JPH10120795A - Measurement of gelation degree of poly(vinyl chloride) and device therefor - Google Patents

Measurement of gelation degree of poly(vinyl chloride) and device therefor

Info

Publication number
JPH10120795A
JPH10120795A JP27471096A JP27471096A JPH10120795A JP H10120795 A JPH10120795 A JP H10120795A JP 27471096 A JP27471096 A JP 27471096A JP 27471096 A JP27471096 A JP 27471096A JP H10120795 A JPH10120795 A JP H10120795A
Authority
JP
Japan
Prior art keywords
polyvinyl chloride
gelation
degree
light
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27471096A
Other languages
Japanese (ja)
Other versions
JP3600929B2 (en
Inventor
Satoshi Yukioka
聡 雪岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP27471096A priority Critical patent/JP3600929B2/en
Publication of JPH10120795A publication Critical patent/JPH10120795A/en
Application granted granted Critical
Publication of JP3600929B2 publication Critical patent/JP3600929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable simple, prompt. reproducible and highly reliable measurement of gelation degree of the subject polymer by determining the angle distribution dependency of scattered light intensity in the light-scattering method. SOLUTION: After a poly(vinyl chloride) molded product (Z) is irradiated with light, the angle distribution dependency of intensity of the light scattered by Z is measured to determine the gelation degree. In an example, Z is irradiated with a monochromic visible light to obtain the dependency on the angle (θ) of the intensity (I) of scattered light from the intercept (A) and the gradient (B), when the square roots of I are plotted to the square of (q) determined from the relationship of the formula: q=(4π/λ)sin(θ/2) where (q) is an angular variable; λ is wavelength), whereby the average particle diameter [d in μm] of the remaining particles in the Z is known from the formula: d=C(A/B)<1/2> (C is the unit constant) and d=1 is defined as G (gelation degree) = 0% and d=0.1 is defined as G=100% and G of Z is obtained from the relation of the formula: G=(1-d)×100.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光散乱法を利用し
てポリ塩化ビニルからの散乱光強度の角度分布依存性よ
り、簡便かつ迅速にポリ塩化ビニルのゲル化度を測定す
る方法及び測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a method for easily and quickly measuring the gelation degree of polyvinyl chloride based on the angular distribution dependence of the intensity of scattered light from polyvinyl chloride using a light scattering method. It concerns the device.

【0002】[0002]

【従来の技術】ポリ塩化ビニルの中でも、特に懸濁重合
法で調製されたポリ塩化ビニルは、その粒子がグレイン
と呼ばれる100μm〜300μmの最外郭の粒子から
順次サブグレイン、アグロメレート、一次粒子、ドメイ
ン、ミクロドメインまで階層的な粒子構造で構成されて
おり、成形加工に供した場合、成形加工時の加工機によ
る熱履歴と剪断力履歴により随時微細化していく。しか
しながら、ポリ塩化ビニルの最終製品成形体中には成形
加工時に崩壊微細化しきれなかった数μm〜0.05μ
m程度の粒子が残存し、このような残存粒子は構造欠陥
として作用するため成形品の材料強度特性などの物性に
悪影響をおよぼすおそれを有するものである。
2. Description of the Related Art Among polyvinyl chlorides, in particular, polyvinyl chlorides prepared by a suspension polymerization method are composed of sub-grains, agglomerates, primary particles, domains in the order of 100 μm to 300 μm outermost particles called grains. , And have a hierarchical particle structure up to the micro domain, and when subjected to molding, the particles are refined as needed by the history of heat and the history of shearing force of the processing machine during molding. However, in the final molded product of polyvinyl chloride, several μm to 0.05 μm which could not be collapsed and refined at the time of molding were formed.
Particles of the order of m remain, and such remaining particles act as structural defects, which may adversely affect physical properties such as material strength characteristics of the molded article.

【0003】従来、ポリ塩化ビニル成形体のゲル化度を
評価する方法としては、1)成形加工中のポリ塩化ビニ
ルコンパウンドを手で触り、その弾力性の程度でゲル化
度を経験的に評価する方法,2)成形体をアセトン等の
溶剤に浸積しその成形体の形状の保持具合で判断する方
法,3)DSC法により成形加工時に融解再結晶化した
ポリ塩化ビニルの微結晶の融解熱量と未融解微結晶の融
解熱量の相対量比からゲル化度を算出する方法などが知
られている。
Conventionally, methods for evaluating the degree of gelation of a molded article of polyvinyl chloride include the following. 1) The degree of gelation is empirically evaluated based on the degree of elasticity of the polyvinyl chloride compound during molding. 2) A method of immersing the molded body in a solvent such as acetone and judging the degree of shape retention of the molded body, 3) Melting of polyvinyl chloride microcrystals melted and recrystallized during molding by the DSC method There is known a method of calculating the degree of gelation from the relative amount ratio between the calorific value and the heat of fusion of unmelted microcrystals.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記
1)および2)のいずれの方法も、極めて抽象的な評価
尺度であり、作業者によって評価順位が異なるといった
問題のみならず具体的な数字として表すことができない
ため、再現性、信頼性に問題が生じていた。一方、3)
の方法は、ゲル化があまり進行していないと融解再結晶
化した微結晶量が少なすぎる。また、ゲル化が極端に進
行していると未融解の微結晶量が少な過ぎて検出できな
いといった問題が生じていた。
However, both of the above methods 1) and 2) are extremely abstract evaluation scales, and represent not only the problem that the evaluation order differs depending on the operator but also specific numbers. As a result, there has been a problem in reproducibility and reliability. 3)
In the method (1), if the gelation has not progressed much, the amount of the melted and recrystallized microcrystals is too small. In addition, there has been a problem that if gelation proceeds extremely, the amount of unmelted microcrystals is too small to be detected.

【0005】そこで、本発明の目的は、光散乱法を利用
してこのような従来の方法にかわるポリ塩化ビニルのゲ
ル化度を簡便かつ迅速に測定する測定方法及び測定装置
を提供するものである。
Accordingly, an object of the present invention is to provide a measuring method and a measuring apparatus for simply and quickly measuring the degree of gelation of polyvinyl chloride by using a light scattering method instead of such a conventional method. is there.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意検討した結果、光散乱法により求め
られる散乱光強度の角度分布依存性とゲル化度とが良く
相関していることを見い出し本発明を完成するに至っ
た。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has found that the angle distribution dependency of the scattered light intensity obtained by the light scattering method and the degree of gelation are well correlated. And completed the present invention.

【0007】即ち、本発明は、ポリ塩化ビニル成形体に
光を照射した後、ポリ塩化ビニル成形体より散乱される
光の散乱光強度の角度分布依存性により、ゲル化度を求
めることを特徴とするポリ塩化ビニルのゲル化度の測定
方法、及び、一定波長の光を発する光源、光源からの入
射光を一定波長の断続的な光としてポリ塩化ビニル成形
体に照射するためのライトチョッパー、ポリ塩化ビニル
成形体からの散乱光のうちライトチョッパーでカットさ
れたものと同一の波長成分をロックインアンプで検出す
る光散乱測定装置及び散乱光の散乱光強度の角度分布依
存性よりポリ塩化ビニルのゲル化度を求めるための演算
処理装置よりなることを特徴とするポリ塩化ビニルのゲ
ル化度の測定装置に関するものである。
That is, the present invention is characterized in that after irradiating a molded article of polyvinyl chloride with light, the degree of gelation is determined from the angle distribution dependence of the scattered light intensity of light scattered from the molded article of polyvinyl chloride. A method for measuring the degree of gelation of polyvinyl chloride, and a light source that emits light of a certain wavelength, a light chopper for irradiating incident light from the light source to the polyvinyl chloride molded article as intermittent light of a certain wavelength, A light scattering measurement device that detects the same wavelength component of the scattered light from the polyvinyl chloride molded product as that cut by the light chopper with a lock-in amplifier, and polyvinyl chloride is obtained from the angle distribution dependence of the scattered light intensity of the scattered light. The present invention relates to an apparatus for measuring the degree of gelation of polyvinyl chloride, comprising an arithmetic processing unit for determining the degree of gelation of polyvinyl chloride.

【0008】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0009】本発明におけるポリ塩化ビニルのゲル化及
びゲル化度とは、ポリ塩化ビニルを成形加工に供した際
に、成形加工による混練によりポリ塩化ビニル中の未崩
壊または未融解の残存粒子が小さく叉は少なくなってい
く過程のことをゲル化と称し、その相対的な程度のこと
をゲル化度と称する。
The gelation and the degree of gelation of polyvinyl chloride in the present invention means that when polyvinyl chloride is subjected to molding processing, undisintegrated or unmelted residual particles in polyvinyl chloride are kneaded by molding processing. The process of becoming smaller or smaller is called gelation, and the relative degree is called the degree of gelation.

【0010】本発明のポリ塩化ビニルのゲル化度の測定
方法及び測定装置を図1及び図2に示す光散乱測定装置
図面を用いて詳細に説明するが、本発明は該図面に記載
されているものに限定されるものではない。
The method and apparatus for measuring the degree of gelation of polyvinyl chloride according to the present invention will be described in detail with reference to the drawings of the light scattering measuring apparatus shown in FIGS. 1 and 2. The present invention is described in the drawings. It is not limited to those that are.

【0011】図1に記載の装置は、本発明のポリ塩化ビ
ニルのゲル化度の測定装置の1例の側面図である。
The apparatus shown in FIG. 1 is a side view of one example of the apparatus for measuring the degree of gelation of polyvinyl chloride of the present invention.

【0012】図2に記載の装置は、本発明のポリ塩化ビ
ニルのゲル化度の測定装置の1例の上方図である。
The apparatus shown in FIG. 2 is an upper view of one example of the apparatus for measuring the degree of gelation of polyvinyl chloride of the present invention.

【0013】本発明においては、ポリ塩化ビニル成形体
に照射する光は、一定波長の光であることが好ましく、
その波長はポリ塩化ビニル中の残存粒子の大きさで使い
分けることが好ましい。すなわち、ポリ塩化ビニル中の
残存粒子が比較的大きいポリ塩化ビニル成形体の場合は
波長の長い光の光源を、また比較的小さい残存粒子の場
合には波長の短い光の光源を使用することが好ましい。
In the present invention, the light applied to the polyvinyl chloride molded article is preferably light having a certain wavelength,
It is preferable to use the wavelength properly depending on the size of the residual particles in the polyvinyl chloride. That is, it is possible to use a light source of long wavelength light in the case of a polyvinyl chloride molded article having relatively large residual particles in polyvinyl chloride, and to use a light source of short wavelength light in the case of relatively small residual particles. preferable.

【0014】例えば、ポリ塩化ビニル中の残存粒子がド
メイン若しくは該ドメインが複数個集まって凝集した
0.1μm〜1μmの範囲であるドメイン集合体、また
は、1次粒子若しくは該1次粒子が複数個集まって凝集
した1μm〜10μmの範囲である1次粒子集合体のよ
うな0.1μm〜10μmの残存粒子の場合、波長が
0.4μm〜0.8μmの範囲である可視光光源を用い
ることが好ましい。そして、このような可視光光源とし
ては、例えば市販されているレーザー光源を使用するこ
とができ、ユニフェース(株)製ヘリウム−ネオンレー
ザー(波長0.633μm)を用いることができる。さ
らに、1次粒子または該1次粒子集合体ような1μm〜
10μmの残存粒子の場合、波長が1μm以上の赤外線
レーザー、YAGレーザー、波長が9〜11μmの炭酸
ガスレーザーなどを光源として使用することもできる。
ポリ塩化ビニル中の残存粒子がミクロドメインまたは該
ミクロドメインが複数個集まって凝集した0.01μm
〜0.1μmの範囲であるミクロドメイン集合体のよう
な0.01μm〜0.1μmの残存粒子の場合、波長が
0.4μm未満の短波長レーザー、エキシマレーザーな
どを使用することができる。
For example, a domain aggregate in which the remaining particles in the polyvinyl chloride are in the range of 0.1 μm to 1 μm in which domains or a plurality of domains are aggregated and aggregated, or a plurality of primary particles or a plurality of primary particles In the case of a residual particle of 0.1 μm to 10 μm such as a primary particle aggregate having a range of 1 μm to 10 μm which is aggregated and aggregated, a visible light source having a wavelength of 0.4 μm to 0.8 μm may be used. preferable. As such a visible light source, for example, a commercially available laser light source can be used, and a helium-neon laser (wavelength: 0.633 μm) manufactured by Uniface Co., Ltd. can be used. Furthermore, the primary particles or 1 μm or
In the case of 10 μm residual particles, an infrared laser having a wavelength of 1 μm or more, a YAG laser, a carbon dioxide laser having a wavelength of 9 to 11 μm, or the like can be used as a light source.
0.01 μm in which residual particles in polyvinyl chloride are microdomains or a plurality of microdomains are aggregated and aggregated
In the case of 0.01 μm to 0.1 μm residual particles such as microdomain aggregates in the range of 0.1 μm to 0.1 μm, a short-wavelength laser having a wavelength of less than 0.4 μm, an excimer laser, or the like can be used.

【0015】さらに本発明において、散乱光強度の角度
分布依存性を求める際に各光学部材が外部からの迷光や
ノイズ光を遮断する暗箱のような容器に格納されていな
い装置を用いる場合、迷光叉はノイズ光の悪影響を抑え
るためにライトチョッパー及びロックインアンプを併用
することが好ましい。ライトチョッパー及びロックイン
アンプを併用することにより、ライトチョッパーで特定
の周波数に入射光を分断し、断続的な光としてポリ塩化
ビニル成形体に照射し、特定の周波数成分の光のみをロ
ックインアンプで識別することにより、多重反射による
迷光叉は外部からノイズ光などの悪影響を受けることな
く、ノイズを除去することでポリ塩化ビニル成形体のみ
からの散乱光強度を高いS/N(シグナル/ノイズ)比
で実測でき、測定精度を向上させることができる。
Further, in the present invention, when determining the dependence of the scattered light intensity on the angular distribution, when using an apparatus in which each optical member is not stored in a container such as a dark box for blocking stray light from outside and noise light, Alternatively, it is preferable to use a light chopper and a lock-in amplifier together in order to suppress the adverse effect of the noise light. By using a light chopper and a lock-in amplifier together, the light chopper divides the incident light to a specific frequency, irradiates the polyvinyl chloride molded article as intermittent light, and locks only the light of a specific frequency component into the lock-in amplifier. , The intensity of scattered light from the polyvinyl chloride molded article alone is increased by removing noise without being affected by stray light due to multiple reflections or external noise light, etc. ) The ratio can be actually measured, and the measurement accuracy can be improved.

【0016】ライトチョッパーは市販のものでも周波数
が固定できる装置であれば差し支えない。また、ロック
インアンプは市販のものでも本発明の目的を達成するこ
とができ、例えばエヌエフ回路設計ブロック(株)製の
ロックインアンプを用いることができる。
A commercially available light chopper may be used as long as it can fix the frequency. The lock-in amplifier can also achieve the object of the present invention using a commercially available lock-in amplifier. For example, a lock-in amplifier manufactured by NF Circuit Design Block Co., Ltd. can be used.

【0017】また、ポリ塩化ビニル成形体からの散乱光
の受光器には、例えばフォトダイオード、フォトマルと
呼ばれる光電子増倍管、光カウンター等を用いることに
より散乱光強度を測定することが可能である。そして、
ポリ塩化ビニル中の残存粒子が大きく散乱光強度が強い
場合はフォトダイオードが適しており、一方粒子構造が
小さく散乱光強度が小さい場合はフォトマル叉は光カウ
ンタが適している。
Further, as a receiver for the scattered light from the polyvinyl chloride molded article, for example, a photodiode, a photomultiplier called a photomultiplier, a light counter, or the like can be used to measure the scattered light intensity. is there. And
When the residual particles in the polyvinyl chloride are large and the scattered light intensity is high, a photodiode is suitable. On the other hand, when the particle structure is small and the scattered light intensity is low, a photomultiplier or a light counter is suitable.

【0018】受光器を載せる回転台としては、0゜〜1
80゜まで0.1゜毎に角度設定できるものが好まし
く、手動式回転台またはパルスモーターで駆動できる自
動式回転台を使用することができる。
The turntable on which the light receiver is mounted is 0 ° to 1 °.
It is preferable that the angle can be set every 0.1 ° up to 80 °, and a manual turntable or an automatic turntable driven by a pulse motor can be used.

【0019】本発明において、散乱光強度の角度分布依
存性を測定する範囲は、ポリ塩化ビニル成形体中の残存
粒子がポリ塩化ビニルの1次粒子叉はその凝集体では、
1゜〜20゜が好ましく、1次粒子より微細なポリ塩化
ビニルのドメイン叉はその凝集体では、5゜〜50゜の
角度範囲が好ましい。さらに、微細なポリ塩化ビニルの
ミクロドメイン叉はその凝集体のときは、30゜〜70
゜が適している。
In the present invention, the range in which the angle distribution dependence of the scattered light intensity is measured is such that the residual particles in the polyvinyl chloride molded article are primary particles of polyvinyl chloride or aggregates thereof.
1 ° to 20 ° is preferred, and the angle range of 5 ° to 50 ° is preferred in the case of polyvinyl chloride domains or aggregates finer than the primary particles. Furthermore, in the case of fine polyvinyl chloride microdomains or agglomerates thereof, 30 ° to 70 ° C
゜ is suitable.

【0020】本発明においては、ポリ塩化ビニル成形体
に光を照射した後、ポリ塩化ビニル成形体より散乱され
る光の散乱光強度の角度分布依存性により、ポリ塩化ビ
ニルのゲル化度を定量評価することができる。
In the present invention, the degree of gelation of polyvinyl chloride is determined by irradiating the polyvinyl chloride molded article with light and then determining the angle distribution dependence of the scattered light intensity of the light scattered from the polyvinyl chloride molded article. Can be evaluated.

【0021】例えば、散乱光強度I、散乱角度θに関す
る角度変数qをq=(4π/λ)sin(θ/2)とし
た場合、1)散乱光強度Iを角度変数qに対してプロッ
ト(以下、プロット1と称する。;図3)し、成形加工
時の熱履歴及び剪断力履歴の異なるポリ塩化ビニル成形
体で得られたプロットの位置関係からゲル化度を評価す
る方法,2)角度変数qの2乗に対して散乱光強度Iの
平方根の逆数をプロット(以下、プロット2と称す
る。;図4)し、その位置関係からゲル化度を評価する
方法,3)プロット2では直線が得られ、その傾きや切
片から統計的解析手法を利用して平均粒子径を算出し、
その大小関係でゲル化度を評価する方法等が挙げられ
る。また、散乱光強度I及び角度変数qに関して適当な
関数に変換することにより統計的に残存粒子の大きさを
算出する事も可能である。
For example, when the angle variable q relating to the scattered light intensity I and the scattering angle θ is q = (4π / λ) sin (θ / 2), 1) the scattered light intensity I is plotted against the angle variable q ( Hereinafter, this is referred to as plot 1. FIG. 3) A method of evaluating the degree of gelation from the positional relationship of plots obtained from polyvinyl chloride molded articles having different heat histories and shearing histories during molding, 2) Angle A method of plotting the reciprocal of the square root of the scattered light intensity I with respect to the square of the variable q (hereinafter referred to as plot 2; FIG. 4) and evaluating the gelation degree from the positional relationship, 3) a straight line in plot 2 Is obtained, the average particle diameter is calculated using a statistical analysis method from the slope and the intercept,
A method of evaluating the degree of gelation based on the magnitude relation may be used. It is also possible to statistically calculate the size of the remaining particles by converting the scattered light intensity I and the angle variable q into appropriate functions.

【0022】上記1)のようなプロット1を用いたゲル
化度の評価方法においては、ポリ塩化ビニル中の残存粒
子の平均粒子径が大きい程、叉は、残存粒子が多いほど
散乱光強度Iが強く、角度分布依存性すなわち散乱光強
度Iの角度変数qへの依存性が大きい結果となってプロ
ットに反映される。従って、ゲル化の進行していない成
形体試料では散乱光強度Iが大きい値から急激に減少す
る様な散乱光強度スペクトルが得られる。
In the method for evaluating the degree of gelation using the plot 1 as in the above 1), the scattered light intensity I increases as the average particle diameter of the residual particles in the polyvinyl chloride increases or as the residual particles increase. And the angle distribution dependence, that is, the dependence of the scattered light intensity I on the angle variable q is large, which is reflected in the plot. Therefore, a scattered light intensity spectrum in which the scattered light intensity I sharply decreases from a large value is obtained in a molded body sample in which gelation has not progressed.

【0023】上記2)及び3)のようなプロット2を用
いたゲル化度の評価方法においては、プロット2は直線
が得られ、その位置関係からゲル化度を評価できる。ポ
リ塩化ビニル中の残存粒子の大きさが大きい程、プロッ
ト2の傾きは大きくゲル化は進行しておらず低いゲル化
度となる。また、ポリ塩化ビニル中の残存粒子の数が多
い程プロット2の切片は小さくなりこの場合もゲル化は
進行しておらず低いゲル化度となる。
In the method of evaluating the degree of gelation using the plot 2 as in the above 2) and 3), a straight line is obtained in the plot 2 and the degree of gelation can be evaluated from the positional relationship. As the size of the residual particles in the polyvinyl chloride is larger, the slope of plot 2 is larger, and the gelation does not progress and the gelation degree is lower. Also, as the number of residual particles in polyvinyl chloride increases, the intercept of plot 2 becomes smaller, and in this case, too, gelation does not progress and the degree of gelation is low.

【0024】さらに、例えば「ポリマーアロイ」共立出
版、に記載の方法に従い、プロット2の切片Aと傾きB
および装置定数Cから下記(1)式によりポリ塩化ビニ
ル中の残存粒子の大きさに対応する平均粒子径として求
めることができる。
Further, according to the method described in “Polymer Alloy” Kyoritsu Shuppan, for example, the intercept A and the slope B of the plot 2 are plotted.
The average particle diameter corresponding to the size of the residual particles in the polyvinyl chloride can be determined from the following equation (1) based on the apparatus constant C and the apparatus constant C.

【0025】 平均粒子径=C×(B/A)1/2 (1) 本発明における百分率を用いたゲル化度の相対評価の方
法は任意であり、例えば上記プロット1を用いた場合、
スペクトルの位置の上限関係をゲル化度の尺度とでき
る。また、上記プロット2を用いた場合、測定された残
存粒子径の上限と下限をそれぞれ0〜100%とするこ
とによりその間を相対評価できる。さらに、測定された
残存粒子径の絶対値の範囲の限定は任意であるが、例え
ば上記(1)式により算出した残存粒子の平均粒子径1
μmをゲル化度=0%、平均粒子径0.1μmをゲル化
度=100%とし、その間を線形に等間隔して百分率に
直して相対評価を行えば、ゲル化度は例えば下記(2)
式として評価することが可能である。
Average particle size = C × (B / A) 1/2 (1) The method of relative evaluation of the degree of gelation using the percentage in the present invention is arbitrary. For example, when the above plot 1 is used,
The upper limit of the position of the spectrum can be used as a measure of the degree of gelation. When the above plot 2 is used, the upper limit and the lower limit of the measured residual particle diameter are set to 0 to 100%, respectively, so that a relative evaluation between them can be made. Furthermore, the range of the absolute value of the measured residual particle diameter is arbitrary, but for example, the average particle diameter of the residual particles calculated by the above equation (1) is 1
The gelation degree is 0%, the average particle diameter is 0.1 μm, the gelation degree is 100%, and the relative evaluation is performed linearly at regular intervals and converted into percentages. )
It can be evaluated as an expression.

【0026】 ゲル化度(%)=(1−平均粒子径(μm))×100 (2) また、ポリ塩化ビニルの残存粒子の絶対値を定量してゲ
ル化度に直す場合は、予め粒子径が明かでありかつ粒径
分布が単分散であるポリスチレンラテックスの様な標準
試料を用いて測定装置の装置定数を決定しておくことが
好ましい。
Gelation degree (%) = (1−average particle diameter (μm)) × 100 (2) When the absolute value of the residual particles of polyvinyl chloride is quantified and converted into the gelation degree, the particles must be prepared in advance. It is preferable to determine the device constant of the measuring device using a standard sample such as polystyrene latex having a clear diameter and a monodispersed particle size distribution.

【0027】そして、本発明であるポリ塩化ビニルのゲ
ル化度の測定方法及び測定装置においては、散乱光の散
乱光強度の角度分布依存性からポリ塩化ビニルのゲル化
度を測定する際に、散乱光強度の角度分布依存性よりゲ
ル化度を算出するためのプログラミングを行った演算処
理装置を用いることが好ましい。
In the method and apparatus for measuring the degree of gelation of polyvinyl chloride according to the present invention, when measuring the degree of gelation of polyvinyl chloride from the angular distribution dependence of the scattered light intensity of scattered light, It is preferable to use an arithmetic processing device that has been programmed to calculate the degree of gelation from the angular distribution dependence of the scattered light intensity.

【0028】本発明に用いることができるポリ塩化ビニ
ルとしては、ポリ塩化ビニル、エチレン−塩化ビニル共
重合体、酢酸ビニル−塩化ビニル共重合体等を挙げるこ
とができる。さらに、通常ポリ塩化ビニルに添加される
安定剤、滑剤、可塑剤等の各種配合剤は散乱スペクトル
に悪影響を及ぼさない範囲であれば添加しても差し支え
ない。
Examples of the polyvinyl chloride which can be used in the present invention include polyvinyl chloride, ethylene-vinyl chloride copolymer, vinyl acetate-vinyl chloride copolymer and the like. Furthermore, various compounding agents such as a stabilizer, a lubricant, and a plasticizer which are usually added to polyvinyl chloride may be added as long as they do not adversely affect the scattering spectrum.

【0029】[0029]

【実施例】以下に、本発明を実施例を用いてより具体的
に説明するが、本発明はこれら実施例に限定されるもの
ではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0030】実施例1 光源として波長0.633μmのヘリウム−ネオンレー
ザー2a(日本科学エンジニアリング( 株) 製、商品名
HN−550P)、光源からの光を断続的な光とするた
めのライトチョッパー5a、散乱光強度測定用受光器1
0、ロックインアンプ11(エヌエフ回路設計ブロック
(株)製、商品名シングルフェーズロックインアンプ5
600)、検出器回転用ゴニオメーター8a(日本科学
エンジニアリング( 株) 製)、ゴニオメータ駆動用パル
スモーターコントローラー8b(日本科学エンジニアリ
ング( 株) 製)、1/4波長板3、グラムトムソン型偏
光素子4、試料保持用ステージ6、ピンホール9、測定
制御並びに散乱光強度の角度分布依存性解析用パソコン
12及び散乱光強度の角度分布依存性よりポリ塩化ビニ
ル中の残存粒子径並びにポリ塩化ビニルのゲル化度を算
出するための演算処理装置14よりなるポリ塩化ビニル
のゲル化度の測定装置を作成した。ここで、演算処理装
置14は、パソコン12により解析された散乱光強度の
角度分布依存性のなかでも散乱光強度Iの平方根の逆数
を角度変数qの2乗に対してプロット(プロット2)し
た時の切片及び傾きを読みとり、装置定数及び上記
(1)から分散粒子の平均粒子径を算出し、更に該分散
粒子の平均粒子径1μmをゲル化度=0%、平均粒子径
0.1μmをゲル化度=100%とし、上記(2)式か
らゲル化度を算出するプログラミングを施した演算処理
装置である。
Example 1 A helium-neon laser 2a having a wavelength of 0.633 μm (HN-550P, manufactured by Nippon Kagaku Engineering Co., Ltd.) was used as a light source, and a light chopper 5a for converting light from the light source into intermittent light. , Scattered light intensity measuring light receiver 1
0, lock-in amplifier 11 (manufactured by NF Circuit Design Block Co., Ltd., trade name: single phase lock-in amplifier 5)
600), a detector goniometer 8a (manufactured by Nippon Kagaku Engineering Co., Ltd.), a goniometer driving pulse motor controller 8b (manufactured by Nippon Kagaku Engineering Co., Ltd.), a quarter-wave plate 3, a Gram-Thompson-type polarizing element 4 , Sample holding stage 6, pinhole 9, measurement control and personal computer 12 for analysis of angle distribution dependence of scattered light intensity and residual particle diameter in polyvinyl chloride and gel of polyvinyl chloride from angle distribution dependence of scattered light intensity An apparatus for measuring the degree of gelation of polyvinyl chloride comprising an arithmetic processing unit 14 for calculating the degree of conversion was prepared. Here, the arithmetic processing unit 14 plots the reciprocal of the square root of the scattered light intensity I with respect to the square of the angle variable q (plot 2) among the angular distribution dependence of the scattered light intensity analyzed by the personal computer 12. The intercept and inclination at the time are read, and the average particle diameter of the dispersed particles is calculated from the apparatus constant and the above (1). Further, the average particle diameter of the dispersed particles is 1 μm, the gelation degree is 0%, and the average particle diameter is 0.1 μm. This is an arithmetic processing unit in which the degree of gelation is set to 100% and programming for calculating the degree of gelation from the above equation (2) is performed.

【0031】図1にポリ塩化ビニルのゲル化度を測定す
るための光散乱測定装置の側面図を示す。
FIG. 1 shows a side view of a light scattering measuring device for measuring the gelation degree of polyvinyl chloride.

【0032】図2にポリ塩化ビニルのゲル化度を測定す
るための光散乱測定装置の上方図を示す。
FIG. 2 shows an upper view of a light scattering measuring device for measuring the gelation degree of polyvinyl chloride.

【0033】平均粒子径0.1μmのポリスチレンラテ
ックスを標準試料として用いることにより求めた該測定
装置の装置定数Cは225[nm-1]であった。
The apparatus constant C of the measuring apparatus determined by using a polystyrene latex having an average particle diameter of 0.1 μm as a standard sample was 225 [nm −1 ].

【0034】実施例2 ポリ塩化ビニル樹脂(大洋塩ビ(株)製、商品名TH−
1000)100重量部、安定剤(日東化成(株)製、
商品名N2000E)4重量部を配合したポリ塩化ビニ
ル樹脂組成物を140℃に設定された8インチテストロ
ールで10分間混練し、厚さ1.1mmの半透明板状成
形体を得た。この板状成形体を140℃に設定された加
圧プレス成形機を用いて厚さ1.0mmの透明な板状成
形体に成形した。
Example 2 Polyvinyl chloride resin (manufactured by Taiyo PVC Co., Ltd., trade name: TH-
1000) 100 parts by weight, stabilizer (manufactured by Nitto Kasei Co., Ltd.)
A polyvinyl chloride resin composition containing 4 parts by weight of N2000E) was kneaded with an 8-inch test roll set at 140 ° C. for 10 minutes to obtain a 1.1-mm thick translucent plate-like molded product. This plate-shaped molded product was molded into a transparent plate-shaped molded product having a thickness of 1.0 mm using a press molding machine set at 140 ° C.

【0035】この板状成形体を実施例1の測定装置を用
いて、散乱角度10゜〜40゜の範囲で、角度ステップ
間隔を0.5゜として、各散乱角度における10秒間の
散乱光強度の平均値を求め、散乱光強度Iを求めた。
Using the measuring device of Example 1, the scattered light intensity for 10 seconds at each scattering angle was set at 0.5 ° for each scattering angle in the range of 10 ° to 40 °. And the scattered light intensity I was determined.

【0036】散乱光強度Iを角度変数qに対して実測プ
ロットしたプロット1を図3に示す。
FIG. 3 shows a plot 1 in which the scattered light intensity I is actually measured against the angle variable q.

【0037】さらに、散乱光強度Iの平方根の逆数を角
度変数qの2乗に対してデバイプロットの型に変換した
プロット2を図4に示す。
FIG. 4 shows a plot 2 in which the reciprocal of the square root of the scattered light intensity I is converted into a Debye plot type with respect to the square of the angle variable q.

【0038】また、図4のデバイプロットの切片及び傾
きを読みとり、装置定数C及び上記(1)式をプログラ
ミングした演算処理装置を有する実施例1に記載のポリ
塩化ビニルのゲル化度の測定装置から得られた残存粒子
の平均粒子径は0.35μmであった。
Further, the intercept and the slope of the Debye plot of FIG. 4 are read, and the apparatus constant C and the apparatus for measuring the degree of gelation of polyvinyl chloride described in Example 1 having an arithmetic processing unit programmed with the above equation (1). The average particle diameter of the residual particles obtained from was 0.35 μm.

【0039】そして、更に実施例1に記載のポリ塩化ビ
ニルのゲル化度の測定装置から得られたゲル化度は65
%であった。
The degree of gelation obtained from the apparatus for measuring the degree of gelation of polyvinyl chloride described in Example 1 was 65.
%Met.

【0040】実施例3 実施例2と同様の配合のポリ塩化ビニル樹脂組成物を1
85℃に設定された8インチテストロールで5分間混練
し、厚さ1.1mmの半透明板状成形体として得た。こ
の板状成形体を185℃に設定された加圧プレス成形機
を用いて厚さ1.0mmの透明な板状成形体した。
Example 3 A polyvinyl chloride resin composition having the same composition as in Example 2
The mixture was kneaded with an 8-inch test roll set at 85 ° C. for 5 minutes to obtain a 1.1-mm thick translucent plate-like molded product. This plate-like molded body was formed into a transparent plate-like molded body having a thickness of 1.0 mm by using a pressure press molding machine set at 185 ° C.

【0041】得られた板状成形体は実施例2と同様の測
定を行った。
The same measurement as in Example 2 was performed on the obtained plate-like molded body.

【0042】散乱光強度Iを角度変数qに対して実測プ
ロットしたプロット1を図3に示す。
FIG. 3 shows a plot 1 in which the scattered light intensity I is plotted with respect to the angle variable q.

【0043】さらに、散乱光強度Iの平方根の逆数を角
度変数qの2乗に対してデバイプロットの型に変換した
プロット2を図4に示す。
FIG. 4 shows a plot 2 in which the reciprocal of the square root of the scattered light intensity I is converted into a Debye plot type with respect to the square of the angle variable q.

【0044】また、図4のデバイプロットの切片及び傾
き読みとり、装置定数C及び上記(1)式をプログラミ
ングした演算処理装置を有する実施例1に記載のポリ塩
化ビニルのゲル化度の測定装置から得られた残存粒子の
平均粒子径は0.26μmであった。
Further, the intercept and inclination of the Debye plot in FIG. 4 were read, and the apparatus constant C and the apparatus for measuring the gelation degree of polyvinyl chloride described in Example 1 having an arithmetic processing unit programmed with the above equation (1) were used. The average particle diameter of the obtained residual particles was 0.26 μm.

【0045】そして、更に実施例1に記載のポリ塩化ビ
ニルのゲル化度の測定装置から得られたゲル化度は74
%であった。
Further, the gelation degree obtained from the apparatus for measuring the gelation degree of polyvinyl chloride described in Example 1 is 74.
%Met.

【0046】[0046]

【発明の効果】本発明のポリ塩化ビニルのゲル化度の測
定方法及び測定装置によれば、簡便かつ迅速でしかも精
度良くポリ塩化ビニルのゲル化度を定量することができ
る。
According to the method and apparatus for measuring the degree of gelation of polyvinyl chloride of the present invention, the degree of gelation of polyvinyl chloride can be determined simply, quickly and accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるポリ塩化ビニルのゲル化度の測定
装置の1例の側面図である。
FIG. 1 is a side view of an example of an apparatus for measuring the degree of gelation of polyvinyl chloride according to the present invention.

【図2】本発明によるポリ塩化ビニルのゲル化度の測定
装置の1例の上方図である。
FIG. 2 is an upper view of an example of the apparatus for measuring the degree of gelation of polyvinyl chloride according to the present invention.

【図3】実施例2および3で得られた散乱光強度Iを角
度変数qに対して実測プロットしたプロット1。
FIG. 3 is a plot 1 in which the scattered light intensity I obtained in Examples 2 and 3 is actually measured and plotted against an angle variable q.

【図4】実施例1および2で得られた散乱光強度Iの平
方根の逆数を角度変数qの2乗に対してデバイプロット
の型に変換したプロット2。
FIG. 4 is a plot 2 in which the reciprocal of the square root of the scattered light intensity I obtained in Examples 1 and 2 is converted into a Debye plot type with respect to the square of the angle variable q.

【符号の説明】[Explanation of symbols]

1 :光学ベンチ 2a:ヘリウム−ネオンレーザー 2b:レーザー出力用安定化電源 3 :1/4波長板 4 :グラムトムソン型偏光素子 5a:ライトチョッパー(周波数280Hz) 5b:ライトチョッパー周波数制御装置 6 :試料保持用ステージ 7 :試料 8a:受光器回転用ゴニオメーター 8b:ゴニオメータ駆動用パルスモーターコントローラ
ー 9 :ピンホール 10 :散乱光強度測定用受光器 11 :ロックインアンプ 12 :測定制御およびデータ解析用パソコン 13 :散乱角度θ 14 :演算処理装置 15 :角度変数q 16 :散乱光強度I 17 :角度変数qの2乗 18 :散乱光強度Iの平方根の逆数
1: Optical bench 2a: Helium-neon laser 2b: Stabilized power supply for laser output 3: Quarter-wave plate 4: Gram-Thompson-type polarizing element 5a: Light chopper (frequency 280 Hz) 5b: Light chopper frequency controller 6: Sample Holding stage 7: Sample 8 a: Goniometer for rotating the receiver 8 b: Pulse motor controller for driving the goniometer 9: Pinhole 10: Receiver for measuring scattered light intensity 11: Lock-in amplifier 12: Personal computer for measurement control and data analysis 13 : Scattering angle θ 14: Arithmetic processing unit 15: Angle variable q 16: Scattered light intensity I 17: Square of angle variable q 18: Reciprocal of square root of scattered light intensity I

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ポリ塩化ビニル成形体に光を照射した後、
ポリ塩化ビニル成形体より散乱される光の散乱光強度の
角度分布依存性により、ゲル化度を求めることを特徴と
するポリ塩化ビニルのゲル化度の測定方法。
1. After irradiating light to a polyvinyl chloride molded article,
A method for measuring the degree of gelation of polyvinyl chloride, wherein the degree of gelation is determined based on the angular distribution dependence of the scattered light intensity of light scattered from the polyvinyl chloride molded article.
【請求項2】請求項1に記載の散乱光強度の角度分布依
存性を百分率を用いた相対尺度に変換することによりゲ
ル化度を求めることを特徴とする請求項1に記載のポリ
塩化ビニルのゲル化度の測定方法。
2. The polyvinyl chloride according to claim 1, wherein the degree of gelation is determined by converting the angle distribution dependency of the scattered light intensity according to claim 1 into a relative scale using percentage. Method for measuring the degree of gelation.
【請求項3】請求項1に記載の散乱光強度の角度分布依
存性から、更にポリ塩化ビニル成形体中に存在するポリ
塩化ビニルの残存粒子径を求め、該残存粒子径を百分率
を用いた相対尺度に変換することによりゲル化度を求め
ることを特徴とする請求項1に記載のポリ塩化ビニルの
ゲル化度の測定方法。
3. The residual particle diameter of polyvinyl chloride present in the polyvinyl chloride molded article is further determined from the angle distribution dependence of the scattered light intensity according to claim 1, and the residual particle diameter is used as a percentage. The method for measuring the degree of gelation of polyvinyl chloride according to claim 1, wherein the degree of gelation is determined by converting the degree of gelation into a relative scale.
【請求項4】一定波長の光を発する光源、光源からの入
射光を一定波長の断続的な光としてポリ塩化ビニル成形
体に照射するためのライトチョッパー、ポリ塩化ビニル
成形体からの散乱光のうちライトチョッパーでカットさ
れたものと同一の波長成分をロックインアンプで検出す
る光散乱測定装置及び散乱光の散乱光強度の角度分布依
存性よりポリ塩化ビニルのゲル化度を求めるための演算
処理装置よりなることを特徴とするポリ塩化ビニルのゲ
ル化度の測定装置。
4. A light source for emitting light of a certain wavelength, a light chopper for irradiating incident light from the light source as intermittent light of a certain wavelength onto the polyvinyl chloride molded article, and a light chopper for scattered light from the polyvinyl chloride molded article. A light scattering measurement device that detects the same wavelength component as that cut by the light chopper with a lock-in amplifier, and a calculation process to determine the gelation degree of polyvinyl chloride from the angular distribution dependence of the scattered light intensity of the scattered light An apparatus for measuring the degree of gelation of polyvinyl chloride, comprising an apparatus.
JP27471096A 1996-10-17 1996-10-17 Method and apparatus for measuring the degree of gelation of polyvinyl chloride Expired - Fee Related JP3600929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27471096A JP3600929B2 (en) 1996-10-17 1996-10-17 Method and apparatus for measuring the degree of gelation of polyvinyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27471096A JP3600929B2 (en) 1996-10-17 1996-10-17 Method and apparatus for measuring the degree of gelation of polyvinyl chloride

Publications (2)

Publication Number Publication Date
JPH10120795A true JPH10120795A (en) 1998-05-12
JP3600929B2 JP3600929B2 (en) 2004-12-15

Family

ID=17545495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27471096A Expired - Fee Related JP3600929B2 (en) 1996-10-17 1996-10-17 Method and apparatus for measuring the degree of gelation of polyvinyl chloride

Country Status (1)

Country Link
JP (1) JP3600929B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035669A (en) * 2001-07-19 2003-02-07 Japan Science & Technology Corp Method and apparatus for nondestructive judgment of ripe level of fruit
WO2003087790A1 (en) * 2002-03-28 2003-10-23 Takai Tofu & Soymilk Equipment Company Limited Evaluation method and device for gel state or sol-gel state change of object
JP2012194165A (en) * 2011-03-16 2012-10-11 Eiko Furukawa Scanning microscopic light scattering measurement/analysis device and light scattering analysis method
EP2667182A4 (en) * 2011-01-17 2017-04-26 Hitachi High-Technologies Corporation Automatic analysis device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035669A (en) * 2001-07-19 2003-02-07 Japan Science & Technology Corp Method and apparatus for nondestructive judgment of ripe level of fruit
WO2003087790A1 (en) * 2002-03-28 2003-10-23 Takai Tofu & Soymilk Equipment Company Limited Evaluation method and device for gel state or sol-gel state change of object
US7310139B2 (en) 2002-03-28 2007-12-18 Takai Tofu & Soymilk Equipment Company Limited Evaluation method and device for gel state or sol-gel state change of object
JP2008191170A (en) * 2002-03-28 2008-08-21 Takai Seisakusho:Kk Scattered light observation system for observing gel state or change in sol-gel state of material body
EP2667182A4 (en) * 2011-01-17 2017-04-26 Hitachi High-Technologies Corporation Automatic analysis device
JP2012194165A (en) * 2011-03-16 2012-10-11 Eiko Furukawa Scanning microscopic light scattering measurement/analysis device and light scattering analysis method

Also Published As

Publication number Publication date
JP3600929B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
JP3600929B2 (en) Method and apparatus for measuring the degree of gelation of polyvinyl chloride
US4229970A (en) Method and apparatus for measuring the rheological properties of an extrudable material
JP7369765B2 (en) Methods and apparatus for processing and/or recycling materials
EP1488213B1 (en) Method of analysing a pharmaceutical sample
JP6367758B2 (en) Method for evaluating cross-link density of cross-linked rubber
US5095451A (en) Centrifuge particle size analyzer
US5543924A (en) Method and apparatus for evaluating pummeled glass
JPH10122827A (en) Method and device for optical measurement
US6775004B1 (en) Measuring surface roughness to calculate filler dispersion in a polymer sample
Maron et al. Determination of latex particle size by light scattering. VII. The dissymmetry method
Signor et al. Effects of ultraviolet radiation exposure on vinyl ester matrix resins: chemical and mechanical characterization
JP2004125502A (en) Particle analyzer
JP2012177679A (en) Granularity representative value estimation device and granularity representative value estimation method
JPH1038856A (en) Light absorptance measuring instrument and measuring method
JPH0231133A (en) Apparatus for measuring refractive index of particle
JP5324099B2 (en) How to apply anti-friction coating to wiper blade rubber profile and control its quality
Belanger et al. Analysis of polymer blend morphology by transmission and reflection light scattering techniques
SU819639A1 (en) Method of determination of polymer film quality
JPH0743249B2 (en) Polymer spherulite analysis method and apparatus
DeGraff et al. Quality control for electron beam processing of polymeric materials by end-point analysis
JPH10282088A (en) Method for measuring extent of gelation of polyvinyl chloride and residual grain size distribution
JP2002154888A (en) Classifying method for granular fertilizer and classifying equipment for granular fertilizer
CZ304580B6 (en) Etalon for evaluation of material topography
JP2021085731A (en) Automatic analysis method and autoanalyzer
CN115015168A (en) Method and system for monitoring mixing process of molten materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Effective date: 20040608

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040726

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees