JPH10126708A - Respective enhancing circuit for image signal - Google Patents

Respective enhancing circuit for image signal

Info

Publication number
JPH10126708A
JPH10126708A JP8280547A JP28054796A JPH10126708A JP H10126708 A JPH10126708 A JP H10126708A JP 8280547 A JP8280547 A JP 8280547A JP 28054796 A JP28054796 A JP 28054796A JP H10126708 A JPH10126708 A JP H10126708A
Authority
JP
Japan
Prior art keywords
image
signal
perspective
edge
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8280547A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hirano
裕弘 平野
Takashi Hoshino
剛史 星野
Noboru Kojima
昇 小島
Masahito Sugiyama
雅人 杉山
Kentaro Teranishi
謙太郎 寺西
Takaaki Nishiseto
孝明 西瀬戸
Satoshi Takahashi
聡 高橋
Yasuhiro Kasahara
康弘 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8280547A priority Critical patent/JPH10126708A/en
Publication of JPH10126708A publication Critical patent/JPH10126708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a perspective enhancing circuit for an image signal which performs contour enhancement of an image without spoiling perspective sensation. SOLUTION: This circuit is provided with a means 2 which detects the foreground region and background region of an image with the size of a first order differentiation signal waveform DY1 or a second order differentiation signal waveform DY2 of the outline part area of an image on a signal level, and performs edge addition outline enhancement, transient improvement contour enhancement, or hybrid improvement contour enhancement which adaptively switches both of them in accordance with far and near regions with a characteristic that is slightly stronger than conventional technology for a foreground area and with a characteristic that is slightly weaker than the conventional technology for a background region. This can realize perspective outline enhancement that maintains naturalness and acquires a conspicuous effect in making an image in high image quality.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は画像信号の輪郭強調
回路に係り、特に、画像の奥行き感や立体感を強調する
に好適な画像信号の遠近感強調回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contour emphasis circuit for an image signal, and more particularly to a perspective emphasis circuit for an image signal suitable for emphasizing an image depth and a three-dimensional effect.

【0002】[0002]

【従来の技術】テレビジョン受像機においては、テレビ
画像の高画質化を図るために、各種の画質改善の信号処
理が行われている。この代表的なものに、画像の鮮鋭度
を向上させる輪郭強調の信号処理がある。
2. Description of the Related Art In a television receiver, various signal processings for improving image quality are performed in order to improve the image quality of a television image. A typical example of this is signal processing of edge enhancement for improving the sharpness of an image.

【0003】この信号処理では、エッジ付加輪郭強調と
トランジェント改善輪郭強調との2つの方法に大別でき
る。前者は、輪郭部にエッジ付加信号を付加して鮮鋭度
の向上を図り、後者は、輪郭部の信号の立ち上がりや立
ち下がりのトランジェント特性を急峻にして鮮鋭度の向
上を図る。そして、これらを実現するための輪郭強調回
路に関して、多数の考案がなされている。
This signal processing can be broadly divided into two methods: edge addition edge enhancement and transient improvement edge enhancement. In the former, the edge addition signal is added to the contour to improve the sharpness, and in the latter, the transient characteristics of the rising and falling edges of the signal in the contour are sharpened to improve the sharpness. Many proposals have been made for an outline emphasis circuit for realizing these.

【0004】これらの回路では、画像の鮮鋭度向上には
有効であるが、反面、画像の奥行き感や立体感が損なわ
れるという欠点も有している。すなわち、画像の近景領
域も遠景領域も同じ特性のパラメタで信号処理を行うた
め、遠景領域では必要以上の強調が行われ、奥行き感な
どが著しく損なわれ、不自然な画像となる。
Although these circuits are effective in improving the sharpness of an image, they also have the disadvantage that the depth and three-dimensional effect of the image are impaired. That is, since signal processing is performed with parameters having the same characteristics in both the near-field region and the far-field region of the image, unnecessary enhancement is performed in the far-field region, and the sense of depth is significantly impaired, resulting in an unnatural image.

【0005】上記の現象は、画像が高品質、高精細なも
のになるほど目立ち易くなる傾向がある。したがって、
HDTVやEDTVなどの高精細な画像の受像では、遠
近感を保存した輪郭強調の信号処理が重要な課題であ
る。
[0005] The above-mentioned phenomenon tends to be more conspicuous as the image quality and definition become higher. Therefore,
In receiving a high-definition image such as an HDTV or an EDTV, signal processing of contour enhancement that preserves perspective is an important issue.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の課題
に鑑みてなされたもので、遠近感を損なうことなく画像
の輪郭強調を行う画像信号の遠近感強調回路の提供を目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has as its object to provide a perspective emphasis circuit for an image signal which enhances the outline of an image without impairing the perspective.

【0007】[0007]

【課題を解決するための手段】本発明においては、上記
の目的を達成するため、以下の技術的手段を採用する。
The present invention employs the following technical means to achieve the above object.

【0008】画像の遠近領域の検出には、画像信号の1
次微分信号、あるいは2次微分信号の信号レベルの大き
な領域は画像の近景領域、該信号レベルの小さな領域は
画像の遠景領域として検出する手段を採用する。図12
にこの原理概略を示す。図は、テレビ画面上の物体の走
査線AとBの位置における画像信号の1次微分信号と2
次微分信号の波形を示している。図より明らかなよう
に、画像信号の1次、2次微分信号は、物体の近景領域
(走査線B)では信号レベルが大きく、遠景領域(走査
線A)では信号レベルが小さくなる。したがって、この
手段により、概略ではあるが、物体の近景領域と遠景領
域との検出を行うことができる。
[0008] To detect the far and near regions of an image, one of the image signals is used.
A means for detecting a region having a large signal level of the secondary differential signal or the secondary differential signal as a near view region of an image and a region having a small signal level as a distant region of the image is employed. FIG.
The outline of this principle is shown in FIG. The figure shows the primary differential signal of the image signal at the position of the scanning lines A and B of the object on the TV screen and 2
The waveform of the next differential signal is shown. As is clear from the figure, the signal levels of the primary and secondary differential signals of the image signal are large in the near-view area (scanning line B) of the object and low in the distant-view area (scanning line A). Therefore, by this means, it is possible to roughly detect the near view area and the far view area of the object.

【0009】輪郭強調の方法には、 近景領域の画像ではエッジ付加信号の付加量を多く、
遠景領域の画像ではエッジ付加信号の付加量を少なく設
定し、エッジ付加信号の付加量を画像の遠近領域に応じ
て適応的に制御するエッジ付加輪郭強調、 近景領域の画像ではトランジェントの勾配を大きく、
遠景領域の画像ではトランジェントの勾配を小さく設定
し、トランジェントの勾配を画像の遠近領域に応じて適
応的に制御するトランジェント改善輪郭強調、 近景領域の画像ではトランジェント改善輪郭強調を選
択し、遠景領域の画像ではエッジ付加輪郭強調を選択し
た輪郭強調(タイプ1と略称)、 近景領域の画像ではエッジ付加輪郭強調を選択し、遠
景領域の画像ではトランジェント改善輪郭強調を選択し
た輪郭強調(タイプ2と略称)、の手段を採用する。
[0009] In the method of edge enhancement, a large amount of edge-added signal is added in an image of a foreground area.
For images in distant view areas, the amount of added edge-added signals is set small, and the amount of added edge-added signals is adaptively controlled according to the perspective area of the image. Edge-added edge enhancement, and for images in near-view areas, the gradient of transients is increased. ,
For images in the distant view area, set the gradient of the transient to be small, and select the transient enhancement contour enhancement that adaptively controls the gradient of the transient according to the perspective area of the image.For images in the near view area, select the transient enhancement contour enhancement. Edge enhancement (abbreviated as type 1) in which edge-added edge enhancement is selected in the image, edge enhancement in which the edge-added edge enhancement is selected in the foreground area image, and transient enhancement edge enhancement (type 2 in the distant view area image) ), Means.

【0010】これら輪郭強調の処理概要を図13に示
す。同図(a)はのエッジ付加輪郭強調の場合で、輪郭
強調は近景領域ではより強く、遠景領域ではやや弱く行
う。同図(b)はのトランジェント改善輪郭強調の場合
で、トランジェントの勾配は近景領域ではより大きく、
遠景領域ではやや小さく行う。また、同図(c)はのタ
イプ1の輪郭強調の場合で、近景領域ではトランジェン
ト改善輪郭強調の特性、遠景領域ではエッジ付加輪郭強
調の特性で行う。なお、図には明示してないが、のタ
イプ2の輪郭強調の場合は、近景領域ではエッジ付加輪
郭強調の特性、遠景領域ではトランジェント改善輪郭強
調の特性で行う。そして、近景領域と遠景領域とで強調
の特性を変化させる適応的なこれらの輪郭強調の手段に
より、遠近感を損なうことなく輪郭強調が可能になる。
FIG. 13 shows an outline of the outline emphasis processing. FIG. 9A shows the case of edge addition edge enhancement, in which edge enhancement is performed more strongly in the near view area and slightly weaker in the far view area. FIG. 11B shows the case of the transient enhancement contour enhancement, in which the gradient of the transient is larger in the foreground area.
In a distant view area, it is performed slightly smaller. FIG. 9C shows the case of type 1 contour enhancement, which is performed with the characteristic of transient improvement contour enhancement in the near view area and the edge added contour enhancement property in the distant view area. Although not explicitly shown in the figure, in the case of type 2 contour emphasis, the edge addition contour emphasis characteristic is used in the near view area, and the transient improvement contour emphasis property is used in the distant view area. Then, these adaptive contour enhancement means for changing the characteristics of enhancement between the near view area and the distant view area enable the contour enhancement without impairing the perspective.

【0011】また、エッジ付加輪郭強調においては、エ
ッジ付加信号は画像の2次微分信号をもとに生成するリ
ニア処理と、この2次微分信号に対して信号レベルが正
の領域では信号レベルをそのまま維持し、信号レベルが
負の領域では信号レベルを数倍程度伸張すた信号で生成
するノンリニア処理とを採用する。このノンリニア処理
では、黒締まりの良好な輪郭強調が可能となる。
In the edge-added contour enhancement, the edge-added signal is linearly processed based on a second derivative signal of the image, and the signal level is increased in a region where the signal level is positive with respect to the second derivative signal. In this case, non-linear processing for generating a signal obtained by extending the signal level by several times in a region where the signal level is negative is adopted. In this non-linear processing, it is possible to enhance the outline with good black tightness.

【0012】また、画像信号としては、輝度信号あるい
は3原色のRGB信号を採用する。
As an image signal, a luminance signal or RGB signals of three primary colors are employed.

【0013】[0013]

【発明の実施の形態】本発明の第1の実施例について、
図1に示すブロック構成図で説明する。本実施例は、画
像信号が輝度信号で、エッジ付加輪郭強調による輪郭強
調を行うに好適なものである。図中の1は微分回路、2
は遠近検出部、3は係数加重部、4は遅延部、5は加算
部である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described.
This will be described with reference to the block diagram shown in FIG. This embodiment is suitable for performing edge enhancement by edge-added edge enhancement when the image signal is a luminance signal. 1 in the figure is a differentiation circuit, 2
Denotes a perspective detection unit, 3 denotes a coefficient weighting unit, 4 denotes a delay unit, and 5 denotes an addition unit.

【0014】輝度信号Yの一方は、微分回路1に入力
し、その1次微分信号DY1と2次微分信号DY2とを
抽出する。この具体的な構成や動作は後述する。
One of the luminance signals Y is input to a differentiating circuit 1 to extract a primary differential signal DY1 and a secondary differential signal DY2. The specific configuration and operation will be described later.

【0015】遠近検出部2は、上述した原理に基ずいて
画像の遠近領域を検出し、エッジ付加信号の付加量を制
御する係数情報KMを出力する。この具体的な構成、動
作についても後述する。
The perspective detecting section 2 detects the perspective area of the image based on the above-described principle, and outputs coefficient information KM for controlling the amount of addition of the edge addition signal. This specific configuration and operation will also be described later.

【0016】係数加重部3は、2次微分信号に係数情報
KMで定まる係数値を乗算する処理を行う。そして、画
像の近景領域では付加量が多く、遠景領域では付加量が
少ない特性のエッジ付加信号EGを生成する。この具体
的な構成についても後述する。
The coefficient weighting section 3 performs a process of multiplying the second derivative signal by a coefficient value determined by coefficient information KM. Then, an edge addition signal EG having a characteristic that the amount of addition is large in the near-view region of the image and small in the distant-view region is generated. This specific configuration will also be described later.

【0017】遅延部4で時間遅延を調整した信号Y'
は、加算部5でエッジ付加信号EGを加算し、その出力
に輪郭強調を行った輝度信号YEを得る。
The signal Y 'whose time delay has been adjusted by the delay unit 4
Adds the edge addition signal EG in the addition unit 5 and obtains a luminance signal YE obtained by performing edge enhancement on the output.

【0018】図2は、微分回路の一構成例を示す。図中
の6は1画素遅延部、7は係数加算部、8は減算部、9
は加算部である。
FIG. 2 shows an example of the configuration of the differentiating circuit. In the figure, 6 is a one-pixel delay unit, 7 is a coefficient addition unit, 8 is a subtraction unit, 9
Is an adder.

【0019】入力輝度信号Yと1画素遅延部6で1画素
分遅延させた信号S1,S2は、係数加算部7でそれぞ
れ係数値−1/4,1/2,−1/4を加重し、その各
出力を加算部9で加算し、その出力に2次微分信号DY
2を得る。一方、減算部8では、信号S1とS2との減
算処理を行い、その出力に1次微分信号DY1を得る。
The input luminance signal Y and the signals S1 and S2 delayed by one pixel in the one-pixel delay unit 6 are weighted by coefficient addition units 7 with coefficient values of − /, 2 ,, and − /, respectively. , And their outputs are added by an adder 9, and the output is added to the second derivative signal DY.
Get 2. On the other hand, the subtraction unit 8 performs a subtraction process on the signals S1 and S2, and obtains a primary differential signal DY1 at an output thereof.

【0020】図3は、遠近検出部の一構成例とその動作
を示す。同図(a)の10は絶対値量子化部、11は2値
化部、12は判定部である。1次微分信号DY1と2次
微分信号DY2は、絶対値量子化部10で信号の正値絶
対値化と所定の量子化特性による量子化を行い、量子化
信号S3とS5を出力する。量子化信号S3は、2値化
部11で設定値以上は1、未満は0の2値量子化処理を
行い、2値信号S4を出力する。信号S4が1の領域が
画像の輪郭部領域に対応する。
FIG. 3 shows an example of the configuration of the perspective detection unit and its operation. In FIG. 10A, reference numeral 10 denotes an absolute value quantization unit, 11 denotes a binarization unit, and 12 denotes a determination unit. The primary differential signal DY1 and the secondary differential signal DY2 are subjected to absolute value quantization of the signal by the absolute value quantization unit 10 and quantization by a predetermined quantization characteristic, and output quantized signals S3 and S5. The quantized signal S3 is subjected to a binary quantization process in which a value equal to or larger than a set value is 1 and a value smaller than the set value is 0 in the binarization unit 11, and a binary signal S4 is output. The area where the signal S4 is 1 corresponds to the contour area of the image.

【0021】判定部12は、信号S4が1の領域では同
図(b)に示す遠近領域の判定処理を行う。すなわち、信
号S5の信号レベルが域値THを越える時は近景領域と
判定し、従来例の値KSより値の大きな係数K1を指定
する係数情報KMを出力する。一方、信号S5の信号レ
ベルが域値TH未満の時は遠景領域と判定し、従来例の
値KSより値の小さな係数K2を指定する係数情報KM
を出力する。なお、従来例では、信号S5の信号レベル
には無関係に一定値KSを指定していることになる。こ
のため、輪郭強調によって遠近感が損なわれる現象が発
生する。
In the area where the signal S4 is 1, the judging section 12 performs a judgment processing of a far / far area shown in FIG. That is, when the signal level of the signal S5 exceeds the threshold value TH, it is determined to be a foreground area, and coefficient information KM designating a coefficient K1 having a larger value than the value KS of the conventional example is output. On the other hand, when the signal level of the signal S5 is less than the threshold value TH, it is determined to be a distant view area, and the coefficient information KM for specifying a coefficient K2 having a smaller value than the value KS of the conventional example
Is output. In the conventional example, the fixed value KS is specified regardless of the signal level of the signal S5. For this reason, a phenomenon occurs in which the perspective is impaired by contour enhancement.

【0022】また、信号S4が0の領域では係数値が0
を指定する係数情報KMを出力する。この結果、輪郭強
調の信号処理は画像の輪郭部に限定され、画像信号に含
まれるノイズなどの影響による画質劣化を回避すること
ができる。
In the area where the signal S4 is 0, the coefficient value is 0.
Is output. As a result, the signal processing of the contour enhancement is limited to the contour part of the image, and the deterioration of the image quality due to the influence of noise or the like included in the image signal can be avoided.

【0023】図4は、係数加重部の一構成例を示す。同
図(a)の13はROM回路で、テ−ブルルックアップで
係数加重を実現する。すなわち、複数種類の係数値0,
K1,K2に対応するテ−ブルを備え、係数情報KMで
対応するテ−ブルを選択し、このテ−ブルで入力信号D
Y2に対して係数加重した結果の信号を出力する。
FIG. 4 shows an example of the configuration of the coefficient weighting section. 13A is a ROM circuit which realizes coefficient weighting by table lookup. That is, a plurality of types of coefficient values 0,
A table corresponding to K1 and K2 is provided, and the corresponding table is selected by the coefficient information KM, and the input signal D is selected by this table.
A signal resulting from coefficient weighting of Y2 is output.

【0024】同図(b)は、この係数加重演算の入出力特
性例である。リニア処理では、係数情報に応じて、入力
信号Xに対して近景領域では実線に示す特性(出力Y=
K1・X)、遠景領域では点線に示す特性(出力Y=K
2・X)で出力信号を得る。一方、ノンリニア処理で
は、入力信号Xが負の領域では、直線の勾配が数倍大き
い特性(例えば、正の領域がY=K1・Xの特性では、
負の領域ではY=3K1・Xの特性)で出力信号を得る
ことで、信号レベルが負の領域では信号レベルを数倍程
度伸張するノンリニア処理を簡単に実現する。よって、
ROM回路では同図(b)の入出力特性に従ったテ−ブル
を用意すれば良い。
FIG. 3B shows an example of input / output characteristics of the coefficient weighting operation. In the linear processing, a characteristic indicated by a solid line (output Y =
K1 · X), the characteristic indicated by the dotted line in the distant view area (output Y = K
2 · X) to obtain an output signal. On the other hand, in the non-linear processing, in the region where the input signal X is negative, the characteristic of the gradient of the straight line is several times larger (for example, in the characteristic of Y = K1 · X in the positive region,
By obtaining an output signal with the characteristic of Y = 3K1.X in the negative region, nonlinear processing of extending the signal level by several times in the region where the signal level is negative can be easily realized. Therefore,
In the ROM circuit, a table according to the input / output characteristics shown in FIG.

【0025】以上に述べた様に、本実施例によれば、画
像の遠近感を損なうことなく輪郭強調を行う回路が実現
できる。
As described above, according to the present embodiment, it is possible to realize a circuit for performing edge enhancement without impairing the perspective of an image.

【0026】次に、本発明の第2の実施例について、図
5に示すブロック構成図で説明する。本実施例は、輪郭
強調の信号処理を水平方向と垂直方向の双方に行うに好
適なものである。同図の1は微分回路、3は係数加重
部、4は遅延部、5は加算部、14は垂直微分回路、1
5は遠近検出部である。
Next, a second embodiment of the present invention will be described with reference to the block diagram shown in FIG. This embodiment is suitable for performing the signal processing of the edge enhancement in both the horizontal direction and the vertical direction. 1 is a differentiation circuit, 3 is a coefficient weighting section, 4 is a delay section, 5 is an addition section, 14 is a vertical differentiation circuit, 1
Reference numeral 5 denotes a perspective detection unit.

【0027】垂直微分回路14は、垂直方向の1次微分
信号HDY1と2次微分信号HDY2とを抽出するもの
で、その構成は、図2の1画素遅延部6を1ライン遅延
部で置き換えることで実現する。
The vertical differentiating circuit 14 extracts the primary differential signal HDY1 and the secondary differential signal HDY2 in the vertical direction. The vertical differentiating circuit 14 replaces the one-pixel delay unit 6 of FIG. 2 with a one-line delay unit. Is realized.

【0028】また、遠近検出部15は、水平方向の1次
微分信号DY1と2次微分信号DY2に、さらに垂直方
向の1次微分信号HDY1と2次微分信号HDY2とを
用いて、前述した原理に基ずき、画像の近景領域と遠景
領域の検出を行う。
The distance detecting section 15 uses the horizontal primary differential signal DY1 and secondary differential signal DY2 and the vertical primary differential signal HDY1 and secondary differential signal HDY2 to perform the above-described principle. , A near-view area and a distant-view area of the image are detected.

【0029】係数加重部3は、この出力の係数情報KM
に従って、近景領域では係数値K1、遠景領域では係数
値K2を加重し、水平方向のエッジ付加信号EGと垂直
方向のエッジ付加信号HEGを生成する。
The coefficient weighting section 3 outputs the output coefficient information KM
Accordingly, the coefficient value K1 is weighted in the near view area and the coefficient value K2 is weighted in the distant view area to generate the horizontal edge addition signal EG and the vertical edge addition signal HEG.

【0030】加算部5は、遅延部4の出力信号Y'にこ
れらの信号EG,HEGを加算して、その出力に水平、
垂直方向の輪郭強調を行った輝度信号YEを得る。
The adder 5 adds these signals EG and HEG to the output signal Y 'of the delay unit 4 and outputs the horizontal and horizontal signals.
A luminance signal YE in which vertical contour enhancement has been performed is obtained.

【0031】なお、各ブロックは第1の実施例と同様の
構成で実現できるため、説明は省略する。
Since each block can be realized by the same configuration as in the first embodiment, the description is omitted.

【0032】以上に述べた様に、本実施例によれば、画
像の遠近感を損なうことなく水平方向と垂直方向の輪郭
強調を行う回路が実現できる。
As described above, according to the present embodiment, it is possible to realize a circuit that enhances the contours in the horizontal and vertical directions without impairing the perspective of the image.

【0033】次に、本発明の第3の実施例について、図
6に示すブロック構成図で説明する。本実施例は、画像
信号が3原色RGB信号で、エッジ付加輪郭強調による
輪郭強調を行うに好適なものである。図中の1は微分回
路、2は遠近検出部、3は係数加重部、4は遅延部、5
は加算部である。
Next, a third embodiment of the present invention will be described with reference to a block diagram shown in FIG. This embodiment is suitable for performing edge enhancement by edge-added edge enhancement when the image signal is a three primary color RGB signal. In the figure, 1 is a differentiating circuit, 2 is a perspective detecting section, 3 is a coefficient weighting section, 4 is a delay section, 5
Is an adder.

【0034】3原色信号のG信号Gの一方は、微分回路
1に入力し、その1次微分信号DG1と2次微分信号D
G2とを抽出する。
One of the G signals G of the three primary color signals is input to a differentiating circuit 1, and its primary differential signal DG1 and secondary differential signal D
G2 is extracted.

【0035】遠近検出部2は、前述した原理に基ずいて
画像の遠近領域を検出し、エッジ付加信号の付加量を制
御する係数情報KMを出力する。
The perspective detection section 2 detects the perspective area of the image based on the above-described principle, and outputs coefficient information KM for controlling the amount of addition of the edge addition signal.

【0036】係数加重部3は、2次微分信号DG2に係
数情報KMで定まる係数値を乗算する処理を行う。そし
て、画像の近景領域では付加量が多く、遠景領域では付
加量が少ない特性のエッジ付加信号EGGを生成する。
The coefficient weighting section 3 multiplies the second derivative signal DG2 by a coefficient value determined by the coefficient information KM. Then, the edge addition signal EGG having the characteristic that the amount of addition is large in the near view area of the image and small in the distant view area is generated.

【0037】遅延部4で時間遅延を調整した信号R',
G',B'は、加算部5でエッジ付加信号EGGを加算
し、その出力に輪郭強調を行った3原色信号RE,G
E,BEを得る。
The signals R ', whose time delays have been adjusted by the delay unit 4,
The three primary color signals RE, G obtained by adding the edge-added signal EGG in the adder 5 and performing edge enhancement on the output of the adder 5 are represented by G ′ and B ′.
Get E, BE.

【0038】なお、各部のブロックは第1の実施例と同
様の構成であるので説明は省略する。
The blocks of each section have the same configuration as that of the first embodiment, and a description thereof will be omitted.

【0039】以上に述べた様に、本実施例によれば、画
像の遠近感を損なうことなく水平方向の輪郭強調を行う
回路が実現できる。また、第2の実施例と同様な構成を
行うことで水平方向と垂直方向の輪郭強調を実現できる
ことは明らかである。なお、本実施例では、G信号のエ
ッジ付加信号をR信号とB信号にも用いるアウト・オブ・
グリ−ン方法の場合を示したが、RGB信号それぞれ独
立に輪郭強調処理を行う構成で実現可能なことは明かで
ある。
As described above, according to the present embodiment, it is possible to realize a circuit for enhancing the outline in the horizontal direction without deteriorating the perspective of an image. Also, it is clear that by performing the same configuration as that of the second embodiment, it is possible to realize horizontal and vertical contour enhancement. In this embodiment, the edge-added signal of the G signal is also used for the R signal and the B signal.
Although the case of the green method has been described, it is apparent that the method can be realized by a configuration in which the outline enhancement processing is performed independently for each of the RGB signals.

【0040】次に、本発明の第4の実施例について、図
7に示すブロック構成図で説明する。本実施例は、画像
信号が輝度信号で、トランジェント改善輪郭強調による
輪郭強調を行うに好適なものである。図中の1は微分回
路、2は遠近検出部、16はトランジェント改善部であ
る。
Next, a fourth embodiment of the present invention will be described with reference to the block diagram shown in FIG. This embodiment is suitable for performing contour enhancement by transient enhancement contour enhancement when the image signal is a luminance signal. In the figure, 1 is a differentiating circuit, 2 is a distance detecting section, and 16 is a transient improving section.

【0041】輝度信号Yの一方は、微分回路1に入力
し、その1次微分信号DY1と2次微分信号DY2とを
抽出する。
One of the luminance signals Y is input to a differentiating circuit 1 to extract a primary differential signal DY1 and a secondary differential signal DY2.

【0042】遠近検出部2は、前述した原理に基ずいて
画像の遠近領域を検出し、トランジェントの勾配を制御
する係数情報KMを出力する。
The perspective detecting section 2 detects the perspective area of the image based on the principle described above, and outputs coefficient information KM for controlling the gradient of the transient.

【0043】トランジェント改善部16は、係数情報K
Mで定まる勾配係数による演算処理で補正点の信号を生
成し、その出力にトランジェント改善の輪郭強調を行っ
た信号YEを得る。
The transient improving unit 16 calculates the coefficient information K
A signal at a correction point is generated by a calculation process using a gradient coefficient determined by M, and a signal YE obtained by performing an edge enhancement for transient improvement on the output thereof is obtained.

【0044】図8は、このトランジェント改善部の動作
概略と一構成例を示す。同図(a)において、入力信号は
中心点(X1,Y1)と(X2,Y2)の点を通る点線
である。一方、中心点と補正点(X2,Y3)を通る実
線はトランジェント改善後の出力信号を示す。(X2,
Y2)の点は、勾配係数Kに従い、Y3=Y2+(K−
1)(Y2−Y1) の演算で、補正点(X2,Y3)の信
号を生成する。本実施例では、係数情報KMで、近景領
域では勾配係数Kの値を従来例より大きな値、遠景領域
では従来例より小さな値に設定する。
FIG. 8 shows an outline of the operation of the transient improvement unit and an example of the configuration. In FIG. 3A, the input signal is a dotted line passing through the center points (X1, Y1) and (X2, Y2). On the other hand, a solid line passing through the center point and the correction point (X2, Y3) indicates an output signal after the transient improvement. (X2
The point of Y2) follows the gradient coefficient K, and Y3 = Y2 + (K−
1) The signal of the correction point (X2, Y3) is generated by the calculation of (Y2-Y1). In the present embodiment, the value of the gradient coefficient K is set to a larger value in the foreground area than in the conventional example and to a smaller value in the distant view area than in the conventional example by the coefficient information KM.

【0045】同図(b)は、この演算を行う一構成例で、
6は1画素遅延部、17はMAX検出部、18はMIN
検出部、19は平均部、20は減算部、21は係数加重
部、22は加算部、23はリミッタ部である。
FIG. 4B shows an example of a configuration for performing this calculation.
6 is a one-pixel delay unit, 17 is a MAX detection unit, 18 is MIN
A detecting unit, 19 is an averaging unit, 20 is a subtracting unit, 21 is a coefficient weighting unit, 22 is an adding unit, and 23 is a limiter unit.

【0046】入力輝度信号Yと1画素遅延部6の各出力
に対し、MAX検出部17はその最大値信号MAX、M
IN検出部18はその最小値信号MINを検出する。
For the input luminance signal Y and each output of the one-pixel delay section 6, the MAX detection section 17 outputs the maximum value signals MAX, M
The IN detector 18 detects the minimum value signal MIN.

【0047】平均部19は、信号MAX,MINの平均
値を演算し、中心点(X1,Y1)のY1に相当する信
号S6を出力する。
The averaging unit 19 calculates the average value of the signals MAX and MIN, and outputs a signal S6 corresponding to Y1 at the center point (X1, Y1).

【0048】減算部20は、信号S7よりS6を減算す
る演算を行い、(Y2−Y1)に相当する信号S8を出
力する。そして、係数加重部21は、係数情報KMに応
じて係数値(K−1)を乗算する処理を行う。そして、
加算部22で信号S7に加算して、補正点(X2,Y
3)のY3に相当する信号S10を得る。なお、この信
号は、最小値信号MINと最大値信号MAXの範囲に収
まるように、リミッタ部23で信号レベルの制限を行
い、この出力にトランジェント改善による輪郭強調を行
った信号YEを得る。
The subtractor 20 performs an operation of subtracting S6 from the signal S7, and outputs a signal S8 corresponding to (Y2-Y1). Then, the coefficient weighting unit 21 performs a process of multiplying the coefficient value (K-1) according to the coefficient information KM. And
The addition unit 22 adds the correction point (X2, Y
The signal S10 corresponding to Y3 of 3) is obtained. The signal level of this signal is limited by the limiter 23 so as to fall within the range of the minimum value signal MIN and the maximum value signal MAX, and a signal YE obtained by performing contour enhancement by transient improvement on this output is obtained.

【0049】以上に述べた様に、本実施例によれば、画
像の遠近感を損なうことなく輪郭強調を行う回路が実現
できる。
As described above, according to the present embodiment, it is possible to realize a circuit for enhancing the contour without deteriorating the perspective of the image.

【0050】次に、本発明の第5の実施例について、図
9に示すブロック構成図で説明する。本実施例は、画像
信号が3原色のRGB信号で、トランジェント改善輪郭
強調による輪郭強調を行うに好適なものである。図中の
1は微分回路、2は遠近検出部、16はトランジェント
改善部である。
Next, a fifth embodiment of the present invention will be described with reference to the block diagram shown in FIG. The present embodiment is suitable for performing contour enhancement by transient improvement contour enhancement when the image signal is an RGB signal of three primary colors. In the figure, 1 is a differentiating circuit, 2 is a distance detecting section, and 16 is a transient improving section.

【0051】3原色のG信号Gの一方は、微分回路1に
入力し、その1次微分信号DG1と2次微分信号DG2
とを抽出する。
One of the three primary color G signals G is input to the differentiating circuit 1 and its primary differential signal DG1 and secondary differential signal DG2
And extract

【0052】遠近検出部2は、前述した原理に基ずいて
画像の遠近領域を検出し、トランジェントの勾配を制御
する係数情報KMを出力する。
The perspective detecting section 2 detects the perspective area of the image based on the principle described above, and outputs coefficient information KM for controlling the gradient of the transient.

【0053】トランジェント改善部16は、係数情報K
Mで定まる勾配係数による演算処理で補正点の信号を生
成し、その出力にトランジェント改善の輪郭強調を行っ
た3原色信号RE,GE,BEを得る。なお、本実施例
の各ブロックは上述の実施例と同様に構成すればよいの
で、説明は省略する。
The transient improvement section 16 calculates the coefficient information K
A signal of a correction point is generated by a calculation process using a gradient coefficient determined by M, and three primary color signals RE, GE, and BE whose output is subjected to contour enhancement for transient improvement are obtained. Note that each block of the present embodiment may be configured in the same manner as in the above-described embodiment, and a description thereof will be omitted.

【0054】以上に述べた様に、本実施例によれば、画
像の遠近感を損なうことなく輪郭強調を行う回路が実現
できる。
As described above, according to the present embodiment, it is possible to realize a circuit for performing edge enhancement without impairing the perspective of an image.

【0055】次に、本発明の第6の実施例について、図
10に示すブロック構成図で説明する。本実施例は、画
像信号が輝度信号で、トランジェント改善輪郭強調とエ
ッジ付加輪郭強調とのタイプ2による輪郭強調を行うに
好適なものである。図中の1は微分回路、2は遠近検出
部、4は遅延部、5は加算部、24はトランジェント改
善部、25は係数加重部、26は選択部である。
Next, a sixth embodiment of the present invention will be described with reference to a block diagram shown in FIG. This embodiment is suitable for performing edge enhancement by type 2 of transient enhancement edge enhancement and edge-added edge enhancement when the image signal is a luminance signal. In the figure, 1 is a differentiation circuit, 2 is a perspective detection unit, 4 is a delay unit, 5 is an addition unit, 24 is a transient improvement unit, 25 is a coefficient weighting unit, and 26 is a selection unit.

【0056】入力輝度信号Yの一方は、微分回路1に入
力し、その1次微分信号DY1と2次微分信号DY2と
を抽出する。
One of the input luminance signals Y is input to a differentiating circuit 1 to extract a primary differential signal DY1 and a secondary differential signal DY2.

【0057】遠近検出部2は、前述した原理に基ずいて
画像の遠近領域を検出し、遠景領域ではトランジェント
改善輪郭強調の信号、近景領域ではエッジ付加輪郭強調
の信号を選択するための制御信号SLを出力する。
The perspective detection section 2 detects the perspective area of the image based on the above-described principle, and controls the signal for selecting the transient improvement contour enhancement signal in the distant view area and the edge addition contour enhancement signal in the near view area. Output SL.

【0058】トランジェント改善部24は、遠景領域に
対応した従来例よりも小さい勾配係数による演算処理で
補正点の信号を生成し、その出力に遠景領域で使用する
トランジェント改善輪郭強調を行った輝度信号YTEを
得る。
The transient improving section 24 generates a signal of a correction point by a calculation process using a gradient coefficient smaller than that of the conventional example corresponding to the distant view area, and outputs a luminance signal obtained by performing a transient improvement contour emphasis used in the distant view area on its output. Get YTE.

【0059】一方、係数加重部25は、2次微分信号D
Y2に近景領域に対応した係数値K1を加重する演算を
行い、エッジ付加信号EGを生成する。
On the other hand, the coefficient weighting section 25 outputs the second derivative signal D
An operation of weighing Y2 with a coefficient value K1 corresponding to the foreground area is performed to generate an edge addition signal EG.

【0060】加算部5は、遅延部4の出力信号Y'に信
号EGを加算し、その出力に近景領域で使用するエッジ
付加輪郭強調を行った輝度信号YEEを得る。
The addition section 5 adds the signal EG to the output signal Y 'of the delay section 4 to obtain a luminance signal YEE obtained by performing an edge-added contour emphasis used in the foreground area on the output.

【0061】選択部26は、制御信号SLに応じて信号
YTEとYEEのいずれか一方の信号を選択して出力す
る。そして、この出力で近景領域はエッジ付加輪郭強
調、遠景領域はトランジェント改善輪郭強調を行った信
号YEを得る。
The selector 26 selects and outputs one of the signals YTE and YEE according to the control signal SL. With this output, a signal YE is obtained in which a near-view area is edge-added contour enhancement and a distant-view area is subjected to transient improvement contour enhancement.

【0062】なお、本実施例の各部のブロックは上述の
実施例と同様で構成できるので、説明は省略する。
The blocks of each section of the present embodiment can be configured in the same manner as in the above-described embodiment, and a description thereof will be omitted.

【0063】以上に述べた様に、本実施例によれば、画
像の遠近感を損なうことなく輪郭強調を行う回路が実現
できる。
As described above, according to the present embodiment, it is possible to realize a circuit that enhances an outline without deteriorating the perspective of an image.

【0064】次に、本発明の第7の実施例について、図
11に示すブロック構成図で説明する。本実施例は、画
像信号が輝度信号で、トランジェント改善輪郭強調とエ
ッジ付加輪郭強調とのタイプ1による輪郭強調を行うに
好適なものである。図中の1は微分回路、2は遠近検出
部、4は遅延部、5は加算部、24はトランジェント改
善部、25は係数加重部、26は選択部である。
Next, a seventh embodiment of the present invention will be described with reference to the block diagram shown in FIG. The present embodiment is suitable for performing edge enhancement by type 1 of transient improvement edge enhancement and edge-added edge enhancement when the image signal is a luminance signal. In the figure, 1 is a differentiation circuit, 2 is a perspective detection unit, 4 is a delay unit, 5 is an addition unit, 24 is a transient improvement unit, 25 is a coefficient weighting unit, and 26 is a selection unit.

【0065】入力輝度信号Yの一方は、微分回路1に入
力し、その1次微分信号DY1と2次微分信号DY2と
を抽出する。
One of the input luminance signals Y is input to a differentiating circuit 1 to extract a primary differential signal DY1 and a secondary differential signal DY2.

【0066】遠近検出部2は、前述した原理に基ずいて
画像の遠近領域を検出し、近景領域ではトランジェント
改善輪郭強調の信号、遠景領域ではエッジ付加輪郭強調
の信号を選択するための制御信号SLを出力する。
The perspective detection unit 2 detects the perspective area of the image based on the above-described principle, and controls the signal for selecting the transient enhancement contour enhancement signal in the foreground area and the edge addition contour enhancement signal in the distant view area. Output SL.

【0067】トランジェント改善部24は、近景領域に
対応した従来例よりも大きい勾配係数による演算処理で
補正点の信号を生成し、その出力に近景領域で使用する
トランジェント改善輪郭強調を行った輝度信号YTEを
得る。
The transient improving unit 24 generates a signal of a correction point by a calculation process using a gradient coefficient larger than that of the conventional example corresponding to the foreground area, and outputs a luminance signal obtained by performing a transient improvement contour enhancement for use in the foreground area. Get YTE.

【0068】一方、係数加重部25は、2次微分信号D
Y2に遠景領域に対応した係数値K2を加重する演算を
行い、エッジ付加信号EGを生成する。
On the other hand, the coefficient weighting section 25 outputs the second derivative signal D
An operation of weighting Y2 with a coefficient value K2 corresponding to a distant view area is performed to generate an edge addition signal EG.

【0069】加算部5は、遅延部4の出力信号Y'に信
号EGを加算し、その出力に遠景領域で使用するエッジ
付加輪郭強調を行った輝度信号YEEを得る。
The addition section 5 adds the signal EG to the output signal Y 'of the delay section 4 to obtain a luminance signal YEE obtained by performing an edge-added contour emphasis used in a distant view area on the output.

【0070】選択部26は、制御信号SLに応じて信号
YTEとYEEのいずれか一方の信号を選択して出力す
る。そして、この出力で遠景領域はエッジ付加輪郭強
調、近景領域はトランジェント改善輪郭強調を行った信
号YEを得る。
Selector 26 selects and outputs one of signals YTE and YEE according to control signal SL. With this output, a signal YE is obtained in which a distant view area is edge-added contour enhancement and a near view area is subjected to transient improvement contour enhancement.

【0071】なお、本実施例の各部のブロックは上述の
実施例と同様で構成できるので、説明は省略する。
The blocks of each part of the present embodiment can be configured in the same manner as in the above-described embodiment, and the description is omitted.

【0072】以上に述べた様に、本実施例によれば、画
像の遠近感を損なうことなく輪郭強調を行う回路が実現
できる。
As described above, according to the present embodiment, it is possible to realize a circuit that enhances an outline without deteriorating the perspective of an image.

【0073】[0073]

【発明の効果】自然感を損なうことなく画像の遠近感強
調が可能になり、テレビ画像の高画質化に顕著な改善効
果を得ることができる。
According to the present invention, it is possible to enhance the perspective of an image without deteriorating the natural feeling, and it is possible to obtain a remarkable effect of improving the image quality of a television image.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例のブロック構成図。FIG. 1 is a block diagram of a first embodiment of the present invention.

【図2】微分回路の一構成例図。FIG. 2 is a diagram illustrating a configuration example of a differentiating circuit;

【図3】遠近検出部の一構成例図。FIG. 3 is a diagram illustrating a configuration example of a perspective detection unit.

【図4】係数加重部の一構成例図。FIG. 4 is a diagram illustrating a configuration example of a coefficient weighting unit;

【図5】本発明の第2の実施例のブロック構成図。FIG. 5 is a block diagram of a second embodiment of the present invention.

【図6】本発明の第3の実施例のブロック構成図。FIG. 6 is a block diagram of a third embodiment of the present invention.

【図7】本発明の第4の実施例のブロック構成図。FIG. 7 is a block diagram of a fourth embodiment of the present invention.

【図8】トランジェント改善部の一構成例図。FIG. 8 is a diagram illustrating a configuration example of a transient improvement unit.

【図9】本発明の第5の実施例のブロック構成図。FIG. 9 is a block diagram of a fifth embodiment of the present invention.

【図10】本発明の第6の実施例のブロック構成図。FIG. 10 is a block diagram of a sixth embodiment of the present invention.

【図11】本発明の第7の実施例のブロック構成図。FIG. 11 is a block diagram of a seventh embodiment of the present invention.

【図12】本発明の遠近領域検出の原理概略図。FIG. 12 is a schematic diagram showing the principle of detecting a near-far area according to the present invention.

【図13】本発明における輪郭強調の処理概要図。FIG. 13 is a schematic diagram of an outline emphasis process according to the present invention.

【符号の説明】[Explanation of symbols]

1…微分回路、2,15…遠近検出部、3,21,25…
係数加重部、4…遅延部、5,9,22…加算部、6…1
画素遅延部、7…係数加算部、8,20…減算部、10
…絶対値量子化部、11…2値化部、12…判定部、1
3…ROM回路、14…垂直微分回路、16,24…ト
ランジェント改善部、17…MAX検出部、18…MI
N検出部、19…平均部、23…リミッタ部、26…選
択部。
1: Differentiating circuit, 2,15: Perspective detector, 3, 21, 25 ...
Coefficient weighting section, 4 delay section, 5, 9, 22 addition section, 6 1
Pixel delay unit, 7 ... coefficient addition unit, 8,20 ... subtraction unit, 10
... Absolute value quantizer, 11 ... Binarizer, 12 ... Determiner, 1
3: ROM circuit, 14: vertical differentiation circuit, 16, 24: transient improvement section, 17: MAX detection section, 18: MI
N detection unit, 19: average unit, 23: limiter unit, 26: selection unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 昇 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所マルチメディアシステム 開発本部内 (72)発明者 杉山 雅人 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所マルチメディアシステム 開発本部内 (72)発明者 寺西 謙太郎 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所マルチメディアシステム 開発本部内 (72)発明者 西瀬戸 孝明 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所映像情報メディア事業部 内 (72)発明者 高橋 聡 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所映像情報メディア事業部 内 (72)発明者 笠原 康弘 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所映像情報メディア事業部 内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Noboru Nojima 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside the multimedia system development headquarters of Hitachi, Ltd. 292 Hitachi Multimedia System Development Division, Hitachi, Ltd. (72) Inventor Kentaro Teranishi 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture, Japan Multimedia System Development Division Hitachi, Ltd. (72) Takaaki Nishiseto, Kanagawa 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Ltd.Video and Media Division, Hitachi, Ltd. (72) Inventor Satoshi Takahashi 292, Video and Media Division, Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa Prefecture (72) Inventor Yasuhiro Kasahara Totsuka, Yokohama City, Kanagawa Prefecture Yoshida-cho 292 address Co., Ltd., Hitachi video information media business unit

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】画像信号の遠近感を強調する遠近感強調回
路であって、画像信号の1次微分信号、あるいは2次微
分信号の信号レベルの大きな領域は画像の近景領域、該
信号レベルの小さな領域は画像の遠景領域として検出す
る画像の遠近検出の手段と、画像の輪郭部にエッジ付加
信号を加算して輪郭強調を行うエッジ付加輪郭強調の手
段を有し、上記検出した近景領域の画像では上記エッジ
付加信号の付加量を多く、遠景領域の画像では上記エッ
ジ付加信号の付加量を少なく設定し、エッジ付加信号の
付加量を画像の遠近領域に応じて適応的に制御するエッ
ジ付加輪郭強調を行うことを特徴とする画像信号の遠近
感強調回路。
1. A perspective emphasis circuit for emphasizing perspective of an image signal, wherein an area having a large signal level of a first-order differential signal or a second-order differential signal of an image signal is a near-view area of an image, The small area has means for detecting the perspective of the image detected as a distant view area of the image, and means for adding an edge addition signal to the contour of the image to perform edge enhancement to enhance the edge. In the image, the addition amount of the edge addition signal is set to be large, and in the image of the distant view area, the addition amount of the edge addition signal is set to be small, and the addition amount of the edge addition signal is adaptively controlled according to the perspective area of the image. A perspective emphasis circuit for an image signal, which performs contour emphasis.
【請求項2】画像信号の遠近感を強調する遠近感強調回
路であって、画像信号の1次微分信号、あるいは2次微
分信号の信号レベルの大きな領域は画像の近景領域、該
信号レベルの小さな領域は画像の遠景領域として検出す
る画像の遠近検出の手段と、画像の輪郭部でのトランジ
ェントを急峻にして輪郭強調を行うトランジェント改善
輪郭強調の手段を有し、上記検出した近景領域の画像で
は上記トランジェントの勾配を大きく、遠景領域の画像
では上記トランジェントの勾配を小さく設定し、トラン
ジェントの勾配を画像の遠近領域に応じて適応的に制御
するトランジェント改善輪郭強調を行うことを特徴とす
る画像信号の遠近感強調回路。
2. A perspective emphasis circuit for emphasizing the perspective of an image signal, wherein a region having a large signal level of a primary differential signal or a secondary differential signal of an image signal is a near-view region of an image, The small area has a means for detecting the perspective of the image detected as a distant view area of the image, and a means for improving the contour by sharpening the transient at the contour of the image to enhance the contour. In the image, the gradient of the transient is set to be large, and the gradient of the transient is set to be small in the image of the distant view area, and the transient improvement contour enhancement that adaptively controls the gradient of the transient according to the perspective area of the image is performed. Signal perspective emphasis circuit.
【請求項3】画像信号の遠近感を強調する遠近感強調回
路であって、画像信号の1次微分信号、あるいは2次微
分信号の信号レベルの大きな領域は画像の近景領域、該
信号レベルの小さな領域は画像の遠景領域として検出す
る画像の遠近検出の手段と、画像の輪郭部にエッジ付加
信号を加算して輪郭強調を行うエッジ付加輪郭強調の手
段と、画像の輪郭部でのトランジェントを急峻にして輪
郭強調を行うトランジェント改善輪郭強調の手段を有
し、上記検出した近景領域の画像では上記エッジ付加輪
郭強調を選択し、遠景領域の画像では上記トランジェン
ト改善輪郭強調を選択して輪郭強調を行うことを特徴と
する画像信号の遠近感強調回路。
3. A perspective emphasis circuit for emphasizing the perspective of an image signal, wherein an area where a signal level of a first-order differential signal or a second-order differential signal of an image signal is large is a near-view area of an image, Means for detecting the perspective of the image to detect the small area as a distant view area of the image, Means for adding the edge addition signal to the outline of the image to enhance the outline, and Measures for the transient at the outline of the image The apparatus has a transient improvement contour enhancement means for sharpening the contour, and selects the edge-added contour enhancement for the detected near-view area image, and selects the transient improvement contour enhancement for the distant view area image. And a perspective emphasis circuit for image signals.
【請求項4】画像信号の遠近感を強調する遠近感強調回
路であって、画像信号の1次微分信号、あるいは2次微
分信号の信号レベルの大きな領域は画像の近景領域、該
信号レベルの小さな領域は画像の遠景領域として検出す
る画像の遠近検出の手段と、画像の輪郭部にエッジ付加
信号を加算して輪郭強調を行うエッジ付加輪郭強調の手
段と、画像の輪郭部でのトランジェントを急峻にして輪
郭強調を行うトランジェント改善輪郭強調の手段を有
し、上記検出した近景領域の画像では上記トランジェン
ト改善輪郭強調を選択し、遠景領域の画像では上記エッ
ジ付加輪郭強調を選択して輪郭強調を行うことを特徴と
する画像信号の遠近感強調回路。
4. A perspective emphasis circuit for emphasizing the perspective of an image signal, wherein a region having a large signal level of a primary differential signal or a secondary differential signal of an image signal is a near-view region of an image, Means for detecting the perspective of the image to detect the small area as a distant view area of the image, Means for adding the edge addition signal to the outline of the image to enhance the outline, and Measures for the transient at the outline of the image The apparatus has a transient improvement contour enhancement means for sharpening the contour, and selects the transient improvement contour enhancement in the detected near-view area image, and selects the edge-added contour enhancement in the distant view area image. And a perspective emphasis circuit for image signals.
【請求項5】前記エッジ付加輪郭強調の手段において
は、エッジ付加信号は画像の2次微分信号をもとに生成
することを特徴とする請求項1項、3項、4項に記載の
画像信号の遠近感強調回路。
5. An image according to claim 1, wherein said edge-added contour enhancing means generates an edge-added signal based on a second derivative signal of the image. Signal perspective emphasis circuit.
【請求項6】前記エッジ付加輪郭強調の手段において
は、画像の2次微分信号を抽出し、該抽出した2次微分
信号に対して信号レベルが正の領域では信号レベルをそ
のまま維持し、信号レベルが負の領域では信号レベルを
数倍程度伸張するノンリニア処理を行い、該ノンリニア
処理の出力信号をもとにエッジ付加信号を生成すること
を特徴とする請求項1項、3項、4項に記載の画像信号
の遠近感強調回路。
6. The edge-added contour enhancing means extracts a second derivative signal of an image, and maintains a signal level as it is in a region where the signal level is positive with respect to the extracted second derivative signal. 5. The method according to claim 1, wherein in a region where the level is negative, non-linear processing for extending the signal level by several times is performed, and an edge-added signal is generated based on an output signal of the non-linear processing. 2. The perspective emphasis circuit for image signals according to 1.
【請求項7】請求項1項乃至6項に記載の画像信号と
は、輝度信号であることを特徴とする画像信号の遠近感
強調回路。
7. A perspective enhancement circuit for an image signal, wherein the image signal according to claim 1 is a luminance signal.
【請求項8】前記画像信号とは、3原色のRGB信号で
あることを特徴とする請求項1項乃至6項に記載の画像
信号の遠近感強調回路。
8. The circuit according to claim 1, wherein said image signal is an RGB signal of three primary colors.
JP8280547A 1996-10-23 1996-10-23 Respective enhancing circuit for image signal Pending JPH10126708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8280547A JPH10126708A (en) 1996-10-23 1996-10-23 Respective enhancing circuit for image signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8280547A JPH10126708A (en) 1996-10-23 1996-10-23 Respective enhancing circuit for image signal

Publications (1)

Publication Number Publication Date
JPH10126708A true JPH10126708A (en) 1998-05-15

Family

ID=17626589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8280547A Pending JPH10126708A (en) 1996-10-23 1996-10-23 Respective enhancing circuit for image signal

Country Status (1)

Country Link
JP (1) JPH10126708A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7869649B2 (en) 2006-05-08 2011-01-11 Panasonic Corporation Image processing device, image processing method, program, storage medium and integrated circuit
US8131098B2 (en) 2007-07-06 2012-03-06 Panasonic Corporation Image processing device, image processing method, image processing system, program, storage medium, and integrated circuit
US9317957B2 (en) 2012-01-26 2016-04-19 Sony Corporation Enhancement of stereoscopic effect of an image through use of modified depth information

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7869649B2 (en) 2006-05-08 2011-01-11 Panasonic Corporation Image processing device, image processing method, program, storage medium and integrated circuit
US8131098B2 (en) 2007-07-06 2012-03-06 Panasonic Corporation Image processing device, image processing method, image processing system, program, storage medium, and integrated circuit
US9317957B2 (en) 2012-01-26 2016-04-19 Sony Corporation Enhancement of stereoscopic effect of an image through use of modified depth information

Similar Documents

Publication Publication Date Title
JP3099354B2 (en) Image processing apparatus and digital color copying machine using the same
JP3399486B2 (en) Color image processing apparatus and method
US20020114513A1 (en) Color image processing device and color image processing method
JPH06197216A (en) Texture soil eliminating method
KR20020008179A (en) System and method for improving the sharpness of a video image
JPH11149556A (en) Method for improving resolution of color text
JP2002159015A (en) Horizontal profile signal generating circuit for single- plate type color camera
JP2002077623A (en) Image processing apparatus
JP2906975B2 (en) Color image processing method and apparatus
US8305499B2 (en) Image processing circuit and method for image processing
JPH10126708A (en) Respective enhancing circuit for image signal
JP2003348379A (en) Image display device and image processing apparatus, and image processing method
JP4633437B2 (en) Time recursive color signal noise reduction method and apparatus
JP2000333014A (en) Image processing unit, image processing method, and computer-readable storage medium storing image processing procedure
Bonnier et al. Spatial and color adaptive gamut mapping: A mathematical framework and two new algorithms
US7012719B1 (en) Sign sensitive aperture correction system and method
JPH0944648A (en) Image processing device and method therefor
JP3907871B2 (en) Color image processing device
JPH0344172A (en) Contour correction circuit
JP2000138949A (en) Image information conversion device and conversion method
JP3105689B2 (en) Image processing apparatus and method
JP3494888B2 (en) Contour correction circuit
JP2000357237A (en) Image processor, image reading device and image forming device mounted with the processor, image processing method, and computer-readable storage medium stored with image processing procedure
KR20030090143A (en) Apparatus and method for emphasizing an outline of video signal using luminance and color difference signal
JPH07135584A (en) Video signal processing device