JPH10113776A - Recognizing method of dust generating state - Google Patents

Recognizing method of dust generating state

Info

Publication number
JPH10113776A
JPH10113776A JP26707296A JP26707296A JPH10113776A JP H10113776 A JPH10113776 A JP H10113776A JP 26707296 A JP26707296 A JP 26707296A JP 26707296 A JP26707296 A JP 26707296A JP H10113776 A JPH10113776 A JP H10113776A
Authority
JP
Japan
Prior art keywords
dust
temperature
information
infrared
temperature information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26707296A
Other languages
Japanese (ja)
Inventor
Koji Nomura
浩二 野村
Yoshitaka Sakamoto
好隆 坂本
Masahiro Nishio
匡弘 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26707296A priority Critical patent/JPH10113776A/en
Publication of JPH10113776A publication Critical patent/JPH10113776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the quantitive indication on dust, to recognize the dust generating state and to proceed the examination on a welding condition and working environment based on dust generating quantity quantitively indicated without accepting subjectivety of measuring people by only photographing welding work itself with an infrared camera during actual welding work at site. SOLUTION: The weld zone periphery is photographed with the infrared camera 12, and obtained infrared information is converted into temperature information with a temperature arithmetic part 18. Further, whether temperature information is information that dust becomes a heat source or not is discriminated with the dust discriminating constant executing dust discrimination based on the distribution density of temperature information using a dust arithmetic part 22, the total sum of information discriminated as temperature information due to dust is obtained, the dust generating index corresponding to dust generating quantity is calculated, whereby the dust generating state is recognized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チリ発生状況認識
方法、特に溶接作業中に発生するチリの定量的な認識を
容易に行うチリ発生状況認識方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recognizing dust occurrence, and more particularly to a method for easily recognizing dust generated during welding work.

【0002】[0002]

【従来の技術】一般に、抵抗スポット溶接やアーク溶接
の品質を安定的に維持管理するためには、基本溶接条件
(溶接電流、通電時間、加圧力)に加えて電極管理が重
要になる。たとえば、この電極管理の周期を減らすため
に、溶接打点に比例して溶接電流をアップするステップ
アップ溶接電流制御が採用されている。しかし、電極の
消耗状態や設備、被溶接物の状態等の外乱が刻々と経時
変化するため、厳密には適正な溶接条件の設定をするこ
とが困難である。そのため、溶接ハナレ等の不良が発生
しないようにするために、一般に溶接電流やステップア
ップ率は安全計数を加えて大きめの設定になりがちであ
る。この結果、溶接部位からは多くのチリが発生してい
る。なお、抵抗スポット溶接において発生するチリを、
アーク溶接ではスパッタと称しているが、以下において
は両者を代表させてチリと称する。
2. Description of the Related Art Generally, in order to stably maintain and control the quality of resistance spot welding and arc welding, it is important to control electrodes in addition to basic welding conditions (welding current, conduction time, pressure). For example, step-up welding current control for increasing the welding current in proportion to the welding point is employed to reduce the electrode management cycle. However, it is difficult to set strictly appropriate welding conditions because disturbances such as the consumption state of the electrodes, the equipment, the state of the workpiece, and the like change with time. Therefore, in order to prevent the occurrence of defects such as welding blemishes, generally, the welding current and the step-up rate tend to be set to a relatively large value by adding a safety factor. As a result, a large amount of dust is generated from the welded portion. In addition, dust generated in resistance spot welding,
In arc welding, it is called spatter, but in the following, both will be referred to as chile.

【0003】このチリは溶接現場においては、溶接品質
保証の目安になっており、品質モニタとして有効な制御
量になっている。つまり、チリの発生があると十分なナ
ゲット径が確保され、安心感も出て溶接品質管理の「目
の管理」にも使用できる。
[0003] The dust is a standard of welding quality assurance at a welding site, and is an effective control amount as a quality monitor. In other words, if there is dust, a sufficient nugget diameter is ensured, and a sense of security is obtained, which can be used for “eye management” of welding quality control.

【0004】しかし、溶接強度が最大でエネルギ効率が
最も良い条件は、チリ発生直前の溶接条件である。ま
た、チリは溶接部位で材料等が溶けて飛散する結果発生
するもので、作業環境の悪化や作業効率の低下の原因に
なっている。つまり、チリの飛散は周囲の汚れを招くと
共に、製品表面に付着した場合は修復作業を必要とし、
設備のセンサ部や摺動部に付着した場合は誤動作や故障
の原因になる。実際の溶接現場では、作業者が目視によ
りチリの有無や量の判定を行っているが、作業者の主観
が入るため信頼性が低かった。
However, the condition where the welding strength is maximum and the energy efficiency is the best is the welding condition immediately before the occurrence of dust. In addition, dust is generated as a result of melting and scattering of materials and the like at a welded portion, which causes a deterioration in working environment and a reduction in working efficiency. In other words, the scattering of dust causes dirt around it, and if it adheres to the product surface, it needs repair work,
If it adheres to the sensor or sliding part of the equipment, it may cause malfunction or failure. At the actual welding site, the operator visually determines the presence or absence and amount of dust, but the reliability was low because the operator's subjectivity was included.

【0005】[0005]

【発明が解決しようとする課題】しかし、溶接条件の変
更の検討や作業環境改善の検討には、現在発生している
チリ発生状況、特にチリの量を正確に把握することが必
要になる。従来のチリ発生量の測定は、溶接前後の被溶
接物の重量を測定したり、溶接設備の周辺にシート等を
配置して飛散したチリを実際に回収して重量を測る等の
方法によって行っているのが現状であり、実際の生産現
場でのチリ量の測定は困難であった。つまり、特別な測
定時間等を設けて、測定するか実験室でシミュレーショ
ン等を行うことによって測定を行わなければならないと
いう問題があった。
However, in examining a change in welding conditions and a study on improving the working environment, it is necessary to accurately grasp the current situation of dust generation, particularly the amount of dust. Conventional measurement of dust generation is performed by methods such as measuring the weight of the workpiece before and after welding, or arranging a sheet etc. around the welding equipment, actually collecting the scattered dust and measuring the weight. At present, it was difficult to measure the amount of dust at actual production sites. That is, there is a problem that the measurement must be performed by providing a special measurement time or the like and performing the measurement or performing a simulation or the like in a laboratory.

【0006】本発明は、上記実情に鑑みてなされたもの
で、溶接現場でも作業者の主観が入ることなく定量的な
チリの発生状況を把握することのできるチリ発生状況認
識方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a dust generation state recognition method capable of quantitatively grasping the generation state of dust at a welding site without subjectivity of an operator. With the goal.

【0007】[0007]

【課題を解決するための手段】上記のような目的を達成
するために、本発明の構成は、赤外線検出センサにより
溶接部位周辺から放射される赤外線情報を取得するステ
ップと、前記赤外線情報を温度情報に換算するステップ
と、前記温度情報の分布密度に基づいてチリ判別を行う
チリ判別定数を取得するステップと、前記チリ判別定数
による判別結果に基づいて前記赤外線検出センサの素子
毎の温度情報の総和を行いチリ発生指数の算出を行うス
テップと、を含み、前記チリ発生指数に基づいてチリ発
生状況の認識を行うことを特徴とする。
In order to achieve the above object, the present invention comprises a step of obtaining infrared information radiated from the vicinity of a welding portion by an infrared detection sensor; Converting the temperature information to information, obtaining a dust discrimination constant for performing dust discrimination based on the distribution density of the temperature information, and calculating temperature information for each element of the infrared detection sensor based on the discrimination result based on the dust discrimination constant. Performing a summation to calculate a dust generation index, and recognizing the dust generation status based on the dust generation index.

【0008】ここで、温度情報とは赤外線温度センサの
各検出素子が検出した赤外線量の平均値に基づいて換算
される温度で、赤外線を放射する熱源の数が多いほど1
個の検出素子の検出する平均赤外線量は増加し、温度情
報の値は増加する。また、チリ判別定数は、熱源をチリ
と認定できる最低温度を定めたもので、前記検出素子の
検出結果に基づく温度情報が前記最低温度以上の場合、
チリであると判別する。前述したように熱源の数に応じ
て温度情報の値が増加するため、前記温度情報をチリの
量とすることができる。なお、溶接部位の温度は高温に
なるが、高温部分の範囲がきわめて狭いため検出素子の
赤外線の平均値は、チリによる赤外線の平均値に比べて
小さく、前記チリ判別定数による判別で区別することが
できる。
Here, the temperature information is a temperature converted based on an average value of the amount of infrared rays detected by each detecting element of the infrared temperature sensor.
The average amount of infrared rays detected by the detection elements increases, and the value of the temperature information increases. Further, the dust discrimination constant defines the lowest temperature at which the heat source can be recognized as dust, and when temperature information based on the detection result of the detection element is equal to or higher than the lowest temperature,
Judge as Chile. As described above, since the value of the temperature information increases according to the number of heat sources, the temperature information can be the amount of dust. Although the temperature of the welding portion is high, the average value of the infrared ray of the detection element is smaller than the average value of the infrared ray due to dust because the range of the high temperature portion is extremely narrow, and it is discriminated by the discrimination by the dust discrimination constant. Can be.

【0009】この構成によれば、温度情報をチリ判別定
数により識別し、その総和を計算することによって、温
度情報の定量化を行っている。つまり、検出素子の検出
範囲内に存在するチリの量に対応して、その範囲で温度
の分布密度が増え検出できる温度が高くなることを利用
してチリ発生状況の定量化を行っている。このように、
溶接作業中に発生するチリの温度を直接検出することに
よって容易にチリの発生状況の定量化を行うことができ
る。なお、必要に応じて、チリ発生指数と実際のチリ重
量や体積との換算テーブルを準備することによって実際
のチリの重量や体積を表示することもできる。
According to this configuration, the temperature information is identified by the dust discrimination constant, and the sum thereof is calculated to quantify the temperature information. That is, the dust generation state is quantified by utilizing the fact that the distribution density of the temperature increases in the range corresponding to the amount of dust present in the detection range of the detection element and the temperature that can be detected increases. in this way,
By directly detecting the temperature of dust generated during the welding operation, the occurrence of dust can be easily quantified. If necessary, a conversion table between the dust generation index and the actual dust weight or volume can be prepared to display the actual dust weight or volume.

【0010】[0010]

【発明の実施の形態】以下、本発明の好適な実施形態を
図面に基づき説明する。図1にはチリ発生状況認識方法
を実現するためのチリ認識装置10の構成概念図が示さ
れている。赤外線カメラ12は、市販のもので、赤外線
検出素子として、例えばインジウムアンチモンや水銀カ
ドニウムテルル等が使用され、サンプリング周期50H
z、測定素子数が縦120個×横160個程度のもので
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram of a configuration of a dust recognition device 10 for realizing the dust occurrence situation recognition method. The infrared camera 12 is a commercially available one. For example, indium antimony, mercury cadmium tellurium, or the like is used as an infrared detection element, and the sampling period is 50H.
z, the number of measuring elements is about 120 × 160.

【0011】電極14によって挟持された被溶接物16
は、所定の挟持圧力のもとで所定電圧が印加されると、
スポット溶接を開始する。前記赤外線カメラ12は溶接
部16aの近傍を測定範囲として設定配置され、前記溶
接部16aから飛翔するチリ(溶融金属の飛び散り片)
の撮影を行う。そして、赤外線カメラ12で取得された
赤外線情報は、温度演算部18に入力される。前記赤外
線カメラ12の赤外線検出素子は被測定物の材質(放射
率)と温度により受ける赤外線量が決まっているため、
前記温度演算部18は、あらかじめ準備された赤外線量
と温度とが対応した変換テーブルに基づいて、赤外線情
報を温度情報に換算し、順次データ記憶部20に転送し
記憶させる。なお、前記赤外線カメラ12と温度演算部
18とが一体化された赤外線温度検出装置を用いてもよ
い。
The work 16 to be welded sandwiched between the electrodes 14
When a predetermined voltage is applied under a predetermined clamping pressure,
Start spot welding. The infrared camera 12 is set and arranged so that the vicinity of the welded portion 16a is set as a measurement range, and dust (scattered pieces of molten metal) flying from the welded portion 16a.
Take a photo. Then, the infrared information acquired by the infrared camera 12 is input to the temperature calculation unit 18. The amount of infrared rays received by the infrared detection element of the infrared camera 12 is determined by the material (emissivity) of the object to be measured and the temperature.
The temperature calculation unit 18 converts the infrared information into temperature information based on a conversion table in which the amount of infrared light and the temperature are prepared in advance, and sequentially transfers the information to the data storage unit 20 for storage. Note that an infrared temperature detecting device in which the infrared camera 12 and the temperature calculating unit 18 are integrated may be used.

【0012】チリ演算部22では、前記データ記憶部2
0に記憶されたチリの温度情報に基づいて、該温度情報
の定量化を行う。なお、表示部24には、定量化したチ
リ情報を表示するが、前記温度演算部18で算出された
実際のチリ温度等を同時に表示してもよい。
In the chile operation unit 22, the data storage unit 2
Based on the temperature information of Chile stored in 0, the temperature information is quantified. Although the display unit 24 displays the quantified dust information, the actual dust temperature and the like calculated by the temperature calculating unit 18 may be displayed at the same time.

【0013】続いて、図1に加えて、図2のフローチャ
ートを用いて、具体的なチリの赤外線情報による定量化
について説明する。まず、前記赤外線カメラ12により
溶接部16a近傍の撮影を行う(S100)。そして、
チリから放射される赤外線の測定を行う(S101)。
続いて、測定した赤外線情報の温度換算を行うに当たっ
て、あらかじめ入力されている被溶接物16の放射率や
室温(溶接現場)を取得する(S102)。被溶接物1
6は、通常状態でも赤外線を放出している。また、被溶
接物16の表面状態や照明の状態、室温等によっても赤
外線測定値が変動してしまう。つまり、放射率や室温は
被溶接物16が通常放射する赤外線(バックグラウン
ド)を排除して温度換算時の補正を正確に行うためのも
のである。そして、温度演算部18では、赤外線カメラ
12で取得した赤外線データを別途取得した放射率や室
温によって補正し、さらに温度演算部18の有する変換
テーブルに基づいて、チリの本来の測定温度を算出する
(S103)。
Next, specific quantification based on infrared information on dust will be described with reference to the flowchart of FIG. 2 in addition to FIG. First, the vicinity of the welded portion 16a is photographed by the infrared camera 12 (S100). And
The infrared radiation emitted from the dust is measured (S101).
Subsequently, in performing the temperature conversion of the measured infrared information, the emissivity and the room temperature (welding site) of the workpiece 16 which are input in advance are acquired (S102). Workpiece 1
6 emits infrared rays even in a normal state. Further, the infrared measurement value also varies depending on the surface condition of the workpiece 16, the lighting condition, the room temperature, and the like. In other words, the emissivity and the room temperature are for accurately correcting the temperature conversion by excluding the infrared rays (background) normally emitted by the workpiece 16. Then, the temperature calculation unit 18 corrects the infrared data obtained by the infrared camera 12 with the separately obtained emissivity and room temperature, and further calculates the original measured temperature of Chile based on the conversion table of the temperature calculation unit 18. (S103).

【0014】一般に、チリの大きさは1mm3程度で、
その飛翔速度は10m/S程度であるのに対して、前述
したような市販の赤外線カメラ12はサンプリング周期
50Hz、測定素子数が縦120個×横160個で、測
定範囲(視野)を縦300mm×横400mmとした場
合解像度が縦300/120mm、横400/160m
m程度であるため、赤外線カメラ12の各検出素子は該
検出素子の測定範囲に存在する熱源(チリ)を測定範囲
全体でとらえた時の平均的温度を測定することになる。
このような測定条件の場合、溶接部位周辺のチリの温度
は、数百度程度で検出される。なお、実際のチリの表面
温度は1000℃以上である。従って、赤外線を放射す
る熱源(チリ)の数が多いほど1個の検出素子の検出す
る平均赤外線量は増加し、それに基づく温度情報の値は
増加する。なお、この時、撮影範囲には非常に高温であ
る溶接部位も含まれるが、高温になる範囲がきわめて狭
いため測定範囲の平均温度を比較した場合、チリ等によ
る温度上昇よりはるかに小さくなる。このように換算さ
れた温度データは順次データ記憶部20に記憶される
(S104)。
Generally, the size of the dust is about 1 mm 3 ,
While the flight speed is about 10 m / S, the commercially available infrared camera 12 described above has a sampling cycle of 50 Hz, the number of measurement elements is 120 × 160, and the measurement range (field of view) is 300 mm in length. × When 400 mm wide, the resolution is 300/120 mm long and 400/160 m wide
m, each detecting element of the infrared camera 12 measures an average temperature when a heat source (dust) existing in the measuring range of the detecting element is captured in the entire measuring range.
Under such measurement conditions, the temperature of dust around the welded portion is detected at about several hundred degrees. Note that the actual surface temperature of dust is 1000 ° C. or higher. Therefore, as the number of heat sources (Chile) emitting infrared rays increases, the average amount of infrared rays detected by one detecting element increases, and the value of temperature information based on the average amount increases. Note that, at this time, the imaging range includes a welded part having a very high temperature, but since the range of the high temperature is extremely narrow, when the average temperature in the measurement range is compared, the temperature rise is much smaller than the temperature rise due to dust or the like. The converted temperature data is sequentially stored in the data storage unit 20 (S104).

【0015】続いて、チリ演算部22は、あらかじめ実
験室等で測定・算出したチリ判別定数を取得し(S10
5)、チリ発生指数の計算を行う(S106)。前記チ
リ判別定数は、例えば、熱源をチリと認定できる範囲を
定めたもので、最低温度Tminを定めたもので、実験
室等で実際のチリの温度を詳細に解析することによって
求めた実験値である。例えば、前記検出素子の赤外線検
出結果に基づく温度TがT<Tmin=122.5℃の
場合、検出素子の測定範囲内を熱源であるチリが通過し
なかったと判断して、T=0とする。また、Tmin=
122.5℃<Tの場合、検出素子の測定範囲内にチリ
が存在したと判断して、Tの値を維持する。このような
温度に関する温度補正関数をf(T)として、前記赤外
線検出センサ12の各検出素子に関する温度補正を行
い、その値の総和をチリ発生指数Eとする。すなわちチ
リ発生指数Eは以下の式で算出できる。
Subsequently, the dust calculation unit 22 acquires the dust discrimination constant measured and calculated in advance in the laboratory or the like (S10).
5), a dust generation index is calculated (S106). The chile discrimination constant is, for example, a range in which a heat source can be recognized as chile, a minimum temperature Tmin is determined, and an experimental value obtained by analyzing the actual chile temperature in a laboratory or the like in detail. It is. For example, when the temperature T based on the infrared detection result of the detection element is T <Tmin = 122.5 ° C., it is determined that dust as a heat source has not passed through the measurement range of the detection element, and T = 0. . Also, Tmin =
If 122.5 ° C. <T, it is determined that dust is present within the measurement range of the detection element, and the value of T is maintained. With such a temperature correction function relating to temperature as f (T), temperature correction is performed on each detection element of the infrared detection sensor 12, and the sum of the values is defined as a dust generation index E. That is, the dust generation index E can be calculated by the following equation.

【0016】[0016]

【数1】 なお、Tは赤外線カメラの1素子の赤外線情報に基づく
温度情報、iは赤外線カメラの水平方向の素子数、jは
赤外線カメラの垂直方向の素子数、nは温度測定のサン
プリング数である。
(Equation 1) Here, T is temperature information based on infrared information of one element of the infrared camera, i is the number of elements in the horizontal direction of the infrared camera, j is the number of elements in the vertical direction of the infrared camera, and n is the sampling number of temperature measurement.

【0017】このように、温度補正関数fによって、チ
リと認識された熱源の数に応じて検出する温度が増加す
ることになる。すなわち、温度情報をチリ発生量に対応
する相対的な量とすることができる。
As described above, the temperature to be detected increases according to the number of heat sources recognized as dust due to the temperature correction function f. That is, the temperature information can be a relative amount corresponding to the amount of dust generation.

【0018】図3(a)に示すグラフは、上述した方法
で算出したチリ発生指数と被溶接物の総板厚との関係で
あり、図3(b)に示すグラフは、実際に従来のチリ量
算出方法(実験室で溶接前後の被溶接物の重量を比較し
て求めたもの)により算出したチリ発生量と総板厚の関
係を示すものである。両者から明らかなようにチリ発生
指数が実際のチリ発生量の代替え値として使用できるこ
とがわかる。チリ演算部22は、データ記憶部20を介
して表示部24にチリ発生指数を数値として表示しても
よいし、図3(a)のようにグラフとして表示してもよ
い。
The graph shown in FIG. 3A shows the relationship between the dust generation index calculated by the above-described method and the total plate thickness of the workpiece, and the graph shown in FIG. It shows the relationship between the amount of dust generated by the method of calculating the amount of dust and that obtained by comparing the weight of the work before and after welding in the laboratory and the total sheet thickness. As is clear from both figures, it is understood that the dust generation index can be used as a substitute for the actual dust generation amount. The dust calculation unit 22 may display the dust generation index as a numerical value on the display unit 24 via the data storage unit 20, or may display it as a graph as shown in FIG.

【0019】なお、チリ発生状況認識において、チリ発
生指数を用いて、チリの絶対量を表示するようにしても
よい。チリの絶対量が必要な場合(S107)、図3
(a),(b)等によりあらかじめ作成したチリ発生量
換算テーブルを取得し(S108)、チリ発生指数をチ
リ発生量に換算する(S109)。このチリの絶対量も
前記チリ発生指数やグラフと共に表示部24に表示して
処理を終了する。なお、S107において、チリの絶対
量が必要ない場合、チリ発生指数等の表示のみで処理を
終了する。
In the recognition of the situation of occurrence of dust, the absolute amount of dust may be displayed using the dust index. When the absolute amount of Chile is required (S107), FIG.
A dust generation amount conversion table created in advance by (a), (b) or the like is acquired (S108), and the dust generation index is converted into a dust generation amount (S109). The absolute amount of dust is displayed on the display unit 24 together with the dust occurrence index and the graph, and the process is terminated. If the absolute amount of dust is not required in S107, the process is terminated only by displaying the dust occurrence index or the like.

【0020】このように、溶接現場で実際の作業中に溶
接作業自体を赤外線カメラで撮影するのみで、測定者の
主観が入ることなくチリの定量化表示を容易に行い、チ
リ発生状況を認識することができる。この定量化表示さ
れたチリ発生量に基づいて、溶接条件の検討や作業環境
の検討を進めることができる。
As described above, during the actual work at the welding site, only by photographing the welding work itself with the infrared camera, the display of the quantity of dust is easily performed without the subjectivity of the measurer, and the occurrence of dust is recognized. can do. Based on the quantified and displayed amount of dust, it is possible to proceed with examination of welding conditions and work environment.

【0021】なお、本実施形態ではスポット溶接を例に
とって説明したが、アーク溶接等チリが発生する溶接法
であれば、全般に適用が可能で、同様な効果を得ること
ができる。
Although the present embodiment has been described by taking spot welding as an example, any welding method, such as arc welding, which generates dust, can be generally applied and similar effects can be obtained.

【0022】また、本実施形態で示したチリ判別定数
は、溶接設備や赤外線撮影状態によって変化するため、
適宜選択する必要がある。
Also, since the dust discrimination constant shown in the present embodiment changes depending on the welding equipment and the state of infrared photographing,
It is necessary to select it appropriately.

【0023】[0023]

【発明の効果】本発明によれば、溶接現場で実際の作業
中に溶接作業自体を赤外線カメラで撮影するのみで、測
定者の主観が入ることなくチリの定量化表示を容易に行
い、チリ発生状況を認識することができる。そして、定
量化表示されたチリ発生量に基づいて、溶接条件の検討
や作業環境の検討を進めることができる。
According to the present invention, during the actual work at the welding site, the welding operation itself is simply photographed with an infrared camera, and the quantitative display of the dust is easily performed without the subjectivity of the measurer. The occurrence situation can be recognized. Then, based on the quantified and displayed amount of dust, it is possible to proceed with the examination of the welding conditions and the work environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態のチリ発生状況認識方法を
実現するためのチリ認識装置の構成概念図である。
FIG. 1 is a configuration conceptual diagram of a dust recognition device for realizing a dust occurrence situation recognition method according to an embodiment of the present invention.

【図2】 本発明の実施形態のチリ発生状況認識方法の
フローチャートである。
FIG. 2 is a flowchart of a dust generation situation recognition method according to the embodiment of the present invention.

【図3】 (a)はチリ発生指数と総板厚との関係を示
す説明図であり、(b)はチリ発生量と総板厚の関係を
示す説明図である。
FIG. 3A is an explanatory diagram showing a relationship between a dust generation index and a total plate thickness, and FIG. 3B is an explanatory diagram showing a relationship between a dust generation amount and a total plate thickness.

【符号の説明】[Explanation of symbols]

10 チリ認識装置、12 赤外線カメラ、18 温度
演算部、20 データ記憶部、22 チリ演算部、24
表示部。
DESCRIPTION OF SYMBOLS 10 Chile recognition apparatus, 12 Infrared camera, 18 Temperature calculation part, 20 Data storage part, 22 Chile calculation part, 24
Display section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 赤外線検出センサにより溶接部位周辺か
ら放射される赤外線情報を取得するステップと、 前記赤外線情報を温度情報に換算するステップと、 前記温度情報の分布密度に基づいてチリ判別を行うチリ
判別定数を取得するステップと、 前記チリ判別定数による判別結果に基づいて前記赤外線
検出センサの素子毎の温度情報の総和を行いチリ発生指
数の算出を行うステップと、 を含み、前記チリ発生指数に基づいてチリ発生状況の認
識を行うことを特徴とするチリ発生状況認識方法。
A step of obtaining infrared information radiated from a periphery of a welding part by an infrared detection sensor; a step of converting the infrared information into temperature information; and a step of performing dust determination based on a distribution density of the temperature information. Obtaining a discrimination constant; and calculating a dust generation index by summing up temperature information for each element of the infrared detection sensor based on the discrimination result by the dust detection constant. A method for recognizing the situation of occurrence of dust based on the recognition of the situation of occurrence of dust on the basis of the situation.
JP26707296A 1996-10-08 1996-10-08 Recognizing method of dust generating state Pending JPH10113776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26707296A JPH10113776A (en) 1996-10-08 1996-10-08 Recognizing method of dust generating state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26707296A JPH10113776A (en) 1996-10-08 1996-10-08 Recognizing method of dust generating state

Publications (1)

Publication Number Publication Date
JPH10113776A true JPH10113776A (en) 1998-05-06

Family

ID=17439646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26707296A Pending JPH10113776A (en) 1996-10-08 1996-10-08 Recognizing method of dust generating state

Country Status (1)

Country Link
JP (1) JPH10113776A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504134A (en) * 2004-06-28 2008-02-14 プジョー シトロエン オートモビル エス アー Resistance welding method monitoring method and apparatus for carrying out the method
JP2011115828A (en) * 2009-12-04 2011-06-16 Kobelco Kaken:Kk Method and device for detecting defective welding
JP2013119138A (en) * 2011-12-07 2013-06-17 Japan Transport Engineering Co Belt polishing device
JP2013151028A (en) * 2013-04-01 2013-08-08 Kobelco Kaken:Kk Detection method of poor weld and detection device thereof
CN104227216A (en) * 2013-06-14 2014-12-24 中国电子科技集团公司第十八研究所 On-line nondestructive testing method for resistance welding of solar cell
JP2020015072A (en) * 2018-07-26 2020-01-30 本田技研工業株式会社 Quality evaluation method and apparatus of joint part
JP2023500999A (en) * 2020-01-20 2023-01-17 上海交通大学 On-line detection method and system for spatter in resistance spot welding based on intrinsic process signal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504134A (en) * 2004-06-28 2008-02-14 プジョー シトロエン オートモビル エス アー Resistance welding method monitoring method and apparatus for carrying out the method
JP2011115828A (en) * 2009-12-04 2011-06-16 Kobelco Kaken:Kk Method and device for detecting defective welding
JP2013119138A (en) * 2011-12-07 2013-06-17 Japan Transport Engineering Co Belt polishing device
JP2013151028A (en) * 2013-04-01 2013-08-08 Kobelco Kaken:Kk Detection method of poor weld and detection device thereof
CN104227216A (en) * 2013-06-14 2014-12-24 中国电子科技集团公司第十八研究所 On-line nondestructive testing method for resistance welding of solar cell
JP2020015072A (en) * 2018-07-26 2020-01-30 本田技研工業株式会社 Quality evaluation method and apparatus of joint part
JP2023500999A (en) * 2020-01-20 2023-01-17 上海交通大学 On-line detection method and system for spatter in resistance spot welding based on intrinsic process signal

Similar Documents

Publication Publication Date Title
Sreedhar et al. Automatic defect identification using thermal image analysis for online weld quality monitoring
US4375026A (en) Weld quality monitor
KR101007724B1 (en) Laser weld monitor
WO2013061518A1 (en) Welding skill evaluation device and weld quality evaluation device
CN107931802B (en) Arc welding seam quality online detection method based on mid-infrared temperature sensing
US20160144452A1 (en) System and method for detecting a defect in a workpiece undergoing material processing by an energy point source
US20210339343A1 (en) Method for detecting welding defects in arc welding and arc welding system
KR101275097B1 (en) Inspect apparatus and method system of on-line non destructive testing for spot welding
JP4469298B2 (en) Diagnosis method and apparatus for flash butt weld of steel plate
US9683949B2 (en) Non-destructive quantitative weld quality measurement using radiographic imaging
US20080237197A1 (en) System and method for welding and real time monitoring of seam welded parts
Zhang et al. Weld penetration sensing in pulsed gas tungsten arc welding based on arc voltage
JPH10113776A (en) Recognizing method of dust generating state
JP3498161B2 (en) On-line non-destructive inspection apparatus and method for electric resistance welding
WO2022040819A2 (en) Computer-implemented monitoring of a welding operation
JP2007330987A (en) Apparatus and method for analyzing welding condition using weld zone visualizing apparatus
Venkatraman et al. Thermography for online detection of incomplete penetration and penetration depth estimation
JP2725582B2 (en) Nugget diameter measurement method for spot welding
Wang et al. On line sensing of weld penetration using infrared thermography
JP2967671B2 (en) Monitoring device for welding status
Venkatraman et al. Online infrared detection of inclusions and lack of penetration during welding
Pernambuco et al. Data Analysis Tool and Image Acquisition System for Linear Arc Weld Deposition Evaluation
JP2633498B2 (en) X-ray welding inspection method, welding inspection device, and welding device using the inspection device
Choi et al. Spectroscopy-based smart optical monitoring system in the applications of laser additive manufacturing
US20240165731A1 (en) Welding data processing device and welding data processing method