be measured includes an induced brain magnetic field based on a biological activity current source generated by light or electrical stimulation, and a spontaneous spontaneous activity based on a biological activity current source generated without applying a stimulus or the like. There are magnetoencephalograms, but to measure them, apply the above least squares method or minimum norm method to the detection data obtained by the magnetometer at the time when the biological activity current is strongly generated in the subject Need to be done.

【0005】従来、当該時刻における生体活動電流源の
情報を得るため、いわゆるgoodness-of-fit カーブを用
いる方法や、当該時刻を特定すべく磁束計の各磁気検出
素子毎に時間−磁場波形を同一時間軸上に表示する方法
が採用されている。ここで、goodness-of-fit とは、あ
る時刻におけるすべての磁気検出素子の磁場強度データ
を用いて最小二乗法で解析した電流源位置がどれだけ信
頼に値するかを示す指標であり、次式で求められる。
Conventionally, a method using a so-called goodness-of-fit curve has been used to obtain information on a biological activity current source at the time, and a time-magnetic field waveform has been determined for each magnetic sensing element of a magnetometer to specify the time. A method of displaying on the same time axis is adopted. Here, the goodness-of-fit is an index indicating how reliable the current source position analyzed by the least square method using the magnetic field intensity data of all the magnetic detection elements at a certain time is: Is required.

【0006】goodness-of-fit 値=(1−Σ(Bmi−B
ci)2 /Σ(Bmi)2 )×100 Bci:解析した位置に所定の生体活動電流源があると仮
定した場合にi番目の磁気検出素子が検出すると考えら
れる磁場強度 Bmi:i番目の磁気検出素子が実際に計測した磁場強度 そして、goodness-of-fit カーブは、goodness-of-fit
値(%)を各時刻についてプロットしたもので、その値
が100%に近い時刻では、実際の電流値のダイポール
性が高くなる。
The goodness-of-fit value = (1-Σ (Bmi-B
ci) 2 / Σ (Bmi) 2) × 100 Bci: magnetic field intensity considered to be detected by the i-th magnetic detecting element when a predetermined biological activity current source is assumed to be located at the analyzed position Bmi: i-th magnetic field The strength of the magnetic field actually measured by the detector and the goodness-of-fit curve show the goodness-of-fit
The value (%) is plotted for each time, and at a time when the value is close to 100%, the dipole property of the actual current value is high.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、いわゆ
るgoodness-of-fit カーブを用いる場合、最も容易かつ
客観的にどの時刻においてダイポール性が高いかを判断
できるが、全計測時間すべての計測データに対して上記
最小自乗法や最小ノルム法等を適用しなければならない
ため、計算に膨大な時間を要し、データ収集と同時にリ
アルタイムで必要な生体活動電流源の情報を求めること
はできない。
However, when a so-called goodness-of-fit curve is used, it is possible to judge easily and objectively at which time the dipole property is high. Since the least squares method, the minimum norm method, and the like have to be applied, the calculation requires an enormous amount of time, and it is not possible to obtain necessary information on a living activity current source in real time simultaneously with data collection.

【0008】一方、全チャンネル波形を同一時間軸上に
表示する方法は、単に各磁気検出素子毎の検知データを
表示するのみであるため、リアルタイム表示が可能であ
るが、多数のの波形データから客観的かつ自動的に生体
活動電流が強く発生している時刻を特定することが困難
となる。
On the other hand, the method of displaying the waveforms of all channels on the same time axis simply displays the detection data of each magnetic sensing element, so that real-time display is possible. It is difficult to objectively and automatically specify the time at which the life activity current is strongly generated.

【0009】本発明は、上記課題を解決するために創案
されたもので、生体活動電流源が発生したと考えられる
時刻を短時間かつ客観的に得ることができる生体磁気計
測装置の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a biomagnetism measuring device capable of objectively obtaining a time at which a biological activity current source is considered to have occurred in a short time. And

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、被検体内の生体活動電流源に伴って発生
する微小磁場を複数の磁気検出素子を備えた磁束計で検
知し、その検知データに基づいて前記被検体内の生体活
動電流源を求める生体磁気計測装置であって、前記複数
の磁気検出素子でそれぞれ得られた各時間−磁場強度波
形から、当該波形群全体の時間軸に対する波形特性を示
すシンボル波形を作成するシンボル波形作成手段を備え
たことを特徴とする。
In order to achieve the above-mentioned object, the present invention is directed to detecting a minute magnetic field generated by a bioactive current source in a subject with a magnetometer provided with a plurality of magnetic sensing elements. A biomagnetism measurement apparatus for obtaining a biological activity current source in the subject based on the detection data, wherein each time-magnetic field strength waveform obtained by each of the plurality of magnetic detection elements is used to calculate the entire waveform group. It is characterized by comprising a symbol waveform creating means for creating a symbol waveform indicating waveform characteristics with respect to the time axis.

【0011】前記シンボル波形作成手段は、前記各時間
−磁場強度波形から各時刻における最大値と最小値との
差を求め、各時刻に対する前記最大値と最小値との差を
前記シンボル波形とすることを特徴とする。
The symbol waveform creating means calculates a difference between a maximum value and a minimum value at each time from each time-magnetic field intensity waveform, and determines a difference between the maximum value and the minimum value at each time as the symbol waveform. It is characterized by the following.

【0012】前記シンボル波形作成手段は、前記各時間
−磁場強度波形の各時刻における絶対値の総和を求め、
各時刻に対する前記絶対値の総和を前記シンボル波形と
して作成することを特徴とする。
The symbol waveform creating means obtains a sum of absolute values of the time-magnetic field strength waveforms at each time,
The sum of the absolute values for each time is created as the symbol waveform.

【0013】前記生体磁気計測装置は、さらに、前記シ
ンボル波形作成手段によって作成されたシンボル波形
が、予め定めた閾値を超えた時刻を求める比較手段と、
この比較手段で求められた時刻における前記被検体内の
生体活動電流源を求める磁場解析手段と、を備えたこと
を特徴とする。
[0013] The biomagnetism measuring apparatus further includes a comparing means for determining a time when the symbol waveform created by the symbol waveform creating means exceeds a predetermined threshold.
Magnetic field analyzing means for obtaining a biological activity current source in the subject at the time obtained by the comparing means.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を図1〜図5
に基づいて説明する。図1は、本発明の一実施形態であ
る生体磁気計測装置の概略構成図である。同図におい
て、センサユニット1は、ピックアップコイルとSQU
IDからなる複数の高感度な磁気検出素子から構成され
る磁束計S1〜Smが、デュアの中に冷媒とともに収納され
て構成されており、生体活動電流源の計測に際して、被
検体Mの頭部に近接配備される。データ収集ユニット2
は、磁束計S1〜Smで計測された生体磁場や各発振コイル
C1〜Cnから生じた交流磁場データをA/D変換してコン
ピュータ3のシンボル波形作成部3aや解析潜時自動決
定部3bに出力する。
1 to 5 show an embodiment of the present invention.
It will be described based on. FIG. 1 is a schematic configuration diagram of a biomagnetism measuring apparatus according to one embodiment of the present invention. In the figure, a sensor unit 1 includes a pickup coil and an SQUA
The magnetometers S1 to Sm each including a plurality of high-sensitivity magnetic detection elements each including an ID are housed together with a refrigerant in a Duer, and are used to measure a biological activity current source. Deployed in close proximity to Data collection unit 2
Indicates the biomagnetic field measured by the magnetometers S1 to Sm and each oscillation coil
The AC magnetic field data generated from C1 to Cn is A / D converted and output to the symbol waveform creation unit 3a and the automatic analysis latency determination unit 3b of the computer 3.

【0015】発振コイルC1〜Cnは、鼻根部、両耳下等、
被検体Mを特定する上で特徴となる部分に付着されるも
ので、例えば、セラミック板など絶縁体で形成された基
板に金属を印刷してコイル部を形成したコイルや、ボビ
ンに金属ワイヤを巻いて形成したコイルが使用され、電
流供給ユニット8により駆動される。
The oscillating coils C1 to Cn are located at the base of the nose, under both ears, etc.
Attached to a characteristic part in identifying the subject M, for example, a coil formed by printing metal on a substrate formed of an insulator such as a ceramic plate, or a metal wire on a bobbin. The coil formed by winding is used and driven by the current supply unit 8.

【0016】刺激付与部9aは、刺激装置9によって駆
動され、誘発脳磁の計測時に、光や電気的な刺激を被検
体Mに与える。
The stimulus applying section 9a is driven by the stimulator 9, and applies light or electric stimulus to the subject M when measuring the induced magnetoencephalogram.

【0017】コンピュータ3は、計測された磁場データ
の解析、及び電流供給ユニット8、刺激装置9の動作制
御を主に行うものであるが、大きくシンボル波形作成部
3a、解析潜時自動決定部3b、磁場源解析部3c、及
び収集制御部3dからなる。
The computer 3 mainly analyzes the measured magnetic field data and controls the operation of the current supply unit 8 and the stimulator 9. The computer 3 is mainly composed of a symbol waveform generator 3a and an automatic analysis latency determiner 3b. , A magnetic field source analysis unit 3c, and an acquisition control unit 3d.

【0018】シンボル波形作成部3aは、磁束計S1〜Sm
で検知されデータ収集ユニット2から出力された磁場強
度データから、それらの時間軸に対する波形群全体の波
形特性を示すシンボル波形を作成する。シンボル波形
は、例えば、磁束計S1〜Smから得られた各時間−磁場強
度波形の各時刻における最大値と最小値との差や、各時
間−磁場強度波形の各時刻における絶対値の総和を各時
刻毎にプロットすることで得られるが、ここでは、前者
について考えることとする。
The symbol waveform creating section 3a includes the magnetometers S1 to Sm
From the magnetic field intensity data detected by the data collection unit 2 and detected in the above, a symbol waveform indicating the waveform characteristics of the entire waveform group with respect to the time axis is created. The symbol waveform is, for example, the difference between the maximum value and the minimum value at each time of each time-magnetic field strength waveform obtained from the magnetometers S1 to Sm, and the sum of the absolute values at each time of each time-magnetic field strength waveform. It is obtained by plotting at each time, but here, the former will be considered.

【0019】解析潜時自動決定部3bは、シンボル波形
作成部3aで作成されたシンボル波形を基に、被検体内
で生体活動電流源が強く発生している時刻、すなわち、
いわゆる解析潜時を決定する。
Based on the symbol waveform created by the symbol waveform creation unit 3a, the analysis latency automatic determination unit 3b determines the time when the biological activity current source is strongly generated in the subject, that is,
Determine the so-called analysis latency.

【0020】磁場源解析部3cは、データ収集ユニット
2から出力された磁場データのうち、解析潜時自動決定
部3bによって決定された解析潜時における磁場データ
を用いて磁束計S1〜Smに対する生体活動電流源の相対位
置を算出すると共に、各発振コイルC1〜Cnからの磁場デ
ータを用いて、磁束計S1〜Smに対する各発振コイルC1〜
Cnの相対位置を算出する。
The magnetic field source analysis unit 3c uses the magnetic field data at the analysis latency determined by the analysis latency automatic determination unit 3b among the magnetic field data output from the data collection unit 2 to generate a biological signal for the magnetometers S1 to Sm. While calculating the relative position of the active current source, using the magnetic field data from each oscillation coil C1 ~ Cn, each oscillation coil C1 ~ for the magnetometer S1 ~ Sm.
Calculate the relative position of Cn.

【0021】そして、得られた各発振コイルC1〜Cnの相
対位置は、画像記憶部4から読み出したMRI画像上の
鼻根部、両耳下等、被検体Mの特定点に対応づけられ、
計測された生体活動電流源は、ここで対応づけられた位
置関係をもとにMRI画像上に重ねてモニタ6に表示さ
れると共に、必要に応じてMOD(光磁気ディスク)な
どの外部メモリ5に保存され、或いはプリンタ7に出力
される。
The relative positions of the obtained oscillating coils C1 to Cn are associated with specific points of the subject M, such as the root of the nose on the MRI image read from the image storage unit 4 and both ears.
The measured biological activity current source is displayed on the monitor 6 in a superimposed manner on the MRI image based on the positional relationship associated here, and, if necessary, an external memory 5 such as a MOD (magneto-optical disk). Or output to the printer 7.

【0022】収集制御部3dは、電流供給ユニット8に
対する電流供給制御の他に、生体活動電流源の計測時
に、被検体Mへの光、音、電気刺激を与えるべく刺激装
置9の制御も併せて行う。
The acquisition control unit 3d controls the current supply unit 8 and also controls the stimulator 9 to apply light, sound, and electrical stimulation to the subject M when measuring the biological activity current source. Do it.

【0023】次に、誘発脳磁の計測を行う場合における
本発明の作用をコンピュータ3の動作を示す図2のフロ
ーチャートに基づいて説明する。
Next, the operation of the present invention when measuring the induced magnetoencephalogram will be described with reference to the flowchart of FIG.

【0024】まず、誘発脳磁は発生させるべく、収集制
御部3dは、刺激装置9を介して、刺激付与部9aよ
り、光、音、電気等の刺激を被検体Mに対して付与させ
る(S1)。
First, in order to generate an induced brain magnetic field, the collection controller 3d causes the stimulator 9a to apply light, sound, electricity or other stimuli to the subject M via the stimulator 9 ( S1).

【0025】一方、シンボル波形作成部3a及び解析潜
時自動決定部3bは、刺激付与の前後における磁束計S1
〜Smで検知された磁場データをデータ収集ユニット2を
介して採り込む(S2)。ここで得られる磁場データ
は、図4aに示されるように、磁束計S1〜Smで得られた
各時間−磁場強度波形である。
On the other hand, the symbol waveform creating section 3a and the automatic analysis latency determining section 3b provide the magnetometer S1 before and after the stimulus application.
The magnetic field data detected at ~ Sm is taken in via the data collection unit 2 (S2). The magnetic field data obtained here is each time-magnetic field intensity waveform obtained by the magnetometers S1 to Sm, as shown in FIG. 4A.

【0026】磁場データの採り込みが終了すると、シン
ボル波形作成部3aは、データ収集ユニット2より採り
込んだ一連の磁場データより波形群全体の時間軸に対す
る波形特性を示すシンボル波形を作成する(S3)。
When the acquisition of the magnetic field data is completed, the symbol waveform creating section 3a creates a symbol waveform indicating the waveform characteristics of the entire waveform group with respect to the time axis from a series of magnetic field data acquired from the data collection unit 2 (S3). ).

【0027】ここで、シンボル波形作成部3aにおけ
る、具体的なシンボル波形の算出過程を図3のフローチ
ャートに基づいて説明する。
Here, a specific symbol waveform calculation process in the symbol waveform creation section 3a will be described with reference to the flowchart of FIG.

【0028】図4aは、磁束計S1〜Sm毎に得られた時間
−磁場強度波形を示しており、図4bは、得られた時間
−磁場強度波形の一つを拡大した図であるが、まず、シ
ンボル波形を作成すべき最初の時刻t0 、例えば、磁場
データの収集開始時刻を特定し(S11)、時刻t0 に
おける磁束計S1〜Smで得られた全ての磁場データについ
て磁場強度値を求め(S12)、それらの最大値と最小
値を得る(S13)。時刻t0 における磁束計S1〜Smで
得られた磁場強度の最大値と最小値が求められると、最
大値と最小値の差Δを求め、それをモニタ等にプロット
する(S14)。そして、次の時刻を特定し(S1
5)、これらの動作をデータ収集終了時te まで繰り返
し行うことで、図4cに示されるシンボル波形が得られ
る。
FIG. 4A shows a time-magnetic field strength waveform obtained for each of the magnetometers S1 to Sm, and FIG. 4B is an enlarged view of one of the obtained time-magnetic field strength waveforms. First, the first time t0 at which a symbol waveform is to be created, for example, the collection start time of the magnetic field data is specified (S11), and the magnetic field strength values are obtained for all the magnetic field data obtained by the magnetometers S1 to Sm at the time t0. (S12), the maximum value and the minimum value are obtained (S13). When the maximum value and the minimum value of the magnetic field strength obtained by the magnetometers S1 to Sm at the time t0 are obtained, the difference Δ between the maximum value and the minimum value is obtained and plotted on a monitor or the like (S14). Then, the next time is specified (S1
5) By repeating these operations until the end of data collection te, the symbol waveform shown in FIG. 4C is obtained.

【0029】シンボル波形作成部3aで作成されたシン
ボル波形は、解析潜時自動決定部3bに出力され解析潜
時が決定される(S4)。解析潜時の決定は、例えば、
図5に示されるように、磁場強度の最大値と最小値の差
Δが所定のスレッシュホールド値(ΔThershold )と得
られたシンボル波形を比較し、シンボル波形がスレッシ
ュホールド値を超える部分の時刻を解析潜時とすればよ
い。
The symbol waveform created by the symbol waveform creation section 3a is output to the analysis latency automatic determination section 3b to determine the analysis latency (S4). The determination of the analysis latency is, for example,
As shown in FIG. 5, the difference Δ between the maximum value and the minimum value of the magnetic field strength is compared with a predetermined threshold value (ΔThershold), and the obtained symbol waveform is compared, and the time when the symbol waveform exceeds the threshold value is determined. The analysis latency may be used.

【0030】なお、スレッシュホールド値(ΔThershol
d )は、操作者が適宜解析潜時自動決定部3bに入力し
ても良いし、シンボル波形の最大値の70%〜90%の
値として決定してもよい。
Note that the threshold value (ΔThershol
d) may be input by the operator to the analysis latency automatic determination unit 3b as appropriate, or may be determined as a value of 70% to 90% of the maximum value of the symbol waveform.

【0031】解析潜時自動決定部3bで解析潜時が決定
されると、決定された解析潜時と当該解析潜時に得られ
た磁場データが磁場源解析部3cに出力され、解析潜時
の各時刻における磁場データの磁場解析がなされ、各時
刻における生体活動電流源の磁束計S1〜Smに対する相対
位置が周知の最小自乗法や最小ノルム法等を用いて算出
される(S5)。
When the analysis latency is determined by the analysis latency automatic determination unit 3b, the determined analysis latency and magnetic field data obtained at the analysis latency are output to the magnetic field source analysis unit 3c, and the analysis latency is determined. Magnetic field analysis of the magnetic field data at each time is performed, and the relative position of the biological activity current source with respect to the magnetometers S1 to Sm at each time is calculated using the well-known least square method, the minimum norm method, or the like (S5).

【0032】次に、このようにして得られた生体活動電
流源のMRI等の画像上への重ね合わせが行われる。
Next, the biological activity current source thus obtained is superimposed on an image such as an MRI.

【0033】まず、被検体Mの頭表面上適当な位置、例
えば、鼻根部、左右両耳下等に発振コイルC1〜Cnを貼り
付け、かかる発振コイルC1〜Cnに対して、収集制御部3
dは電流供給ユニット8を介して交流電流を供給する
(S6)。
First, the oscillation coils C1 to Cn are attached to appropriate positions on the head surface of the subject M, for example, the nose, the left and right ears, and the like, and the collection control unit 3 is attached to the oscillation coils C1 to Cn.
d supplies an alternating current through the current supply unit 8 (S6).

【0034】そして、解析潜時自動決定部3bは、磁束
計S1〜Smで検知された発振コイルC1〜Cnから発生した交
流磁場を、データ収集ユニット2を介して磁場データと
して収集し(S7)、磁場源解析部3cは、周知の最小
二乗法や最小ノルム法等を用いて、磁束計S1〜Smに対す
る発振コイルC1〜Cnの相対位置を算出する(S8)。求
められた発振コイルC1〜Cnの相対位置は、画像記憶部4
から読み出されたMRI画像上の鼻根部、両耳下部など
の被検体Mの特定点に対応づけられ、得られた生体活動
電流源に関する情報は、ここに対応づけられた位置関係
を基にMRI画像上に重ねてモニタ6に表示される(S
9)。また、これらは、適宜MODなどの外部メモリ5
に保存され、また、プリンタ7に出力される。
Then, the analysis latency automatic determination unit 3b collects the alternating magnetic field generated from the oscillation coils C1 to Cn detected by the magnetometers S1 to Sm as magnetic field data via the data collection unit 2 (S7). The magnetic field source analysis unit 3c calculates the relative positions of the oscillation coils C1 to Cn with respect to the magnetometers S1 to Sm using a known least square method or a minimum norm method (S8). The obtained relative positions of the oscillation coils C1 to Cn are stored in the image storage unit 4.
Is associated with a specific point of the subject M, such as the root of the nose or the lower part of the ears, on the MRI image read out from the MRI image, and the obtained information on the biological activity current source is based on the positional relationship associated with this. It is displayed on the monitor 6 so as to overlap the MRI image (S
9). These are appropriately stored in an external memory 5 such as a MOD.
And output to the printer 7.

【0035】上述した実施の形態では、各時刻における
磁束計S1〜Smで得られた磁場データの最大値と最小値の
差からシンボル波形を形成する場合を示したが、各時刻
における磁束計S1〜Smで得られた磁場データの絶対値の
総和を時間軸に対してプロットすることで、シンボル波
形を形成するようにしてもよい。かかる場合、各時刻に
おける磁束計S1〜Smで得られた磁場データの絶対値の総
和は、所定値と磁場データとの差の絶対値の総和とする
ことも可能である。
In the above-described embodiment, the case where the symbol waveform is formed from the difference between the maximum value and the minimum value of the magnetic field data obtained by the magnetometers S1 to Sm at each time has been described. The symbol waveform may be formed by plotting the sum of the absolute values of the magnetic field data obtained through Sm on the time axis. In such a case, the sum of the absolute values of the magnetic field data obtained by the magnetometers S1 to Sm at each time may be the sum of the absolute values of the differences between the predetermined value and the magnetic field data.

【0036】そして、シンボル波形より解析潜時を求め
るには、上述したように、所定のスレッシュホールド値
(ΔThershold )と得られたシンボル波形を比較し、シ
ンボル波形がスレッシュホールド値を超える部分の時刻
を解析潜時とすればよい。
In order to determine the analysis latency from the symbol waveform, as described above, a predetermined threshold value (ΔThershold) is compared with the obtained symbol waveform, and the time when the symbol waveform exceeds the threshold value is determined. May be the analysis latency.

【0037】なお、本実施例では、解析潜時を解析潜時
決定部3bにおいて、自動的に算出するよう構成した
が、本発明は、これに限らず、モニタ6に表示されたシ
ンボル波形から操作者が適宜解析潜時を決定するように
しても良い。
In the present embodiment, the analysis latency is automatically calculated in the analysis latency determining unit 3b. However, the present invention is not limited to this, and the analysis latency may be calculated from the symbol waveform displayed on the monitor 6. The operator may appropriately determine the analysis latency.

【0038】[0038]

【発明の効果】本発明によれば、被検体からの磁場デー
タより、生体活動電流源が発生したと考えられる時刻を
短時間かつ客観的に求めることができるため、リアルタ
イムで生体活動電流源を求めることが可能となる。
According to the present invention, the time at which the biological activity current source is considered to have been generated can be objectively determined in a short time and objectively from the magnetic field data from the subject. It is possible to ask.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる生体磁気計測装置の一実施例を
示す図である。
FIG. 1 is a diagram showing an embodiment of a biomagnetism measuring apparatus according to the present invention.

【図2】生体活動電流源を計測するための動作を示す図
である。
FIG. 2 is a diagram showing an operation for measuring a life activity current source.

【図3】解析潜時を決定するための動作を示す図であ
る。
FIG. 3 is a diagram illustrating an operation for determining an analysis latency.

【図4】計測された磁場データ及びシンボル波形を示す
図である。
FIG. 4 is a diagram showing measured magnetic field data and symbol waveforms.

【図5】シンボル波形から特定された解析潜時を示す図
である。
FIG. 5 is a diagram illustrating an analysis latency specified from a symbol waveform.

【符号の説明】[Explanation of symbols]

M 被検体 S1〜Sm 磁束計 C1〜Cn 発振コイル 1 センサーユニット 2 データ収集ユニット 3 コンピュータ 3a シンボル波形形成部 3b 解析潜時自動決定部 3c 磁場源解析部 3d 収集制御部 4 画像記憶部 5 外部メモリ 6 モニタ 7 プリンタ 8 電源供給ユニット 9 刺激装置 9a 刺激付与部 M Subject S1 to Sm Magnetometer C1 to Cn Oscillation coil 1 Sensor unit 2 Data collection unit 3 Computer 3a Symbol waveform formation unit 3b Analysis latency automatic determination unit 3c Magnetic field source analysis unit 3d Collection control unit 4 Image storage unit 5 External memory 6 Monitor 7 Printer 8 Power supply unit 9 Stimulator 9a Stimulation unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検体内の生体活動電流源に伴って発生
する微小磁場を複数の磁気検出素子を備えた磁束計で検
知し、その検知データに基づいて前記被検体内の生体活
動電流源を求める生体磁気計測装置において、 前記複数の磁気検出素子でそれぞれ得られた各時間−磁
場強度波形から、当該波形群全体の時間軸に対する波形
特性を示すシンボル波形を作成するシンボル波形作成手
段を備えたことを特徴とする生体磁気計測装置。
1. A micro-magnetic field generated by a bio-activity current source in a subject is detected by a magnetometer having a plurality of magnetic detecting elements, and a bio-activity current source in the subject is detected based on the detection data. A biomagnetic measurement apparatus for obtaining the following: a symbol waveform creating means for creating a symbol waveform indicating a waveform characteristic with respect to a time axis of the entire waveform group from each time-magnetic field intensity waveform obtained by each of the plurality of magnetic detection elements. A biomagnetic measurement device characterized by the following.
【請求項2】 前記シンボル波形作成手段は、前記各時
間−磁場強度波形から各時刻における最大値と最小値と
の差を求め、各時刻に対する前記最大値と最小値との差
を前記シンボル波形として作成することを特徴とする請
求項1記載の生体磁気計測装置。
2. The symbol waveform creation means calculates a difference between a maximum value and a minimum value at each time from the time-magnetic field intensity waveform, and calculates a difference between the maximum value and the minimum value at each time with the symbol waveform. The biomagnetic measurement apparatus according to claim 1, wherein the biomagnetism measurement apparatus is created as:
【請求項3】 前記シンボル波形作成手段は、前記複数
の時間−磁場強度波形の各時刻における絶対値の総和を
求め、各時刻に対する前記絶対値の総和を前記シンボル
波形として作成することを特徴とする請求項1記載の生
体磁気計測装置。
3. The symbol waveform creating means finds the sum of absolute values of the plurality of time-magnetic field strength waveforms at each time, and creates the sum of the absolute values at each time as the symbol waveform. The biomagnetic measurement device according to claim 1.
【請求項4】 前記シンボル波形作成手段によって作成
されたシンボル波形が、予め定めた閾値を超えた時刻を
求める比較手段と、この比較手段で求められた時刻にお
ける前記被検体内の生体活動電流源を求める磁場解析手
段と、を備えたことを特徴とする請求項1〜3記載の生
体磁気計測装置。
4. A comparison means for determining a time when the symbol waveform created by the symbol waveform creation means exceeds a predetermined threshold, and a bioactivity current source in the subject at the time determined by the comparison means. The biomagnetic measurement apparatus according to any one of claims 1 to 3, further comprising: a magnetic field analysis unit that obtains the following.
JP28863196A 1996-10-30 1996-10-30 Biomagnetic measurement device Expired - Fee Related JP3651146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28863196A JP3651146B2 (en) 1996-10-30 1996-10-30 Biomagnetic measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28863196A JP3651146B2 (en) 1996-10-30 1996-10-30 Biomagnetic measurement device

Publications (2)

Publication Number Publication Date
JPH10127592A true JPH10127592A (en) 1998-05-19
JP3651146B2 JP3651146B2 (en) 2005-05-25

Family

ID=17732682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28863196A Expired - Fee Related JP3651146B2 (en) 1996-10-30 1996-10-30 Biomagnetic measurement device

Country Status (1)

Country Link
JP (1) JP3651146B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11207044B2 (en) 2017-03-17 2021-12-28 Ricoh Company, Ltd. Information processing apparatus, information processing method, computer-readable medium, and biological signal measurement system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11207044B2 (en) 2017-03-17 2021-12-28 Ricoh Company, Ltd. Information processing apparatus, information processing method, computer-readable medium, and biological signal measurement system

Also Published As

Publication number Publication date
JP3651146B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP3473210B2 (en) Biomagnetic measurement device
Cohen Measurements of the magnetic fields produced by the human heart, brain, and lungs
JP4068763B2 (en) Biological signal measuring device
JP2002320596A (en) Living body magnetic field measuring instrument
Uehara et al. Multi-channel SQUID systems for biomagnetic measurement
JP2007268034A (en) Method and device for measuring biological signal
Janawadkar et al. SQUID-based measurement of biomagnetic fields
JP3230460B2 (en) Biomagnetic measurement device
JP3651146B2 (en) Biomagnetic measurement device
US20040210127A1 (en) Biomagnetic measurement apparatus
JP2002272695A (en) Versatile high-sensitivity magnetic detection device
JP3409551B2 (en) Biomagnetic measurement device
JP3591121B2 (en) Biomagnetic measurement device
JPH0889489A (en) Biomagnetism measuring device
JPH10211182A (en) Biological magnetic measuring instrument
JP3661329B2 (en) Biomagnetic measurement device
JP3814923B2 (en) Biomagnetic measurement device
JPH114814A (en) Living body magnetism data display device
JP3791119B2 (en) Biomagnetic measurement device
US11666759B2 (en) Nerve stimulating apparatus, biometric information measuring system, and method of setting stimulus generating timings of biometric information measuring system
JP7002416B2 (en) Magnetic field measuring device
JP2983362B2 (en) Biomagnetic measurement device
JPH119567A (en) Magnetism measuring apparatus for living organism
JPH08266499A (en) Biomagnetic measuring apparatus
JP3237581B2 (en) Biological signal measurement device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees