JPH10115585A - Method for self-diagnosing apparatus for measuring color and turbidity of liquid - Google Patents

Method for self-diagnosing apparatus for measuring color and turbidity of liquid

Info

Publication number
JPH10115585A
JPH10115585A JP27080996A JP27080996A JPH10115585A JP H10115585 A JPH10115585 A JP H10115585A JP 27080996 A JP27080996 A JP 27080996A JP 27080996 A JP27080996 A JP 27080996A JP H10115585 A JPH10115585 A JP H10115585A
Authority
JP
Japan
Prior art keywords
light
turbidity
amount
flow cell
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27080996A
Other languages
Japanese (ja)
Other versions
JP3505560B2 (en
Inventor
Mutsuhisa Hiraoka
睦久 平岡
Naohiro Noda
直広 野田
Tokio Oodo
時喜雄 大戸
Hideo Kanai
秀夫 金井
Fumio Toyama
文生 外山
Kenji Harada
健治 原田
Hiroshi Tada
弘 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP27080996A priority Critical patent/JP3505560B2/en
Publication of JPH10115585A publication Critical patent/JPH10115585A/en
Application granted granted Critical
Publication of JP3505560B2 publication Critical patent/JP3505560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To self-diagnose deterioration of a light source by respectively monitoring a plurality of kinds of light immediately after dispersion for detecting when an amount of certain light is at a defined value or less and when it is at a defined ratio or less with respect to a light amount at an initial period for starting lighting. SOLUTION: Five optic filters 4 including a chromaticity measuring filter C, a turbidity measuring filter T and tristimulus value filters R, G, B are placed on a rotating disk to constitute a rotating-disk-type spectrographic part 3. Light which has transmitted through the respective optic filters 4 is divided into a measuring light path 7 and a reference light path 8 by a half mirror 5, and transmission light amounts corresponding to the respective optic filters 4 on a side of the reference light path 8 are measured by a photoelectric converter 12. A signal processing part 18 judges the light source to be deteriorated when one or more of the five measured values is at a defined value or less. In addition, a ratio of the transmission light amount corresponding to each of the optic filters 4 measured at an initial period for starting lighting up the light source 1 stored in the signal processing part 18 and each of current transmission light amounts is obtained, and if one or more ratios in the light amounts is at a defined value or less, the light source is judged to be deteriorated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、色度、濁度、着色度、
色相などに代表される液体の着色指標を自動計測する装
置の自己診断方法に関する。
The present invention relates to chromaticity, turbidity, coloring degree,
The present invention relates to a self-diagnosis method for an apparatus for automatically measuring a coloring index of a liquid represented by a hue or the like.

【0002】[0002]

【従来の技術】従来から様々な産業分野において各種の
液体の色・濁りの計測が行われており、例えば、水道分
野では、水道法で水道事業者に対して、水道水の色・濁
りの水質検査を給水区域内の複数の給水栓水を対象に毎
日1回以上行うことを義務づけている。
2. Description of the Related Art Conventionally, color and turbidity of various liquids have been measured in various industrial fields. It requires that water tests be conducted at least once a day for multiple tap water in the water supply area.

【0003】この色・濁りの計測に関しては、色を色度
で代用測定し、濁りを濁度で代用測定することが認めら
れているため、色・濁りの計測装置として、色度・濁度
計が用いられることが多い。「上水試験方法」第73頁
〜第74頁(1993年)(厚生省生活衛生局水道環境
部監修、(社)日本水道協会発行)によれば、色度は
「水中に含まれる溶解性物質およびコロイド性物質が呈
する類黄色ないし黄褐色の程度」とされ、目視による比
色法と波長390nmの吸光度測定が公定法として示さ
れている。一方、濁度は「水の濁りの程度」とされ、目
視による比濁法と波長660nmの吸光度測定とが公定
法として示されている。
[0003] Regarding the measurement of color and turbidity, it is recognized that color is measured by chromaticity as a substitute and turbidity is measured by turbidity. Meters are often used. According to the “Water Water Test Method”, pp. 73-74 (1993) (supervised by the Ministry of Health and Welfare, Water Environment Department, published by Japan Water Works Association), the chromaticity is “soluble substances contained in water”. And the degree of yellowish to yellowish brown exhibited by the colloidal substance ", and a visual colorimetric method and an absorbance measurement at a wavelength of 390 nm are shown as official methods. On the other hand, the turbidity is defined as “the degree of turbidity of water”, and the turbidimetric method by visual observation and the measurement of absorbance at a wavelength of 660 nm are indicated as official methods.

【0004】このような色度と濁度を自動的に計測する
装置は、すでに各種のものが市販されている。これらの
装置は、基本要素として、計測用の光源、試料の液体を
入れるフローセル、光源から出射しフローセルを透過す
る光の波長を390nmと660nmの光に選択可能な
各光学フィルタを備える分光部、分光部とフローセルを
通る光源からの光を測定する光検出器とから構成され、
連続的に試料水が流れるフローセルに390nmと66
0nmの光を順に透過させて、その吸光度を各々測定
し、各々の測定値を換算式または換算表から色度、濁度
に変換して出力するものである。
[0004] Various devices for automatically measuring chromaticity and turbidity are already on the market. These devices include, as basic elements, a light source for measurement, a flow cell for putting a liquid of a sample, a spectroscopic unit including each optical filter capable of selecting a wavelength of light emitted from the light source and transmitted through the flow cell to light of 390 nm and 660 nm, Consisting of a spectroscopy unit and a photodetector that measures light from a light source passing through the flow cell,
390nm and 66
Light of 0 nm is transmitted in order, the absorbance is measured, and each measured value is converted into chromaticity and turbidity from a conversion formula or conversion table and output.

【0005】色・濁りの計測装置は、上述の色度、濁度
計測タイプのほかに、本発明者らが特開平8−6878
8号公報により出願公開したものがある。これは上述の
色度、濁度計の分光部にR(赤)、G(緑)、B(青)
の3原色の光を選択することが可能な各光学フィルタを
追加し、3原色の各吸光度を解析することによって、目
視検査により近い着色の指標である着色度と色相の計測
値を従来の色度、濁度の計測値に加えて出力するもので
ある。
A color / turbidity measuring device is disclosed in Japanese Patent Application Laid-Open No. 8-6878 in addition to the above-described chromaticity and turbidity measuring type.
No. 8 has published an application. This is because R (red), G (green), B (blue)
By adding each optical filter that can select the light of the three primary colors, and analyzing each absorbance of the three primary colors, the measured values of the degree of coloration and the hue, which are indicators of coloring closer to visual inspection, can be compared with those of conventional colors. It is output in addition to the measured values of degree and turbidity.

【0006】これらの色・濁り計測装置は、水道水質自
動監視装置の一部として屋外設置型の盤に収納されて連
続自動運転される場合があり、その時には自動校正の機
能をもつことが測定精度を保つのに有効である。この自
動校正の方法としては、光源光量のモニタによる測定値
の変動補正、水浄化フィルタを通した清浄水の測定によ
るゼロ点補正などが一般的に行われるほかに、本発明者
らが特願平7−204110号により出願した、着色フ
ィルタを光路に挿入して擬似的に水が着色されたものと
同じ状態をつくりだしてスパン点を校正する方法などが
ある。
In some cases, these color / turbidity measuring devices are housed in an outdoor-installed panel as part of a tap water quality automatic monitoring device, and are continuously operated automatically. At that time, it is measured that the device has an automatic calibration function. This is effective for maintaining accuracy. As a method of the automatic calibration, in general, correction of fluctuation of a measured value by monitoring a light source light amount, zero point correction by measuring clean water through a water purification filter, and the like are performed. Japanese Patent Application Laid-Open No. 7-204110 discloses a method of calibrating a span point by inserting a color filter into an optical path to create the same state as that in which water is pseudo-colored.

【0007】実際の計測では、水道水質自動監視装置の
水質測定値は、通信回線を介して中央監視局にあるホス
トコンピュータに伝送されている。さらに自動運転中に
色、濁りセンサが上下限値を越える水質の異常を計測し
た場合には、ホストコンピュータに水質の警報信号を同
時に伝送されている。そのため、水質測定値と共に水質
異常の警報出力についても、特に高い信頼性が要求され
る。
In actual measurement, the water quality measurement value of the automatic tap water quality monitoring device is transmitted to a host computer in a central monitoring station via a communication line. Further, when the color and turbidity sensor measures an abnormality of the water quality exceeding the upper and lower limit values during the automatic operation, a water quality warning signal is simultaneously transmitted to the host computer. Therefore, particularly high reliability is required for the water quality measurement value as well as the water quality abnormality alarm output.

【0008】[0008]

【発明が解決しようとする課題】色・濁り計測装置が水
質異常の計測値や警報を出力するのは、水質の悪化によ
る場合だけではなく、計測装置の故障による場合も考え
られる。すなわち、水質が正常であるにもかかわらず、
計測装置が故障のために、水質異常の警報を誤って発す
る可能性がある。具体的な誤動作の主要因と問題点を以
下に示す。
The color / turbidity measuring device outputs a measured value or an alarm of the water quality abnormality not only when the water quality deteriorates but also when the measuring device fails. That is, despite the normal water quality,
Due to the failure of the measuring device, there is a possibility that the alarm of the water quality abnormality is erroneously issued. The main causes and problems of specific malfunctions are shown below.

【0009】第1の要因は、光源の劣化である。従来の
装置では、光源ランプの光量を直接モニタして、光量が
ゼロになった時にランプ切れと判断し、また一定光量以
下になった時にランプの劣化と判断していた。しかし、
上述の色、濁りセンサでは、光源からの光を波長を39
0nm、660nm、R(赤)、G(緑)、B(青)の
光に分光し、各々選別した光を用いているために、各波
長の光量にばらつきがあり、また、各波長の光量低下の
進行の度合いが異なるために、単に光源ランプの光量低
下を直接モニタするだけでは各波長の光の劣化の度合い
を十分に把握できず、測定精度を保つことができない。
このために、水質が異常でないにもかかわらず、異常な
水質計測値を出力する可能性がある。
The first factor is deterioration of the light source. In the conventional apparatus, the light amount of the light source lamp is directly monitored, and when the light amount becomes zero, it is determined that the lamp has run out, and when the light amount becomes less than a certain light amount, it is determined that the lamp has deteriorated. But,
In the color and turbidity sensor described above, the light from the light source
0 nm, 660 nm, R (red), G (green), and B (blue) light are separated and used, and the selected light is used. Therefore, the light amount of each wavelength varies, and the light amount of each wavelength is also different. Since the degree of the decrease is different, the degree of deterioration of the light of each wavelength cannot be sufficiently grasped simply by directly monitoring the decrease in the light amount of the light source lamp, and the measurement accuracy cannot be maintained.
For this reason, there is a possibility that an abnormal water quality measurement value is output even though the water quality is not abnormal.

【0010】第2の要因は、フローセルに試料水を注入
するための配管系統のトラブルである。具体的には、配
管の詰まり、電磁弁の故障等により、試料水がフローセ
ルに満たされなくなり、試料水が無いために誤った計測
値を出力する場合がある。フローセルに試料が注入され
ていないことを検知するには、流量検知器を配管に付加
する方法があるが、コストが増大するという問題が残
る。
The second factor is a trouble in a piping system for injecting the sample water into the flow cell. Specifically, sample water may not be filled in the flow cell due to clogging of a pipe, failure of an electromagnetic valve, or the like, and an incorrect measurement value may be output because there is no sample water. In order to detect that the sample is not injected into the flow cell, there is a method of adding a flow rate detector to the pipe, but there is a problem that the cost increases.

【0011】第3の要因は、自動スパン校正を有する場
合の着色フィルタを挿入する可動部のトラブルである。
着色フィルタが挿入されないままにスパン校正を行う
と、誤ったスパンに計測装置が校正され、また着色フィ
ルタの脱着が行われないと測定値に着色フィルタのスパ
ン相当分が上乗せされ、誤った計測値を出力する場合が
ある。
The third factor is a trouble of the movable portion for inserting the color filter when the automatic span calibration is performed.
If span calibration is performed without a colored filter inserted, the measuring device will be calibrated to the wrong span.If the colored filter is not removed, the measured value will be added to the span equivalent to the colored filter, resulting in an incorrect measured value. May be output.

【0012】本発明は、上述の問題を解決するためにな
されたものであり、その目的は、色・濁り計測装置が異
常な測定値を出力した場合に、センサの故障か水質の異
常かを見極める自己診断の機能を追加することによっ
て、より正確に水質異常を判別する方法を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and an object of the present invention is to determine whether a sensor failure or water quality abnormality occurs when a color / turbidity measurement device outputs an abnormal measurement value. It is an object of the present invention to provide a method for more accurately determining a water quality abnormality by adding a self-diagnosis function for determining the abnormality.

【0013】[0013]

【課題を解決するための手段】計測用の光源と、光源か
ら出射した光を複数の種類のスペクトルに変換して透過
する分光部と、分光した複数の種類の光が透過される試
料液体を保持するフローセルと、フローセルを透過した
光の光量を検出する光検出器と、光検出器からの信号に
基づき測定値として色度、濁度、着色度、色相の少なく
とも一つを演算出力する信号処理部とを備える液体の色
・濁り計測装置の自己診断方法において、上記問題のう
ち第1の光源の劣化と第2のフローセルへの試料水の注
入異常とを診断するための手段は次の通りである。
SUMMARY OF THE INVENTION A light source for measurement, a spectroscopic unit that converts light emitted from the light source into a plurality of types of spectra and transmits the same, and a sample liquid through which the plurality of types of split light are transmitted. A flow cell for holding, a photodetector for detecting the amount of light transmitted through the flow cell, and a signal for calculating and outputting at least one of chromaticity, turbidity, coloring degree, and hue as a measurement value based on a signal from the photodetector. In the method for self-diagnosis of a liquid color / turbidity measuring device provided with a processing unit, the means for diagnosing deterioration of the first light source and abnormal injection of sample water into the second flow cell among the problems described above are as follows It is on the street.

【0014】まず、第1の光源劣化の診断方法として
は、分光部を透過した直後の複数の種類の光の光量を各
々モニタして、少なくとも一つの光の光量があらかじめ
規定された値以下になった場合と、少なくとも一つの光
の光量が光源の点燈開始初期の光量に対してあらかじめ
規定された割合以下になった場合との、どちらかが起こ
れば、光源の劣化であると診断することとする。
First, as a first light source deterioration diagnosis method, the light amounts of a plurality of types of light immediately after passing through the spectroscopy unit are monitored, and the light amount of at least one light is reduced to a predetermined value or less. If one of the following conditions occurs, or if the light intensity of at least one light falls below a predetermined ratio with respect to the initial light intensity of the light source, it is diagnosed that the light source has deteriorated. I decided to.

【0015】この診断の方法は、まず、分光部で複数の
種類のスペクトルに変換された光が各々の波長範囲の違
いから、各々異なる光量を持つことに注目して、複数の
光のうち、少なくとも一つの光の光量があらかじめ規定
された値以下になった場合に光源の劣化と判断する。こ
れは、光量の最も少ない波長域の光に対して、計測に必
要な絶対光量を確保するという意味をもっている。次
に、少なくとも一つの光の光量が光源の点燈開始初期の
光量に対してあらかじめ規定された割合以下になった場
合に光源の劣化と判断するのは、光量の絶対値は確保で
きていても、点燈開始初期の強度に対して劣化により光
量が低下しすぎた場合には、スペクトルの分布が変化し
たり、放射強度の角度分布が変化したりして、測定精度
に悪影響を及ぼすことがあるためで、第2の判定基準を
設けることによってこの悪影響を防ぐようにしたもので
ある。以上の2つの判別基準の一方または両方に該当す
る場合に光源の劣化と判断する自己診断を実施すること
により、光源の劣化を正確に判定することができる。
This diagnostic method first focuses on the fact that the light converted into a plurality of types of spectra by the spectroscopic unit has different amounts of light due to differences in the respective wavelength ranges. When the light amount of at least one light falls below a predetermined value, it is determined that the light source has deteriorated. This means that an absolute amount of light required for measurement is secured for light in a wavelength region having the smallest amount of light. Next, when the light amount of at least one light falls below a predetermined ratio with respect to the light amount at the start of lighting of the light source, it is determined that the light source has deteriorated because the absolute value of the light amount can be secured. However, if the light intensity is too low due to the deterioration of the intensity at the beginning of lighting, the distribution of the spectrum or the angular distribution of the radiant intensity may change, adversely affecting the measurement accuracy. Therefore, this adverse effect is prevented by providing a second criterion. By performing a self-diagnosis of determining that the light source has deteriorated when one or both of the above two determination criteria are satisfied, the deterioration of the light source can be accurately determined.

【0016】次に、第2のフローセルへの試料水の注入
異常の診断方法としては、フローセルに清浄水を満たし
た時の各透過光の測定光量と、フローセルに試料液体を
満たした時の各透過光の測定光量との比のうち、少なく
とも一つの組の光の測定光量比があらかじめ規定された
範囲に入り、かつ、少なくとも一つの組の光の測定光量
比をもう一つの組の光の測定光量比で除算した値があら
かじめ規定された範囲内に入った場合には、フローセル
への液体試料の注入異常と診断することとする。
Next, as a second method of diagnosing the abnormality of the injection of the sample water into the flow cell, the measured light amounts of the respective transmitted lights when the flow cell is filled with the clean water, and the respective light amounts when the flow cell is filled with the sample liquid are described. Among the ratios of the transmitted light and the measured light intensity, the measured light intensity ratio of at least one set of light falls within a predetermined range, and the measured light intensity ratio of at least one set of light is reduced to that of another set of light. When the value divided by the measured light amount ratio falls within a predetermined range, it is determined that the liquid sample is abnormally injected into the flow cell.

【0017】この診断の方法は、配管系統のトラブルに
よってフローセルに試料水が満たされずフローセルが空
になっている時に、フローセルを通過する各波長の光の
光量を清浄水を満たした時の光量と比較した比率が、各
々ほぼ一定の値を示すことに注目したものである。これ
は、空気中での光の減衰が測定精度に比較して無視でき
るほど小さく、かつ、水の屈折率と空気の屈折率の違い
によって、フローセル面での通過する光の反射、吸収、
拡散の大きさが、水が満たされている場合と空気で満た
されている場合にある一定の差を生じることによって説
明される。そのために、フローセルに清浄水を満たした
時の各透過光の測定光量とフローセルに試料液体を満た
した時の各透過光の測定光量の比のうち、少なくとも一
つの光の測定光量比があらかじめ規定された範囲に入っ
ているかを調べれば、フローセルが空であることを判別
できる。さらに、少なくとも一つの光の各々の測定光量
比をもう一つの光の各々の測定光量比で除算した値があ
らかじめ規定された範囲内に入っているかを調べること
によって、より確実にフローセルへの液体試料の注入異
常を自己診断できる。
This diagnostic method is based on the problem that when the flow cell is not filled with sample water due to a trouble in the piping system and the flow cell is empty, the amount of light of each wavelength passing through the flow cell is equal to the amount of light when filled with clean water. It is noted that the compared ratios each show a substantially constant value. This is because the attenuation of light in air is negligibly small compared to the measurement accuracy, and the difference between the refractive index of water and the refractive index of air reflects and absorbs light passing through the flow cell surface.
The magnitude of the diffusion is explained by producing a certain difference between when filled with water and when filled with air. For this purpose, the ratio of the measured light quantity of each transmitted light when the flow cell is filled with clean water and the measured light quantity of each transmitted light when the flow cell is filled with the sample liquid is defined in advance as the ratio of the measured light quantity of at least one light. It can be determined that the flow cell is empty by checking whether the flow cell is in the range. Further, by checking whether the value obtained by dividing the measured light intensity ratio of each of at least one light by the measured light intensity ratio of the other light is within a predetermined range, the liquid to the flow cell can be more reliably checked. Self-diagnosis of abnormal sample injection.

【0018】計測用の光源と、光源から出射した光を複
数の種類のスペクトルに変換して透過する分光部と、分
光した複数の種類の光が透過される試料液体を保持する
フローセルと、フローセルを透過した光の光量を測定す
る光検出器と、校正用着色フィルタと、校正用着色フィ
ルタを分光部と光検出器の間の光路に挿入する機構と、
校正演算を行う演算部と校正演算の結果と光検出器から
の信号に基づき測定値として色度、濁度、着色度、色相
の少なくとも一つを演算出力する信号処理部を備える液
体の色・濁り検知装置において、上記問題のうち第3の
着色フィルタ挿入異常の診断するための手段は次の通り
である。
A light source for measurement, a spectroscopic unit for converting light emitted from the light source into a plurality of types of spectra and transmitting the same, a flow cell for holding a sample liquid through which the plurality of types of split light are transmitted, and a flow cell A photodetector that measures the amount of light transmitted therethrough, a calibration coloring filter, and a mechanism for inserting the calibration coloring filter into the optical path between the spectral unit and the photodetector;
A liquid color including a calculation unit for performing a calibration calculation and a signal processing unit for calculating and outputting at least one of chromaticity, turbidity, coloring degree, and hue as a measurement value based on the result of the calibration calculation and a signal from the photodetector. In the turbidity detecting device, the means for diagnosing the third colored filter insertion abnormality among the above problems is as follows.

【0019】これは、校正用着色フィルタを光路に挿入
した時と光路に挿入しない時との光の光量比が、あらか
じめ設定された範囲外になった場合に、校正用着色フィ
ルタの挿入異常と診断することとする。この診断の方法
は、自動スパン校正機能を有し、着色フィルタを挿入す
る可動部のある色、濁り計測装置において、着色フィル
タの挿入の有り、無しの違いを、挿入のある場合の透過
光量と挿入の無い場合の透過光量の比が、着色フィルタ
の光減衰率分だけ変化することに着目したものである。
すなわち、この光量比があらかじめ設定された範囲内に
有るかどうかを調べることによって、校正用着色フィル
タの挿入異常を自己診断できる。
This is because when the light amount ratio of light when the calibration coloring filter is inserted into the optical path and when it is not inserted into the optical path is out of a predetermined range, the insertion abnormality of the calibration coloring filter is determined. Diagnose. This diagnostic method has an automatic span calibration function, and in a turbidity measuring device with a movable part into which a colored filter is inserted, the difference between the presence or absence of the colored filter and the transmitted light amount when there is an inserted The focus is on the fact that the ratio of the amount of transmitted light when there is no insertion changes by the amount of light attenuation of the colored filter.
That is, by checking whether or not the light amount ratio is within a preset range, it is possible to perform a self-diagnosis of the insertion abnormality of the calibration coloring filter.

【0020】[0020]

【発明の実施の形態】この発明の第1の実施例を図1と
図2に示す。以下に、これらの図を参照して装置の構成
とともに本発明の第1の方法を説明する。光源1は広い
発光スペクトルをもったタングステンランプと安定化電
源から成る。レンズ2は光源からの光を平行光束にす
る。回転円盤型分光部3は図2に示すように回転円盤に
光学フィルタ4を5枚配置して構成されている。分光部
の各フィルタは、色度測定用フィルタCと濁度測定用フ
ィルタTとが共に660nmの中心波長を、またR、
G、Bの三刺激値用フィルタが、それぞれ570nm、
535nm、445nm付近に中心波長をもつている。
これらの3原色のフィルタの分光透過率は、光源から光
電変換器にいたる総合的な相対分光感度比が、CIE
(国際照明委員会)が定める三刺激値の等色関数分布の
積分値の比に等しくなるように光源の発光スペクトルと
光電変換器の受光感度スペクトルを考慮して決定されて
いる。回転円盤型分光部3はモータにより回転すること
により、各光学フィルタが順次測定光路に挿入される。
ハーフミラー5は、分光フィルタを透過した光を測定光
路7とリファレンス光路8に2分割している。測定セル
9はパイレックスガラス製の光学窓10を備え、100
mm程度以上の測定光路長Lをもつている。測定光用光
検出器11とリファレンス光用光検出器12は、共にシ
リコンフォトダイオードを用いている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention is shown in FIGS. Hereinafter, the first method of the present invention will be described together with the configuration of the apparatus with reference to these drawings. The light source 1 comprises a tungsten lamp having a broad emission spectrum and a stabilized power supply. The lens 2 converts the light from the light source into a parallel light beam. As shown in FIG. 2, the rotating disk-type spectroscopy unit 3 is configured by arranging five optical filters 4 on a rotating disk. Each filter of the spectroscopy unit has a chromaticity measurement filter C and a turbidity measurement filter T both having a center wavelength of 660 nm.
The filters for G and B tristimulus values are 570 nm,
It has a center wavelength near 535 nm and 445 nm.
The spectral transmittance of these three primary color filters is based on the total relative spectral sensitivity ratio from the light source to the photoelectric converter.
It is determined in consideration of the emission spectrum of the light source and the light receiving sensitivity spectrum of the photoelectric converter so as to be equal to the ratio of the integral values of the color matching function distribution of the tristimulus values determined by the (International Commission on Illumination). The rotating disk-type spectroscopic unit 3 is rotated by a motor, so that each optical filter is sequentially inserted into the measurement optical path.
The half mirror 5 divides the light transmitted through the spectral filter into a measurement optical path 7 and a reference optical path 8. The measuring cell 9 has an optical window 10 made of Pyrex glass,
It has a measurement optical path length L of about mm or more. Both the photodetector 11 for measurement light and the photodetector 12 for reference light use silicon photodiodes.

【0021】計測の手順は、校正時に、測定セル9に無
色・透明の標準液であるブランク水を満たし、この状態
で、測定光路7に光学フィルタ4のT,C,R,G,B
を順次挿入し、そのときの透過光量IT0、IC0、IR0
G0、IB0を測定する。次に、測定試料である水道水を
測定セル9に満たし、その時の透過光量IT1、IC1、I
R1、IG1、IB1を測定する。プリアンプ13、A/D変
換器14、CPU15、RS232C 16、通信モデ
ム17からなる信号処理部18は、これらのデータによ
り、濁度Tおよび色度Cの測定値を〔数1〕、〔数2〕
によって、また着色度Qの測定値を〔数3〕〜〔数6〕
によって計算する。この後、公衆回線をてホストコンピ
ュータへ計算で得られたデータを伝送する。
The measurement procedure is as follows. At the time of calibration, the measurement cell 9 is filled with blank water, which is a colorless and transparent standard solution, and in this state, the T, C, R, G, and B of the optical filter 4 are supplied to the measurement optical path 7.
Are sequentially inserted, and the transmitted light amounts I T0 , I C0 , I R0 ,
Measure IG0 and IB0 . Next, the measuring cell 9 is filled with tap water as a measuring sample, and the transmitted light amounts I T1 , I C1 , I
Measure R1 , IG1 , and IB1 . The signal processing unit 18 including the preamplifier 13, the A / D converter 14, the CPU 15, the RS232C 16, and the communication modem 17 calculates the measured values of the turbidity T and the chromaticity C based on these data according to [Equation 1] and [Equation 2]. ]
And the measured value of the coloring degree Q is represented by [Equation 3] to [Equation 6].
Calculate by Thereafter, the data obtained by the calculation is transmitted to the host computer via the public line.

【0022】[0022]

【数1】 (Equation 1)

【0023】[0023]

【数2】 (Equation 2)

【0024】[0024]

【数3】 (Equation 3)

【0025】[0025]

【数4】 (Equation 4)

【0026】[0026]

【数5】 (Equation 5)

【0027】[0027]

【数6】 (Equation 6)

【0028】ここで、KT 、KC 、KR ,KG ,KB
Q は装置定数、x0 はCIEの定める色度図(図3の
x、y平面)における無着色点Wのx座標、x1 はW
(x0 、y0 )とC(x、y)とを結ぶ直線が色度図の
輪郭と交わる点S(x1 、y1 )のx座標である。色相
の測定値は、色度図のxy平面を区分し、信号処理部1
8が、この各区分に、出力すべき色相を赤、黄、白・
黒、青のように記憶した試料座標−色相変換表をデータ
として内蔵し、試料座標C(x、y)がどの区分に入る
かを判別し、その区分に割り振られた色相を出力するこ
とで行われる。
Here, K T , K C , K R , K G , K B ,
K Q is the device constant, x 0 is the x coordinate of the uncolored point W in the chromaticity diagram (x, y plane in FIG. 3) determined by CIE, and x 1 is W
The straight line connecting (x 0 , y 0 ) and C (x, y) is the x coordinate of a point S (x 1 , y 1 ) where the straight line intersects the contour of the chromaticity diagram. The measured value of the hue is divided into the xy plane of the chromaticity diagram, and the signal processing unit 1
8 indicates that the hues to be output are red, yellow, white,
By storing a sample coordinate-hue conversion table stored as black and blue as data, determining which section the sample coordinate C (x, y) falls into, and outputting the hue assigned to that section. Done.

【0029】光源の劣化は次の2つの判定を適用する。
第一は、リファレンス光路8に分岐されたT、C、R、
G、Bの各光学フィルタ4T、4C、4R、4G、4B
に対応する透過光量IRT、IRC、IRR、IRG、IRBを光
電変換器12で測定し、信号処理部18は、この5つの
透過光量測定値のうち少なくとも一つの光強度があらか
じめ規定された値以下になった場合を劣化と判定する。
また第二は、信号処理部18に記憶してある光源の点燈
開始初期に測定した各光学フィルタ4に対応する透過光
量IRT0 、IRC0 、IRR0 、IRG0 、IRB0 と、現在の
測定した透過光量との比であるIRT/IRT0 、IRC/I
RC0 、IRR/IRR0 、IRG/IRG0 、I RB/IRB0 の値
のうち少なくとも一つの透過光量比が、あらかじめ規定
された値以下になった場合を劣化と判定する。この第一
と第二の判定のいずれかまたは両方が起こった時に、光
源の劣化と自己診断する。これは、第一の判定で、一番
光量の少ない波長域の光に対して、計測に必要な絶対光
量を確保し、第二の判定で、光量の絶対値は確保できて
いるが、点燈開始初期の光量に対して光量が低下しすぎ
た場合に、スペクトルの分布が変化したり、放射強度の
角度分布が変化したりして、測定精度に悪影響を及ぼす
ことがあるのを防ぐという意味をもっている。以上の2
つの判別基準の一方または両方に該当する場合に光源の
劣化と判断する自己診断を実施することにより、光源の
劣化を正確に判定することができる。
For the deterioration of the light source, the following two judgments are applied.
The first is that the T, C, R,
G, B optical filters 4T, 4C, 4R, 4G, 4B
Transmitted light amount I corresponding toRT, IRC, IRR, IRG, IRBThe light
The measurement is performed by the electric converter 12, and the signal processing unit 18
At least one of the transmitted light intensity measurements
If the value falls below the previously defined value, it is determined to be deteriorated.
The second is the lighting of the light source stored in the signal processing unit 18.
Transmitted light corresponding to each optical filter 4 measured at the beginning of the start
Quantity IRT0, IRC0, IRR0, IRG0, IRB0And the current
I which is the ratio to the measured transmitted light quantityRT/ IRT0, IRC/ I
RC0, IRR/ IRR0, IRG/ IRG0, I RB/ IRB0The value of the
At least one of the transmitted light ratios is specified in advance.
If the value is equal to or less than the set value, it is determined to be deteriorated. This first
When either or both of the two
Self-diagnose source deterioration. This is the first decision
Absolute light required for measurement for light in the wavelength range where the amount of light is small
Amount, and in the second judgment, the absolute value of the amount of light
Light intensity is too low compared to the initial light intensity
The distribution of the spectrum changes,
Changes in angle distribution adversely affect measurement accuracy
It has the meaning of preventing things from happening. Above 2
Light source if one or both of the two criteria
By performing self-diagnosis to judge deterioration,
Deterioration can be accurately determined.

【0030】次に、この発明の第2の実施例を図1を用
いて説明する。第2の方法は、配管系統のトラブルによ
ってフローセルに試料水が満たされずフローセルが空に
なっている時に、フローセルを透過する各波長の光の光
量を清浄水を満たした時の光量と比較した比率が、各々
ほぼ一定の値を示すことに注目したものである。清浄水
が満ちた測定セル8を透過した測定光路6の透過光量と
測定試料である水道水が満ちた測定セル8を透過した測
定光路6の透過光量の比のうち、分光部3の色度フィル
タを透過した光量の比(IC1/IC0)があらかじめ設定
された範囲に入り、かつ、色度フィルタを透過した各々
の光量の比を濁度フィルタを透過した各々の光量の比で
割ったもの(IC1/IC0)/(IT1/IT0)があらかじ
め設定された範囲内に入った場合には、フローセルへの
液体試料の注入異常と自己診断する。
Next, a second embodiment of the present invention will be described with reference to FIG. The second method is a ratio in which the amount of light of each wavelength transmitted through the flow cell is compared with the amount of light when the flow cell is filled with clean water when the flow cell is empty because the flow cell is not filled with sample water due to a trouble in the piping system. Note that each of them shows a substantially constant value. The chromaticity of the spectroscopic unit 3 in the ratio of the transmitted light amount of the measurement optical path 6 transmitted through the measurement cell 8 filled with clean water and the transmitted light amount of the measurement optical path 6 transmitted through the measurement cell 8 filled with tap water as a measurement sample. The ratio of the amount of light transmitted through the filter ( IC1 / IC0 ) falls within a predetermined range, and the ratio of the amount of light transmitted through the chromaticity filter is divided by the ratio of the amount of light transmitted through the turbidity filter. When the value (I C1 / I C0 ) / (I T1 / I T0 ) falls within a preset range, a self-diagnosis of an abnormal injection of the liquid sample into the flow cell is made.

【0031】最後に、第3の方法は、自動スパン校正機
能を有し、着色フィルタ6を挿入する可動部のある色、
濁り計測装置において、着色フィルタ6の挿入の有り、
無しの違いを、挿入のある場合の透過光量と挿入の無い
場合の透過光量の比が、着色フィルタ6の光減衰率分だ
け変化することに着目したものである。校正用着色フィ
ルタ6を光路に挿入した場合の光量IT2と光路に挿入し
ない場合の光量IT1との比の(IT2/IT1)があらかじ
め設定された範囲外になった場合に、校正用着色フィル
タ6の挿入異常と自己診断する。
Finally, the third method has an automatic span calibration function, and includes a color having a movable portion into which the coloring filter 6 is inserted,
In the turbidity measuring device, there is the insertion of the coloring filter 6,
The difference between the two cases is that the ratio of the amount of transmitted light with insertion and the amount of transmitted light without insertion changes by the amount of light attenuation of the colored filter 6. If the ratio ( IT2 / IT1 ) of the ratio of the light amount IT2 when the calibration coloring filter 6 is inserted into the optical path to the light amount IT1 when the calibration colored filter 6 is not inserted is out of the preset range, the calibration is performed. Self-diagnosis of abnormal insertion of the color filter 6 for use.

【0032】[0032]

【発明の効果】本発明は、色度、濁度、着色度、色相に
代表される液体の着色指標を自動計測する装置の自己診
断方法に関し、光源の劣化、フローセルに試料水を注入
する配管系統のトラブル、自動スパン校正を有する場合
の着色フィルタを挿入する可動部のトラブル等のセンサ
故障のために、水質が異常でないにも関わらず、水質異
常の警報を誤って発するという問題点に対して、信号処
理部で、色、濁り計測値の信号解析を行うことによっ
て、簡便に、これらのセンサ異常を自己診断し、センサ
の故障か水質の異常かを見極め、より正確に、水質異常
を判別する方法を提供する。
The present invention relates to a self-diagnosis method for an apparatus for automatically measuring a coloring index of a liquid represented by chromaticity, turbidity, coloring degree and hue, and relates to deterioration of a light source, piping for injecting sample water into a flow cell. Due to a system failure, a sensor failure such as a movable part that inserts a colored filter when having automatic span calibration, etc., the water quality is not abnormal, but a water quality abnormality alarm is erroneously issued. Then, the signal processor analyzes the color and turbidity measurement values, and easily performs self-diagnosis of these sensor abnormalities, determines whether there is a sensor failure or water quality abnormality, and more accurately detects the water quality abnormality. Provide a method of determining.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液体の色・濁り計測装置の基本構成を
示す図
FIG. 1 is a diagram showing a basic configuration of a liquid color / turbidity measuring device of the present invention.

【図2】回転円盤型分光部の構成を示す図FIG. 2 is a diagram showing a configuration of a rotating disk-type spectroscopic unit.

【図3】3次元表色空間を示す図FIG. 3 is a diagram showing a three-dimensional color space;

【符号の説明】[Explanation of symbols]

1 光源 2 レンズ 3 回転円盤型分光部 4 光学フィルタ 4T 濁度フィルタT 4C 色度フィルタC 4R 赤フィルタR 4G 緑フィルタG 4B 青フィルタB 5 ハーフミラー 6 着色フィルタ 7 測定光路 8 リファレンス光路 9 測定セル 10 光学窓 11 測定光用光検出器 12 リファレンス光用光検出器 13 プリアンプ 14 A/D変換器 15 CPU 16 RS232C 17 通信モデム 18 信号処理部 DESCRIPTION OF SYMBOLS 1 Light source 2 Lens 3 Rotating disk-type spectral part 4 Optical filter 4T Turbidity filter T 4C Chromaticity filter C 4R Red filter R 4G Green filter G 4B Blue filter B 5 Half mirror 6 Coloring filter 7 Measurement optical path 8 Reference optical path 9 Measurement cell Reference Signs List 10 optical window 11 photodetector for measurement light 12 photodetector for reference light 13 preamplifier 14 A / D converter 15 CPU 16 RS232C 17 communication modem 18 signal processing unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金井 秀夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 外山 文生 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 原田 健治 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 多田 弘 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideo Kanai 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Fumio Toyama No. 1, Tanabe Nitta, Kawasaki-ku, Kawasaki, Kanagawa Prefecture No. 1 Fuji Electric Co., Ltd. (72) Inventor Kenji Harada 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Hiroshi Tada No. 1, Tanabe Nitta, Kawasaki-ku, Kawasaki, Kanagawa Prefecture No. 1 Fuji Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光源と、光源から出射した光を複数の種類
のスペクトルに変換して透過する分光部と、分光した複
数の種類の光が透過される試料液体を保持するフローセ
ルと、フローセルを透過した光の光量を測定する光検出
器と、光検出器からの信号に基づき測定値として色度、
濁度、着色度、色相の少なくとも一つを演算出力する信
号処理部を備える液体の色・濁り計測装置において、 分光部を透過した直後の複数の種類の光の光量を各々モ
ニタして、少なくとも一つの光の光量があらかじめ規定
された値以下になった場合と、少なくとも一つの光の光
量が光源の点燈開始初期の光量に対してあらかじめ規定
された割合以下になった場合とのどちらかが起これば、
光源の劣化であると自己診断することを特徴とする液体
の色・濁り計測装置の自己診断方法。
A light source, a spectroscopic unit that converts light emitted from the light source into a plurality of types of spectra and transmits the light, a flow cell holding a sample liquid through which the plurality of types of split light are transmitted, and a flow cell. A photodetector that measures the amount of transmitted light, and chromaticity as a measurement value based on a signal from the photodetector,
In a liquid color / turbidity measuring device including a signal processing unit for calculating and outputting at least one of turbidity, coloring degree, and hue, the amount of light of a plurality of types of light immediately after passing through a spectroscopic unit is monitored. Either when the light intensity of one light falls below a predetermined value, or when the light intensity of at least one light falls below a predetermined ratio with respect to the initial light intensity of the light source. Happens,
A self-diagnosis method for a liquid color / turbidity measuring device, wherein the self-diagnosis is a deterioration of a light source.
【請求項2】光源と、光源から出射した光を複数の種類
のスペクトルに変換して透過する分光部と、分光した複
数の種類の光が透過される試料液体を保持するフローセ
ルと、フローセルを透過した光の光量を測定する光検出
器と、光検出器からの信号に基づき測定値として色度、
濁度、着色度、色相の少なくとも一つを演算出力する信
号処理部を備える液体の色・濁り計測装置において、 フローセルに清浄水を満たした時の各透過光の測定光量
と、フローセルに試料液体を満たした時の各透過光の測
定光量との比のうち、少なくとも一つの組の光の測定光
量比があらかじめ規定された範囲に入り、かつ、少なく
とも一つの組の光の測定光量比をもう一つの組の光の測
定光量比で除算した値があらかじめ規定された範囲内に
入った場合には、フローセルへの液体試料の注入異常と
自己診断することを特徴とする液体の色・濁り計測装置
の自己診断方法。
2. A light source, a spectroscopy section for converting light emitted from the light source into a plurality of types of spectra and transmitting the same, a flow cell for holding a sample liquid through which the plurality of types of split light are transmitted, and a flow cell. A photodetector that measures the amount of transmitted light, and chromaticity as a measurement value based on a signal from the photodetector,
In a liquid color / turbidity measurement device provided with a signal processing unit for calculating and outputting at least one of turbidity, coloring degree, and hue, a measurement amount of each transmitted light when a flow cell is filled with clean water, and a sample liquid in a flow cell. Of the ratio of the measured light amount of each transmitted light when satisfying the condition, the measured light amount ratio of at least one set of light falls within a predetermined range, and the measured light amount ratio of at least one set of light is already reduced. Liquid color / turbidity measurement characterized by self-diagnosis of abnormal injection of liquid sample into the flow cell when the value divided by the measured light intensity ratio of one set of light falls within a predetermined range. Device self-diagnosis method.
【請求項3】光源と、光源から出射した光を複数の種類
のスペクトルに変換して透過する分光部と、分光した複
数の種類の光が透過される試料液体を保持するフローセ
ルと、フローセルを透過した光の光量を測定する光検出
器と、校正用着色フィルタと、校正用着色フィルタを分
光部と光検出器の間の光路に挿入する機構と、校正演算
を行う演算部と校正演算の結果と光検出器からの信号に
基づき測定値として色度、濁度、着色度、色相の少なく
とも一つを演算出力する信号処理部を備える液体の色・
濁り計測装置において、 校正用着色フィルタを光路に挿入した場合と光路に挿入
しない場合との光の光量比があらかじめ設定された範囲
外になった場合に、校正用着色フィルタの挿入異常と自
己診断することを特徴とする液体の色・濁り計測装置の
自己診断方法。
3. A light source, a spectroscopic section for converting light emitted from the light source into a plurality of types of spectra and transmitting the light, a flow cell holding a sample liquid through which the plurality of types of split light are transmitted, and a flow cell. A photodetector for measuring the amount of transmitted light, a color filter for calibration, a mechanism for inserting the color filter for calibration into the optical path between the spectroscopic unit and the photodetector, an operation unit for performing the calibration operation, and Chromaticity, turbidity, coloring degree, and a signal processing unit that calculates and outputs at least one of hue as a measurement value based on the result and the signal from the photodetector.
In the turbidity measuring device, when the light intensity ratio between the case where the calibration coloring filter is inserted into the optical path and the case where the calibration coloring filter is not inserted is out of the preset range, the insertion of the calibration coloring filter is diagnosed as abnormal. A self-diagnosis method for a liquid color / turbidity measurement device.
JP27080996A 1996-10-14 1996-10-14 Self-diagnosis method for liquid color / turbidity measurement device Expired - Fee Related JP3505560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27080996A JP3505560B2 (en) 1996-10-14 1996-10-14 Self-diagnosis method for liquid color / turbidity measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27080996A JP3505560B2 (en) 1996-10-14 1996-10-14 Self-diagnosis method for liquid color / turbidity measurement device

Publications (2)

Publication Number Publication Date
JPH10115585A true JPH10115585A (en) 1998-05-06
JP3505560B2 JP3505560B2 (en) 2004-03-08

Family

ID=17491327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27080996A Expired - Fee Related JP3505560B2 (en) 1996-10-14 1996-10-14 Self-diagnosis method for liquid color / turbidity measurement device

Country Status (1)

Country Link
JP (1) JP3505560B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003202A (en) * 2005-06-21 2007-01-11 Cti Science System Co Ltd Coloration monitoring method and coloration monitoring device of sewage treated water
JP2008064518A (en) * 2006-09-06 2008-03-21 Hitachi High-Technologies Corp Sample analyzer and channel clogging determination method
JP2009204554A (en) * 2008-02-29 2009-09-10 Nippon Soda Co Ltd Method of detecting colored state of hydrochloric acid
JP5308150B2 (en) * 2006-03-14 2013-10-09 Gast Japan 株式会社 Soil inspection equipment
CN111233118A (en) * 2020-03-19 2020-06-05 中冶赛迪工程技术股份有限公司 Intelligent control system and control method for high-density sedimentation tank
CN116858784A (en) * 2023-06-02 2023-10-10 湖北丛光传感技术有限公司 Electronic sight glass
CN116879237A (en) * 2023-09-04 2023-10-13 自然资源部第二海洋研究所 Atmospheric correction method for offshore turbid water body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003202A (en) * 2005-06-21 2007-01-11 Cti Science System Co Ltd Coloration monitoring method and coloration monitoring device of sewage treated water
JP5308150B2 (en) * 2006-03-14 2013-10-09 Gast Japan 株式会社 Soil inspection equipment
JP2008064518A (en) * 2006-09-06 2008-03-21 Hitachi High-Technologies Corp Sample analyzer and channel clogging determination method
JP2009204554A (en) * 2008-02-29 2009-09-10 Nippon Soda Co Ltd Method of detecting colored state of hydrochloric acid
CN111233118A (en) * 2020-03-19 2020-06-05 中冶赛迪工程技术股份有限公司 Intelligent control system and control method for high-density sedimentation tank
CN116858784A (en) * 2023-06-02 2023-10-10 湖北丛光传感技术有限公司 Electronic sight glass
CN116879237A (en) * 2023-09-04 2023-10-13 自然资源部第二海洋研究所 Atmospheric correction method for offshore turbid water body
CN116879237B (en) * 2023-09-04 2023-12-12 自然资源部第二海洋研究所 Atmospheric correction method for offshore turbid water body

Also Published As

Publication number Publication date
JP3505560B2 (en) 2004-03-08

Similar Documents

Publication Publication Date Title
US4669878A (en) Automatic monochromator-testing system
JP2005536713A (en) Apparatus and method for testing liquid properties
CN110208199A (en) One kind can be used for the device and method of ultraviolet in on-line determination water-visible absorption spectra
IES81138B2 (en) Photometric analysis of water suspensions
CN109975288A (en) On-line checking instrument and its control method based on RGB three primary colours visual sensor
JPH10115585A (en) Method for self-diagnosing apparatus for measuring color and turbidity of liquid
JPS617445A (en) Oxidizing degree judging apparatus of copper oxide film
AU721959B2 (en) Spectrometer normalization system
JP2013134246A (en) Pigmentation degree measuring apparatus of liquid
US4715710A (en) Pump colorimetric analyzer
US20080062425A1 (en) Diffuse reflectance readhead
JP3095954B2 (en) Tap water color and turbidity detector
JP3266637B2 (en) Method and apparatus for judging degree of deterioration of lubricating oil
JP3242500B2 (en) Self-diagnosis method of spectrophotometer
US5815254A (en) Transmittance and reflectance measuring spectrophotometer having dual use light channels
Neyezhmakov et al. Increasing the measurement accuracy of wide-aperture photometer based on digital camera
JP3261888B2 (en) Liquid color detection device
JPH10104215A (en) Absorbance detector, chromatographic device, absorbance detecting method, and chromatographic analyzing method
JPH0125017B2 (en)
JPH0953988A (en) Apparatus for measuring coloring of liquid
JPH02280033A (en) Colorimetry inspecting device
JP3582202B2 (en) How to determine tap water quality signal
JPH08313436A (en) Deterioration detection method of filter for automatic tap water quality monitoring apparatus
JPS617446A (en) Surface measuring device of linear body
JPS61233328A (en) Colorimetric color difference meter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees