JPH10110670A - Solar light and heat compound generation device - Google Patents

Solar light and heat compound generation device

Info

Publication number
JPH10110670A
JPH10110670A JP8264144A JP26414496A JPH10110670A JP H10110670 A JPH10110670 A JP H10110670A JP 8264144 A JP8264144 A JP 8264144A JP 26414496 A JP26414496 A JP 26414496A JP H10110670 A JPH10110670 A JP H10110670A
Authority
JP
Japan
Prior art keywords
heat
insulating layer
solar
energy
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8264144A
Other languages
Japanese (ja)
Inventor
Takayuki Obata
隆幸 小畠
Chuichi Aoki
忠一 青木
Maki Ishizawa
真樹 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8264144A priority Critical patent/JPH10110670A/en
Publication of JPH10110670A publication Critical patent/JPH10110670A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar light and heat compound generation device which can efficiently convert energy of solar light to electric energy, and reduce temperature rise of a solar battery. SOLUTION: Infrared selective transmission layer 8, a heat insulative layer 8, a heat collecting electric insulative layer 9 which converts the infrared light to heat, a thermoelectric element 4 which converts the solar energy to electric energy, an electric insulative layer 6, a cooling device 11 are sequentially laminated on a back face of a solar battery 3 which converts solar light energy to electric energy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は太陽エネルギーを電
力に変換する太陽光・熱複合発電装置に係り、特に太陽
エネルギーの有効利用に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined solar and thermal power generation system for converting solar energy into electric power, and more particularly to an effective use of solar energy.

【0002】[0002]

【従来の技術】従来からある太陽光・熱複合発電装置を
図7、図8に示す。なお図8は図7中にある、Bの詳細
図である。図中、1は太陽光、2は集光鏡、3は太陽電
池、4は熱電素子、5aは熱電半導体、5bは熱電素子
電極、6は電気絶縁層であり、熱電半導体5a及び熱電
素子電極5bより熱電素子4が構成される。
2. Description of the Related Art A conventional combined solar and thermal power generation system is shown in FIGS. FIG. 8 is a detailed view of B in FIG. In the figure, 1 is sunlight, 2 is a condensing mirror, 3 is a solar cell, 4 is a thermoelectric element, 5a is a thermoelectric semiconductor, 5b is a thermoelectric element electrode, 6 is an electric insulating layer, and is a thermoelectric semiconductor 5a and a thermoelectric element electrode. The thermoelectric element 4 is constituted by 5b.

【0003】従来の太陽光・熱複合発電装置を図7およ
び図8を参照しながら以下に説明する。従来例では、太
陽光1を集光鏡2により集光してその焦点付近に太陽電
池3、電気絶縁層6、熱電素子4を積層したものを配置
する。集光鏡2によって集光された太陽光1は、太陽電
池3により電気エネルギーに変換される。さらに、太陽
電池3に吸収されなかった光エネルギーは太陽電池3お
よび電気絶縁層6で熱エネルギーに変換され、熱電素子
4の高温側受熱面を加熱する。一方、熱電素子4の低温
側受熱面は電気絶縁層6を介して集光鏡2に接続されて
おり、集光鏡2を介して周囲に放熱する。よって、熱電
素子4の両端に温度差が発生し、熱エネルギーは電気エ
ネルギーに変換される。
A conventional combined solar and thermal power generation device will be described below with reference to FIGS. 7 and 8. In a conventional example, sunlight 1 is condensed by a converging mirror 2, and a solar cell 3, an electric insulating layer 6, and a thermoelectric element 4 are stacked near the focal point. The sunlight 1 collected by the condenser mirror 2 is converted into electric energy by the solar cell 3. Further, light energy not absorbed by the solar cell 3 is converted into heat energy by the solar cell 3 and the electric insulating layer 6, and heats the high-temperature-side heat receiving surface of the thermoelectric element 4. On the other hand, the low-temperature-side heat receiving surface of the thermoelectric element 4 is connected to the condenser mirror 2 via the electric insulating layer 6 and radiates heat to the surroundings via the condenser mirror 2. Therefore, a temperature difference is generated between both ends of the thermoelectric element 4, and the heat energy is converted into electric energy.

【0004】[0004]

【発明が解決しようとする課題】従来の太陽光・熱複合
発電装置においては、太陽電池3に集光鏡2により集光
された太陽光1が直接照射され、太陽電池3が可視光線
の波長成分を吸収し、電気エネルギーに変換する。一
方、集光された赤外線は太陽電池3を加熱した上で、電
気絶縁層6を介して熱電素子4の高温側受熱面を加熱す
ることにより温度差を発生し、熱電変換を行う。従って
太陽電池3は高温(200℃程度)になるため、太陽電
池3は、高温動作においても良好な出力特性のものを選
定する必要がある。即ち、従来の太陽光・熱複合発電装
置に使用する太陽電池3は200℃付近の高温でも動作
可能なガリウム−ヒ素(GaAs)系など化合物系の太
陽電池に限定されるため、装置コストが高くなる。比較
的コストが低いシリコン(Si)系の太陽電池を適用す
る場合、高温動作時には効率の減少が顕著であるため、
そのまま適用できないという問題点があった。
In the conventional combined solar and thermal power generation device, the solar cell 3 is directly irradiated with the sunlight 1 collected by the condenser mirror 2, and the solar cell 3 emits a visible light having a wavelength of visible light. Absorbs components and converts them into electrical energy. On the other hand, the collected infrared rays heat the solar cell 3 and then heat the high-temperature-side heat receiving surface of the thermoelectric element 4 via the electric insulating layer 6 to generate a temperature difference, thereby performing thermoelectric conversion. Therefore, since the solar cell 3 has a high temperature (about 200 ° C.), it is necessary to select a solar cell 3 having good output characteristics even in a high-temperature operation. That is, since the solar cell 3 used in the conventional combined solar and thermal power generation device is limited to a compound-based solar cell such as a gallium-arsenic (GaAs) system that can operate even at a high temperature of around 200 ° C., the device cost is high. Become. When a silicon (Si) -based solar cell having a relatively low cost is applied, the efficiency is remarkably reduced during high-temperature operation.
There was a problem that it could not be applied as it was.

【0005】本発明は上記の事情に鑑みてなされたもの
で、熱電素子を太陽電池を介さずに加熱することによ
り、太陽電池の温度を抑制できるため、太陽電池の選定
にあたり、太陽電池の温度特性に依存せず、かつ太陽光
エネルギーを有効に利用することが可能な太陽光・熱複
合発電装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and since the temperature of the solar cell can be suppressed by heating the thermoelectric element without passing through the solar cell, the temperature of the solar cell can be reduced when selecting the solar cell. It is an object of the present invention to provide a combined solar and thermal power generation device that does not depend on characteristics and can effectively use solar energy.

【0006】[0006]

【課題を解決するための手段】前記課題の解決は、本発
明が次に挙げる新規で特徴的な構成手段を採用すること
により達成される。すなわち、本発明は、太陽光エネル
ギーを電気エネルギーに変換する太陽電池と、太陽熱エ
ネルギーを電気エネルギーに変換する熱電素子から構成
される太陽光・熱複合発電装置において、前記太陽電池
の太陽光受光面の裏面に設けられた赤外線のみを透過
し、可視光線を反射する特徴を有した赤外線選択透過層
と、当該赤外線選択透過層の裏面に設けられる断熱層
と、当該断熱層の裏面に設けられ、赤外線を熱に変換す
る集熱電気絶縁層と、当該集熱電気絶縁層の裏面に設け
られる前記熱電素子と、当該熱電素子の裏面に設けられ
る電気絶縁層と、当該電気絶縁層の裏面に設けられる冷
却装置とより構成されることを特徴とするものである。
The above object can be attained by employing the following novel and characteristic constituent means of the present invention. That is, the present invention relates to a combined solar / thermal power generation device including a solar cell that converts sunlight energy into electric energy and a thermoelectric element that converts solar heat energy into electric energy. The infrared selective transmission layer having a feature of transmitting only infrared light provided on the back surface of the infrared selective transmission layer and reflecting visible light, a heat insulating layer provided on the back surface of the infrared selective transmission layer, and provided on the back surface of the heat insulating layer, A heat-collecting electrical insulating layer that converts infrared rays into heat, the thermoelectric element provided on the back surface of the heat-collecting electrical insulating layer, an electrical insulating layer provided on the back surface of the thermoelectric element, and a thermal insulating device provided on the back surface of the electrical insulating layer And a cooling device.

【0007】また本発明は、前記太陽光・熱複合発電装
置において、赤外線選択透過層と断熱層の間に、集光装
置を設けたことを特徴とするものである。また本発明
は、太陽光エネルギーを電気エネルギーに変換する太陽
電池と、太陽熱エネルギーを電気エネルギーに変換する
熱電素子から構成される太陽光・熱複合発電装置におい
て、前記太陽電池の太陽光受光面の裏面に設けられた赤
外線のみを透過し、可視光線を反射する特徴を有した赤
外線選択透過層と、当該赤外線選択透過層の裏面に設け
られる断熱層と、当該断熱層の裏面に配設された集光鏡
と、当該集光鏡の焦点付近に配設され、赤外線を熱に変
換する集熱電気絶縁層と、当該集熱電気絶縁層の裏面に
設けられる前記熱電素子と、当該熱電素子の裏面に設け
られ前記集光鏡に設けられる電気絶縁層とより構成され
ることを特徴とするものである。
Further, the present invention is characterized in that in the combined solar and thermal power generation device, a light condensing device is provided between the infrared selective transmission layer and the heat insulating layer. The present invention also provides a solar / thermal combined power generation device including a solar cell that converts sunlight energy into electric energy, and a thermoelectric element that converts solar heat energy into electric energy. An infrared selective transmission layer having a characteristic of transmitting only infrared light provided on the back surface and reflecting visible light, a heat insulating layer provided on the back surface of the infrared selective transmission layer, and a heat insulating layer disposed on the back surface of the heat insulating layer A condenser mirror, disposed near the focal point of the condenser mirror, and a heat collecting electrical insulating layer that converts infrared light into heat; the thermoelectric element provided on the back surface of the heat collecting electrical insulating layer; It is characterized by comprising an electrical insulating layer provided on the back surface of the condenser mirror.

【0008】また本発明は、前記各太陽電池として、太
陽光を透過するような太陽電池セルの電極構造とするこ
とを特徴とするものである。本発明は、前記のような新
規な手段を講ずるので、赤外線により生じる熱エネルギ
ーは全て熱電素子による熱電変換に利用され、太陽電池
の温度を上昇させる要因とはならない。さらに可視光線
についても赤外線選択透過層で反射することにより、再
度太陽電池により、可視光線を電気エネルギーに変換す
ることが可能である。
Further, the present invention is characterized in that each of the solar cells has an electrode structure of a solar cell that transmits sunlight. Since the present invention employs the above-described novel means, all the thermal energy generated by infrared rays is used for thermoelectric conversion by the thermoelectric element, and does not become a factor for increasing the temperature of the solar cell. Further, the visible light is reflected by the infrared selective transmission layer, whereby the visible light can be converted into electric energy again by the solar cell.

【0009】以上のことから、太陽光エネルギーを有効
に利用できる。さらに、太陽電池の温度上昇が小さいこ
とから、常温付近で効率が高く、かつコストが安価な結
晶系シリコン(Si)太陽電池などが使用可能となる。
From the above, solar energy can be effectively used. Further, since the temperature rise of the solar cell is small, it is possible to use a crystalline silicon (Si) solar cell having high efficiency near room temperature and low cost.

【0010】[0010]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態例を詳細に説明する。 実施形態例1 この実施形態例1は図1および図4に関するものであ
り、図4は図1のA部を拡大した図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. First Embodiment A first embodiment relates to FIGS. 1 and 4, and FIG. 4 is an enlarged view of a portion A in FIG.

【0011】図1および図4において、太陽光・熱複合
発電装置は、太陽電池3、赤外線選択透過層7、断熱層
8、集熱電気絶縁層9、熱電素子4、電気絶縁層6、冷
却装置11が太陽光1の受光面から垂直方向に順に密着
して設けられた構成となっており、太陽電池3、赤外線
選択透過層7、断熱層8の側面は直接、外部筐体10に
接続されて設けられ、集熱電気絶縁層9、熱電素子4、
電気絶縁層6の側面は、断熱材13を介して外部筐体1
0に接続されて設けられる。熱電素子4は、図4に示す
ように熱電半導体5a、熱電素子電極5bで構成されて
おり、高温側受熱面は集熱電気絶縁層9に、低温側受熱
面は電気絶縁層6を介して冷却装置11にそれぞれ密着
されている。
In FIG. 1 and FIG. 4, a combined solar and thermal power generation device includes a solar cell 3, an infrared selective transmission layer 7, a heat insulation layer 8, a heat collection electric insulation layer 9, a thermoelectric element 4, an electric insulation layer 6, a cooling element. The device 11 has a configuration in which the device 11 is provided in close contact in the vertical direction from the light receiving surface of the sunlight 1, and the side surfaces of the solar cell 3, the infrared selective transmission layer 7, and the heat insulating layer 8 are directly connected to the external housing 10. The heat collecting electric insulating layer 9, the thermoelectric element 4,
The side surface of the electric insulating layer 6 is connected to the outer casing 1 via the heat insulating material 13.
0 is provided. As shown in FIG. 4, the thermoelectric element 4 includes a thermoelectric semiconductor 5a and a thermoelectric element electrode 5b. The cooling devices 11 are in close contact with each other.

【0012】次に、動作について説明する。太陽光1が
太陽電池3に照射されることにより、太陽光1のうち、
可視光線が太陽電池3に吸収され、電気エネルギーに変
換される。太陽電池3で吸収されなかった太陽光エネル
ギーは赤外線選択透過層7で赤外線と可視光線に分離さ
れる。可視光線は反射されることにより、再度太陽電池
3で電気に変換され、可視光線の有効利用に寄与する。
赤外線は、赤外線選択透過層7、並びに断熱層8を透過
し、集熱電気絶縁層9で熱エネルギーに変換され、熱電
素子4の高温側受熱面を加熱する。一方、熱電素子4の
低温側受熱面には電気絶縁層6を介して冷却装置11が
接続して設けられており、周囲に放熱を行う。よって、
熱電素子4の両端に温度差が発生し、太陽熱エネルギー
が電気エネルギーに変換される。
Next, the operation will be described. By irradiating the solar cell 3 with the sunlight 1, of the sunlight 1,
Visible light is absorbed by the solar cell 3 and converted into electric energy. Solar energy not absorbed by the solar cell 3 is separated into infrared light and visible light by the infrared selective transmission layer 7. The visible light is reflected and converted into electricity again by the solar cell 3, thereby contributing to the effective use of the visible light.
The infrared light passes through the infrared selective transmission layer 7 and the heat insulating layer 8, is converted into heat energy by the heat collecting electric insulating layer 9, and heats the high-temperature side heat receiving surface of the thermoelectric element 4. On the other hand, a cooling device 11 is connected to the low-temperature-side heat receiving surface of the thermoelectric element 4 via the electric insulating layer 6 and radiates heat to the surroundings. Therefore,
A temperature difference occurs between both ends of the thermoelectric element 4, and solar heat energy is converted into electric energy.

【0013】実施形態例2 この実施形態例2は図2および図4に関するものであ
り、図4は図2のA部を拡大した図である。
Embodiment 2 Embodiment 2 of the present invention relates to FIGS. 2 and 4, and FIG. 4 is an enlarged view of a portion A in FIG.

【0014】図2および図4に示すように、フレネルレ
ンズによる集光機能を付加した太陽光・熱複合発電装置
は、太陽電池3、赤外線選択透過層7、フレネルレンズ
12、断熱層8が太陽光受光面から順に垂直方向に密着
されて設けられた構成となっており、それぞれ側面は外
部筐体10に接続されて設けられる。また、集熱電気絶
縁層9、熱電素子4、電気絶縁層6、冷却装置11は順
に垂直方向に接続されて設けられ、集熱電気絶縁層9が
フレネルレンズ12の焦点付近に配置されており、側面
は断熱材13を介して外部筐体10に接続されている。
熱電素子4は、図4に示すとおり、実施形態例1と同様
の構成となっている。
As shown in FIGS. 2 and 4, in the combined solar and thermal power generation device having a condensing function using a Fresnel lens, a solar cell 3, an infrared selective transmission layer 7, a Fresnel lens 12, and a heat insulating layer 8 are composed of a solar cell. The light receiving surfaces are arranged in close contact with each other in the vertical direction, and the side surfaces are connected to the external housing 10. The heat collecting electric insulating layer 9, the thermoelectric element 4, the electric insulating layer 6, and the cooling device 11 are sequentially connected in the vertical direction, and the heat collecting electric insulating layer 9 is disposed near the focal point of the Fresnel lens 12. The side surface is connected to the external housing 10 via a heat insulating material 13.
The thermoelectric element 4 has the same configuration as that of the first embodiment, as shown in FIG.

【0015】次に、動作について説明する。太陽を追尾
することにより、フレネルレンズ12の焦点を集熱電気
絶縁層9の位置と常に一致させるとともに、太陽光1を
太陽電池3に照射する。太陽光1のうち、可視光線が太
陽電池3に吸収され電気エネルギーに変換される。太陽
電池3で吸収されなかった光エネルギーは赤外線選択透
過層7で可視光線と赤外線に分離される。可視光線は反
射することにより、再度太陽電池3で電気に変換され、
可視光線の有効利用に寄与する。赤外線は、赤外線選択
透過層7を透過し、フレネルレンズ12により集光さ
れ、集熱電気絶縁層9にて太陽熱エネルギーに変換され
る。その温度は集光しない場合に比べて高くなることは
言うまでもない。従って、熱電素子4の高温側受熱面は
集熱電気絶縁層9にて得られた熱エネルギーにより、高
温に加熱される。一方、熱電素子4の低温側受熱面には
電気絶縁層6を介して冷却装置11が接続されて設けら
れる。よって熱電素子4の両側に温度差が発生し、太陽
熱エネルギーが電気エネルギーに変換される。
Next, the operation will be described. By tracking the sun, the focal point of the Fresnel lens 12 always coincides with the position of the heat-collecting electric insulating layer 9 and the solar cell 1 is irradiated with the solar light 1. Of the sunlight 1, visible light is absorbed by the solar cell 3 and converted into electric energy. Light energy not absorbed by the solar cell 3 is separated into visible light and infrared light by the infrared selective transmission layer 7. The visible light is reflected and converted into electricity again by the solar cell 3,
It contributes to effective use of visible light. The infrared light passes through the infrared selective transmission layer 7, is collected by the Fresnel lens 12, and is converted into solar heat energy by the heat collection electric insulation layer 9. Needless to say, the temperature is higher than when the light is not collected. Therefore, the high-temperature-side heat receiving surface of the thermoelectric element 4 is heated to a high temperature by the thermal energy obtained by the heat collecting electric insulating layer 9. On the other hand, a cooling device 11 is provided on the low-temperature-side heat receiving surface of the thermoelectric element 4 via the electric insulating layer 6. Therefore, a temperature difference is generated on both sides of the thermoelectric element 4, and the solar heat energy is converted into electric energy.

【0016】実施形態例3 この実施形態例3は図3に関するものである。図3に示
すように、集光鏡による集光機能を付加した太陽光・熱
複合発電装置は、太陽電池3、赤外線選択透過層7、断
熱層8が太陽光受光面から順に垂直方向に密着されて設
けられた構成となっており、それぞれ側面は外部筐体1
0に接続されて設けられる。断熱層8の裏面には、集光
鏡2が配置して設けられ、この集光鏡2の焦点付近には
集熱電気絶縁層9が配置して設けられており、この集熱
電気絶縁層9は熱電素子4、電気絶縁層6を介して集光
鏡2に接続されて設けられる。
Third Embodiment A third embodiment relates to FIG. As shown in FIG. 3, in the combined solar and thermal power generation device having a condensing function using a condensing mirror, a solar cell 3, an infrared selective transmission layer 7, and a heat insulating layer 8 are vertically adhered in order from the solar light receiving surface. And the side surfaces of the external housing 1
0 is provided. On the back surface of the heat insulating layer 8, the condenser mirror 2 is disposed and provided. Near the focal point of the condenser mirror 2, a heat collecting electric insulating layer 9 is disposed and provided. Reference numeral 9 is provided so as to be connected to the condenser mirror 2 via the thermoelectric element 4 and the electric insulating layer 6.

【0017】次に、動作について説明する。太陽を追尾
することにより、集光鏡2の焦点を集熱電気絶縁層9の
位置と常に一致させるとともに、太陽光1を太陽電池3
に照射する。太陽光1のうち、可視光線が太陽電池3に
吸収され電気エネルギーに変換される。太陽電池3で吸
収されなかった光エネルギーは赤外線選択透過層7で可
視光線と赤外線に分離される。可視光線は赤外線選択透
過層7で反射されることにより、再度太陽電池3で電気
に変換され、可視光線の有効利用に寄与する。赤外線は
赤外線選択透過層7を透過し、集光鏡2により集光さ
れ、集熱電気絶縁層9にて太陽熱エネルギーに変換され
る。その温度は集光しない場合に比べて高くなることは
言うまでもない。従って、熱電素子4の高温側受熱面は
集熱電気絶縁層9にて得られた熱エネルギーにより、高
温に加熱される。一方、熱電素子4の低温側受熱面には
電気絶縁層6を介して集光鏡2が接続されて設けられて
おり、外気に放熱される。よって熱電素子4の両側に温
度差が発生し、太陽熱エネルギーが電気エネルギーに変
換される。
Next, the operation will be described. By tracking the sun, the focal point of the condenser mirror 2 always coincides with the position of the heat-collecting electrical insulation layer 9, and the sunlight 1 is
Irradiation. Of the sunlight 1, visible light is absorbed by the solar cell 3 and converted into electric energy. Light energy not absorbed by the solar cell 3 is separated into visible light and infrared light by the infrared selective transmission layer 7. The visible light is reflected by the infrared selective transmission layer 7 and is again converted into electricity in the solar cell 3, contributing to the effective use of the visible light. The infrared light passes through the infrared selective transmission layer 7, is collected by the light collecting mirror 2, and is converted into solar heat energy by the heat collection electrical insulation layer 9. Needless to say, the temperature is higher than when the light is not collected. Therefore, the high-temperature-side heat receiving surface of the thermoelectric element 4 is heated to a high temperature by the thermal energy obtained by the heat collecting electric insulating layer 9. On the other hand, the condenser mirror 2 is provided on the low-temperature-side heat receiving surface of the thermoelectric element 4 via an electric insulating layer 6 and is radiated to the outside air. Therefore, a temperature difference is generated on both sides of the thermoelectric element 4, and the solar heat energy is converted into electric energy.

【0018】各実施形態例で使用する太陽電池は、可視
光の波長帯域で分光感度特性が良く比較的安価な結晶系
シリコン(Si)、アモルファスシリコン(a−Si)
を使用する。もちろん価格は高価になるが、従来例で示
している、ガリウム−ヒ素(Ga−As)、インジウム
−リン(In−P)、カドミウム−テルル(Cd−T
e)などの化合物系太陽電池も使用可能なのは言うまで
もない。太陽電池セルの電極構造は、太陽光が透過する
ように、図5に示すような太陽電池セル14の裏面全面
電極構造の太陽電池電極15′は使用せずに、図6に示
すように太陽電池セル14の表裏両面とも同一の電極構
造とした太陽電池電極15を使用し、太陽光1が太陽電
池セル14表面の太陽光受光面から太陽電池セル14の
裏面に透過するように構成する。熱電素子4は、集光に
より発生する熱電素子4の高温側受熱面の温度で決ま
り、ビスマス−テルル(Bi−Te)系、鉛−テルル
(Pb−Te)系、シリコン−ゲルマニウム(Si−G
e)系などの熱電素子が使用できる。
The solar cell used in each of the embodiments is made of crystalline silicon (Si) or amorphous silicon (a-Si), which has good spectral sensitivity characteristics in the visible light wavelength band and is relatively inexpensive.
Use Of course, the price is high, but gallium-arsenic (Ga-As), indium-phosphorus (In-P), cadmium-tellurium (Cd-T
Needless to say, compound solar cells such as e) can also be used. As shown in FIG. 6, the electrode structure of the solar cell does not use the solar cell electrode 15 'having the entire back electrode structure of the solar cell 14 as shown in FIG. A solar cell electrode 15 having the same electrode structure is used on both the front and back surfaces of the battery cell 14, and sunlight 1 is transmitted from the solar light receiving surface on the surface of the solar cell 14 to the back surface of the solar cell 14. The thermoelectric element 4 is determined by the temperature of the high-temperature-side heat receiving surface of the thermoelectric element 4 generated by light collection, and is based on bismuth-tellurium (Bi-Te), lead-tellurium (Pb-Te), or silicon-germanium (Si-G).
e) A thermoelectric element such as a system can be used.

【0019】赤外線選択透過層7は、太陽電池の分光感
度特性を考慮した光学フィルタを使用する。例えば、結
晶系シリコン太陽電池の場合は1.1μm以下、ガリウ
ム−ヒ素(Ga−As)太陽電池を使用する場合は0.
9μm以下の波長を反射し、それ以上の波長は透過する
ようなものを選定する。断熱層8は空気や窒素などの不
活性気体層、若しくは真空層で形成し、集熱電気絶縁層
9には絶縁体の集熱面を黒色塗装したもの、または絶縁
体と表面を選択吸収膜処理した集熱体を積層したものな
どを使用する。冷却装置11には、放熱フィン、ヒート
パイプなどの他、水などの作動流体を循環させる方法な
どを用いる。
The infrared selective transmission layer 7 uses an optical filter in consideration of the spectral sensitivity characteristics of the solar cell. For example, a crystalline silicon solar cell has a thickness of 1.1 μm or less, and a gallium-arsenic (Ga-As) solar cell has a thickness of 0.1 μm or less.
One that reflects a wavelength of 9 μm or less and transmits a wavelength longer than 9 μm is selected. The heat insulating layer 8 is formed of an inert gas layer such as air or nitrogen or a vacuum layer, and the heat collecting electric insulating layer 9 is formed by coating the heat collecting surface of the insulator with a black color, or by combining the insulator and the surface with a selective absorption film. For example, a stack of processed heat collectors is used. The cooling device 11 employs a method of circulating a working fluid such as water in addition to a radiation fin, a heat pipe, or the like.

【0020】[0020]

【発明の効果】以上述べたように本発明によれば、太陽
光のエネルギーを効率よく電気エネルギーに変換でき
る。また、太陽電池の温度上昇が小さくなるため、太陽
電池の選定にあたり、動作温度に対する制限がなくな
る。さらに集光した場合、熱電素子両端の温度差を大き
くとれることから、熱電素子の発電効率が上昇するとと
もに、集熱面を小さくできることから熱電素子の所用量
を少なくすることができる。
As described above, according to the present invention, the energy of sunlight can be efficiently converted to electric energy. Further, since the temperature rise of the solar cell is small, there is no limit on the operating temperature when selecting the solar cell. Further, when the light is collected, the temperature difference between both ends of the thermoelectric element can be increased, so that the power generation efficiency of the thermoelectric element increases and the heat collecting surface can be reduced, so that the required amount of the thermoelectric element can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態例1を示す構成説明図であ
る。
FIG. 1 is a configuration explanatory view showing a first embodiment of the present invention.

【図2】本発明の実施形態例2を示す構成説明図であ
る。
FIG. 2 is a configuration explanatory view showing a second embodiment of the present invention.

【図3】本発明の実施形態例3を示す構成説明図であ
る。
FIG. 3 is a configuration explanatory view showing a third embodiment of the present invention.

【図4】図1、図2における、熱電発電部(A部)の詳
細図である。
FIG. 4 is a detailed view of a thermoelectric power generation section (A section) in FIGS. 1 and 2;

【図5】裏面が全て電極で構成される、太陽電池セルの
電極構造図である。
FIG. 5 is an electrode structure diagram of a solar battery cell in which the back surface is entirely formed of electrodes.

【図6】本発明で使用する太陽電池セルの一例を示す電
極構造図である。
FIG. 6 is an electrode structure diagram showing an example of a solar battery cell used in the present invention.

【図7】従来の太陽光・熱複合発電装置を示す構造図で
ある。
FIG. 7 is a structural view showing a conventional combined solar and thermal power generation device.

【図8】図7における、発電部(B部)の詳細図であ
る。
FIG. 8 is a detailed view of a power generation section (B section) in FIG.

【符号の説明】[Explanation of symbols]

1…太陽光、2…集光鏡、3…太陽電池、4…熱電素
子、5a…熱電半導体、5b…熱電素子電極、6…電気
絶縁層、7…赤外線選択透過層、8…断熱層、9…集熱
電気絶縁層、10…外部筐体、11…冷却装置、12…
フレネルレンズ、13…断熱材、14…太陽電池セル、
15…太陽電池電極。
DESCRIPTION OF SYMBOLS 1 ... sunlight, 2 ... condenser mirror, 3 ... solar cell, 4 ... thermoelectric element, 5a ... thermoelectric semiconductor, 5b ... thermoelectric element electrode, 6 ... electric insulation layer, 7 ... infrared selective transmission layer, 8 ... heat insulation layer, 9: heat collecting electric insulating layer, 10: outer casing, 11: cooling device, 12 ...
Fresnel lens, 13: heat insulating material, 14: solar cell,
15 ... Solar cell electrode.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 太陽光エネルギーを電気エネルギーに変
換する太陽電池と、太陽熱エネルギーを電気エネルギー
に変換する熱電素子から構成される太陽光・熱複合発電
装置において、 前記太陽電池の太陽光受光面の裏面に設けられた赤外線
のみを透過し、可視光線を反射する特徴を有した赤外線
選択透過層と、 当該赤外線選択透過層の裏面に設けられる断熱層と、 当該断熱層の裏面に設けられ、赤外線を熱に変換する集
熱電気絶縁層と、 当該集熱電気絶縁層の裏面に設けられる前記熱電素子
と、 当該熱電素子の裏面に設けられる電気絶縁層と、 当該電気絶縁層の裏面に設けられる冷却装置とより構成
されることを特徴とする太陽光・熱複合発電装置。
1. A combined solar and thermal power generation device comprising: a solar cell for converting solar energy into electric energy; and a thermoelectric element for converting solar thermal energy into electric energy. An infrared selective transmission layer having a feature of transmitting only infrared light provided on the back surface and reflecting visible light, a heat insulating layer provided on the back surface of the infrared selective transmission layer, and an infrared light provided on the back surface of the heat insulating layer; A heat collecting electric insulating layer that converts the heat into heat, the thermoelectric element provided on the back surface of the heat collecting electric insulating layer, an electric insulating layer provided on the back surface of the thermoelectric element, and provided on the back surface of the electric insulating layer. A combined solar and thermal power generation device comprising a cooling device.
【請求項2】 請求項1記載の太陽光・熱複合発電装置
において、 赤外線選択透過層と断熱層の間に、集光装置を設けたこ
とを特徴とする太陽光・熱複合発電装置。
2. The combined solar and thermal power generation device according to claim 1, further comprising a condensing device between the infrared selective transmission layer and the heat insulating layer.
【請求項3】 太陽光エネルギーを電気エネルギーに変
換する太陽電池と、 太陽熱エネルギーを電気エネルギーに変換する熱電素子
から構成される太陽光・熱複合発電装置において、 前記太陽電池の太陽光受光面の裏面に設けられた赤外線
のみを透過し、可視光線を反射する特徴を有した赤外線
選択透過層と、 当該赤外線選択透過層の裏面に設けられる断熱層と、 当該断熱層の裏面に配設された集光鏡と、 当該集光鏡の焦点付近に配設され、赤外線を熱に変換す
る集熱電気絶縁層と、 当該集熱電気絶縁層の裏面に設けられる前記熱電素子
と、 当該熱電素子の裏面に設けられ前記集光鏡に設けられる
電気絶縁層とより構成されることを特徴とする太陽光・
熱複合発電装置。
3. A combined solar / thermal power generation device comprising: a solar cell that converts solar energy into electric energy; and a thermoelectric element that converts solar heat energy into electric energy. An infrared selective transmission layer having a feature of transmitting only infrared light and reflecting visible light provided on the back surface, a heat insulating layer provided on the back surface of the infrared selective transmission layer, and a heat insulating layer disposed on the back surface of the heat insulating layer. A condenser mirror, a heat-collecting electric insulating layer disposed near the focal point of the condenser mirror and converting infrared light into heat, the thermoelectric element provided on the back surface of the heat-collecting electric insulating layer, Characterized by comprising an electric insulating layer provided on the back surface and provided on the condenser mirror.
Combined heat and power generator.
【請求項4】 太陽電池として、太陽光を透過するよう
な太陽電池セルの電極構造とすることを特徴とする請求
項1、2又は3記載の太陽光・熱複合発電装置。
4. The combined solar and thermal power generation device according to claim 1, wherein the solar cell has an electrode structure of a solar cell that transmits sunlight.
JP8264144A 1996-10-04 1996-10-04 Solar light and heat compound generation device Pending JPH10110670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8264144A JPH10110670A (en) 1996-10-04 1996-10-04 Solar light and heat compound generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8264144A JPH10110670A (en) 1996-10-04 1996-10-04 Solar light and heat compound generation device

Publications (1)

Publication Number Publication Date
JPH10110670A true JPH10110670A (en) 1998-04-28

Family

ID=17399080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8264144A Pending JPH10110670A (en) 1996-10-04 1996-10-04 Solar light and heat compound generation device

Country Status (1)

Country Link
JP (1) JPH10110670A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093449A (en) * 2003-09-11 2005-04-07 National Aerospace Laboratory Of Japan Photovoltaic energy utilization system
JP2008016595A (en) * 2006-07-05 2008-01-24 Nikkeikin Aluminium Core Technology Co Ltd Solar power generation apparatus
JP2009147208A (en) * 2007-12-17 2009-07-02 Dainippon Printing Co Ltd Solar cell laminated thermoelectric conversion sheet
JP2010072549A (en) * 2008-09-22 2010-04-02 Japan Aerospace Exploration Agency Solar light and heat composite power generating system for study materials
KR20110036152A (en) * 2009-10-01 2011-04-07 엘지이노텍 주식회사 Apparatus for solar power generation and method of fabricating the same
KR20110036143A (en) * 2009-10-01 2011-04-07 엘지이노텍 주식회사 Apparatus for solar power generation and method of fabricating the same
JP2011087416A (en) * 2009-10-15 2011-04-28 Fujikura Ltd Solar thermal power generator
KR101055886B1 (en) * 2009-02-26 2011-08-09 충북대학교 산학협력단 Condensing type solar and solar power generation equipment with cooling means using foamed metal
JP2011159669A (en) * 2010-01-29 2011-08-18 Toppan Printing Co Ltd Solar cell
JP2011216238A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Self-light-emitting road rivet
KR101385493B1 (en) * 2013-10-14 2014-04-15 한국기계연구원 Solar energy thermoelectric generator
KR101418321B1 (en) * 2013-03-12 2014-07-16 한국에너지기술연구원 Composition module of thermoelectric device and solar cell and co-generating method using the same
US9082904B2 (en) 2009-09-18 2015-07-14 Sharp Kabushiki Kaisha Solar cell module and solar photovoltaic system
KR101629603B1 (en) * 2015-03-16 2016-06-10 경남과학기술대학교 산학협력단 Power Generation Apparatus using Solar Energy
CN105895719A (en) * 2016-05-13 2016-08-24 广东大粤新能源科技股份有限公司 Solar photovoltaic module
KR20190036875A (en) * 2017-09-28 2019-04-05 김호곤 Solar panel apparatus for multiple generation using a solar energy
KR20200071576A (en) * 2018-12-11 2020-06-19 한국에너지기술연구원 Photovoltaic-thermoelectric fusion device and power generation module comprising the same
KR20210094199A (en) * 2020-01-20 2021-07-29 (주)나노밸리 Solar cell module with a reflector

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093449A (en) * 2003-09-11 2005-04-07 National Aerospace Laboratory Of Japan Photovoltaic energy utilization system
JP2008016595A (en) * 2006-07-05 2008-01-24 Nikkeikin Aluminium Core Technology Co Ltd Solar power generation apparatus
JP2009147208A (en) * 2007-12-17 2009-07-02 Dainippon Printing Co Ltd Solar cell laminated thermoelectric conversion sheet
JP2010072549A (en) * 2008-09-22 2010-04-02 Japan Aerospace Exploration Agency Solar light and heat composite power generating system for study materials
KR101055886B1 (en) * 2009-02-26 2011-08-09 충북대학교 산학협력단 Condensing type solar and solar power generation equipment with cooling means using foamed metal
US9082904B2 (en) 2009-09-18 2015-07-14 Sharp Kabushiki Kaisha Solar cell module and solar photovoltaic system
KR20110036152A (en) * 2009-10-01 2011-04-07 엘지이노텍 주식회사 Apparatus for solar power generation and method of fabricating the same
KR20110036143A (en) * 2009-10-01 2011-04-07 엘지이노텍 주식회사 Apparatus for solar power generation and method of fabricating the same
JP2011087416A (en) * 2009-10-15 2011-04-28 Fujikura Ltd Solar thermal power generator
JP2011159669A (en) * 2010-01-29 2011-08-18 Toppan Printing Co Ltd Solar cell
JP2011216238A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Self-light-emitting road rivet
KR101418321B1 (en) * 2013-03-12 2014-07-16 한국에너지기술연구원 Composition module of thermoelectric device and solar cell and co-generating method using the same
KR101385493B1 (en) * 2013-10-14 2014-04-15 한국기계연구원 Solar energy thermoelectric generator
KR101629603B1 (en) * 2015-03-16 2016-06-10 경남과학기술대학교 산학협력단 Power Generation Apparatus using Solar Energy
CN105895719A (en) * 2016-05-13 2016-08-24 广东大粤新能源科技股份有限公司 Solar photovoltaic module
KR20190036875A (en) * 2017-09-28 2019-04-05 김호곤 Solar panel apparatus for multiple generation using a solar energy
KR20200071576A (en) * 2018-12-11 2020-06-19 한국에너지기술연구원 Photovoltaic-thermoelectric fusion device and power generation module comprising the same
KR20210094199A (en) * 2020-01-20 2021-07-29 (주)나노밸리 Solar cell module with a reflector

Similar Documents

Publication Publication Date Title
JPH10110670A (en) Solar light and heat compound generation device
JP5424889B2 (en) Solar thermoelectric conversion
US4395582A (en) Combined solar conversion
US4746370A (en) Photothermophotovoltaic converter
WO2010147638A2 (en) Device for converting incident radiation into electric energy
JP6597997B2 (en) Heat light generator
JP3969792B2 (en) Solar thermal power generation system
US20100229908A1 (en) Solar power conversion system and methods of use
JPH084146B2 (en) Solar / thermal hybrid power generator
CN103426963A (en) Concentrated photovoltaic/quantum well thermoelectric power source
US9331258B2 (en) Solar thermoelectric generator
JP2001153470A (en) Solar heat power generating system
JP3080437B2 (en) Optical energy wavelength converter
TW201032339A (en) Solar cell
JP2001196622A (en) Power generator
KR101418321B1 (en) Composition module of thermoelectric device and solar cell and co-generating method using the same
RU2399118C1 (en) Photoelectric converter based on nonplanar semiconductor structure
CN114593529A (en) Light-splitting absorption heat collection assembly, photovoltaic cogeneration system and electric energy storage system
WO2014019488A1 (en) Wavelength-splitting-type solar energy comprehensive utilization system
JPS59167648A (en) Solar energy collector
JPH0523554U (en) Power generator using sunlight
JPH1019388A (en) Hybrid type panel and building equipped with this hybrid type panel
CN214256160U (en) Thermoelectric generator
KR101015608B1 (en) Multistage-type thermoelectric generator which using solar heat
US20090178705A1 (en) Multi-cores stack solar thermal electric generator