JPH10108301A - Travelable distance calculation for electric vehicle - Google Patents

Travelable distance calculation for electric vehicle

Info

Publication number
JPH10108301A
JPH10108301A JP8257231A JP25723196A JPH10108301A JP H10108301 A JPH10108301 A JP H10108301A JP 8257231 A JP8257231 A JP 8257231A JP 25723196 A JP25723196 A JP 25723196A JP H10108301 A JPH10108301 A JP H10108301A
Authority
JP
Japan
Prior art keywords
battery
amount
electric vehicle
discharge
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8257231A
Other languages
Japanese (ja)
Inventor
Yasuhiko Osawa
康彦 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8257231A priority Critical patent/JPH10108301A/en
Publication of JPH10108301A publication Critical patent/JPH10108301A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Navigation (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To calculate a travelable distance exactly by ensuring the minimum output which an electric vehicle requires by the discharging end of a battery. SOLUTION: The total heating value and effective electric energy of batteries produced during the discharge of a fixed micro quantity of electricity is calculated from a constant power discharge curve determined in advance and heat absorption/generation value by an entropy change reactive to the batteries, and battery temperature at the next fixed micro electric energy discharge section is calculated from the total heating value and a predetermined battery specific heat. This process is repeated until the terminal voltage of the batteries exceeds final discharge voltage, and a travelable distance is calculated from a total of effective electric energy produced to that point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、電気自動車がそ
の時点から電池の放電末期までに必要最低限の出力を確
保して走行できる距離を算出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating a distance that an electric vehicle can travel while securing a required minimum output from that time to the end of battery discharge.

【0002】[0002]

【従来の技術】 電気自動車がその時点から電池の放電
末期までに必要最低限の出力を確保して走行できる距離
を算出する方法としては、走行中電池温度が変化しなけ
れば、特開昭56−126777号公報や特開平6−1
74808号公報に記載の技術に基づき、放電電流と端
子電圧から電池のその時点での最大出力を算出し、あら
かじめ実験的に求めた電池の電力量と最大出力の相関関
係から電池の放電可能電力量を算出し、走行可能距離を
見積る方法が考えられる。
2. Description of the Related Art As a method of calculating a distance that an electric vehicle can travel while securing a necessary minimum output from that time to the end of battery discharge, a method disclosed in Japanese Patent Application Laid-open No. -126777 and Japanese Patent Laid-Open No. 6-1
No. 74808, the maximum output of the battery at that time is calculated from the discharge current and the terminal voltage, and the dischargeable power of the battery is obtained from the correlation between the maximum power and the power amount of the battery experimentally obtained in advance. A method of calculating the amount and estimating the possible travel distance is conceivable.

【0003】[0003]

【発明が解決しようとする課題】 しかし、電池の最大
出力を決める内部抵抗の温度依存性は小さくなく、電気
自動車の走行中に電池温度が変化すると電気自動車が必
要最低限の出力を確保して走行できる距離を正確に算出
できなくなる可能性がある。本発明は、上述のような問
題を解決して、電池の放電末期までに電気自動車が必要
最低限の出力を確保して走行可能な距離を正確に算出で
きるようにすることを目的とする。
However, the temperature dependence of the internal resistance that determines the maximum output of the battery is not small, and when the battery temperature changes while the electric vehicle is running, the electric vehicle can secure the minimum output required. There is a possibility that the distance that can be traveled cannot be calculated accurately. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-described problems and to enable an electric vehicle to accurately calculate a travelable distance by securing a required minimum output by the end of battery discharge.

【0004】[0004]

【課題を解決するための手段】 以上のような問題を解
決するために鋭意検討した結果本発明に至った。本発明
の基本概念は、放電曲線データに基づいて電池の放電プ
ロセスを電池の温度変化を考慮してシミュレーションす
ることであり、より具体的には次のようになる。請求項
1記載の発明では、電気自動車用二次電池の残存電力量
から電気自動車の走行可能距離を算出する方法におい
て、その時点での電池温度と開回路電圧を検出して、あ
らかじめ実験的に求めておいた一定温度下一定電力での
放電電気量と電池の端子電圧の関係と電池反応のエント
ロピー変化による吸発熱量から、一定の微小電気量を放
電するあいだでの電池の総発熱量と有効仕事量を算出
し、総発熱量とあらかじめ求めておいた電池の比熱から
次の一定微小電気量放電区間での電池温度を算出するプ
ロセスを電池の端子電圧が放電終止電圧を超えるまで繰
り返して行い、その時点までの有効仕事量の総和から走
行可能距離を算出することを第1の特徴とする。また、
請求項2記載の発明では、電気自動車用二次電池がリチ
ウムイオン電池であることを第2の特徴とした。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present invention has been achieved. The basic concept of the present invention is to simulate the discharging process of the battery based on the discharge curve data in consideration of the temperature change of the battery, and more specifically, as follows. According to the first aspect of the present invention, in the method for calculating the travelable distance of the electric vehicle from the amount of remaining power of the secondary battery for the electric vehicle, the battery temperature and the open circuit voltage at that time are detected and experimentally determined in advance. From the relationship between the amount of discharged electricity at a constant temperature and constant power and the terminal voltage of the battery and the amount of heat absorbed and generated by the entropy change of the battery reaction, the total calorific value of the battery during discharging a small amount of micro electricity is calculated. The process of calculating the effective work amount and calculating the battery temperature in the next constant minute amount of electricity discharge section from the total calorific value and the specific heat of the battery determined in advance is repeated until the terminal voltage of the battery exceeds the discharge end voltage. The first characteristic is that the travelable distance is calculated from the total effective work amount up to that point. Also,
In a second aspect of the present invention, the second feature is that the secondary battery for an electric vehicle is a lithium ion battery.

【0005】[0005]

【発明の実施の形態】 以下、図により本発明の一実施
の形態を説明する。まず、算出方法に先立って、図2に
従って、定電力放電曲線の温度依存性、ならびに、図3
に従って、前記曲線を基に測定によって求められる実験
データの格納方法について説明する。図2はリチウムイ
オン電池を一定温度に保ちながら一定出力(電力(P
o))で放電させたときの、放電電気量(Q)と電池の
端子電圧(E)の関係(定電力放電曲線)を模式的に示
したものである。また、最上段の曲線は開回路電圧(E
ocv)の放電電気量依存性を示したものである。一定
出力としては、その電池を搭載する電気自動車の一定走
行パターンでの平均出力である。
An embodiment of the present invention will be described below with reference to the drawings. First, prior to the calculation method, according to FIG. 2, the temperature dependence of the constant power discharge curve, and FIG.
The method of storing the experimental data obtained by measurement based on the curve will be described. FIG. 2 shows a constant output (power (P) while keeping the lithium ion battery at a constant temperature.
3 schematically shows the relationship (constant power discharge curve) between the amount of discharged electricity (Q) and the terminal voltage (E) of the battery when the battery is discharged in o)). The uppermost curve shows the open circuit voltage (E
4 shows the dependence of ocv) on the amount of discharged electricity. The constant output is an average output of the electric vehicle equipped with the battery in a constant running pattern.

【0006】電池温度を一定に保った場合の定電力放電
曲線は、同じ充電状態でも電池温度が低いと、内部抵抗
(正極と負極の反応抵抗、溶液抵抗、集電体抵抗などか
らなる)による電圧降下(△Ei r)と活物質内でのイ
オンの拡散プロセスによって決まる濃度分極などによる
分極(△Epol)が大きくなり、端子電圧がEocv
曲線から下方へ大きくずれる。このため電池温度が低い
と、より少ない放電電気量で放電終止電圧(Eend)
へ達する。電池温度を一定に保った状態での放電曲線を
得るには、大型電池と同じ構造の電極を用いて放熱しや
すい薄い電池を構成して、放熱フィンなども取り付けて
恒温槽中で強制冷却して、単位電極面積当たりの出力を
大型電池と同じにして放電することによって見積もれば
よい。
[0006] The constant power discharge curve when the battery temperature is kept constant is based on the internal resistance (consisting of the reaction resistance of the positive electrode and the negative electrode, the solution resistance, the current collector resistance, etc.) when the battery temperature is low even in the same charged state. Polarization (△ Epol) due to concentration polarization and the like determined by the voltage drop (△ Eir) and the ion diffusion process in the active material increases, and the terminal voltage becomes Eocv.
Deviates greatly from the curve downward. For this reason, when the battery temperature is low, the discharge end voltage (Eend) is obtained with a smaller amount of discharged electricity.
To reach. To obtain a discharge curve with the battery temperature kept constant, construct a thin battery that easily dissipates heat using electrodes of the same structure as large batteries, attach cooling fins, etc., and forcibly cool in a constant temperature bath. Then, it can be estimated by discharging the battery with the output per unit electrode area being the same as that of the large battery.

【0007】他方、電池温度を制御せずに電池を放電す
れば、放電に伴う電池自体からの発熱により電池が昇温
して、図2の太く短い線で示したように次第に上方の曲
線へシフトしていき、一定温度の場合と異なる放電過程
(放電曲線)をたどる。
On the other hand, if the battery is discharged without controlling the battery temperature, the temperature of the battery rises due to the heat generated by the battery itself due to the discharge, and gradually rises to the upper curve as shown by the thick short line in FIG. It shifts and follows a discharge process (discharge curve) different from that at a constant temperature.

【0008】電気自動車用電池などの大型の電池を多量
にコンパクトに収納した場合には断熱状態に近い条件に
なる。従って、放電に伴う電池自体からの発熱量がわか
れば、あらかじめ電池の比熱を見積もっておくことによ
って電池の温度上昇を推定できる。外気温度の影響を考
慮して実効比熱を用いればさらによい。また、より断熱
的構成の電池収納ケースや電池の構造を採用すれば、こ
の見積もりの精度を上げることができる。
[0008] When a large number of large batteries such as batteries for electric vehicles are compactly stored, the condition is close to a heat insulating state. Therefore, if the amount of heat generated from the battery itself due to the discharge is known, the temperature rise of the battery can be estimated by estimating the specific heat of the battery in advance. It is even better if the effective specific heat is used in consideration of the influence of the outside air temperature. In addition, if a battery storage case or a battery structure having a more adiabatic configuration is employed, the accuracy of the estimation can be improved.

【0009】本発明は、このように電池温度を一定に保
った場合の定電力放電曲線のデータから電池温度を制御
しない場合の放電曲線を予測して、走行可能距離を算出
するものである。
The present invention predicts a discharge curve in the case where the battery temperature is not controlled from the data of the constant power discharge curve when the battery temperature is kept constant, and calculates the possible travel distance.

【0010】そのために、一定温度での定電力放電曲線
を一定微小電気量(△Q)ごとに分割して、満充電から
i番目の微小電気量△Qiとその区間での平均端子電圧
Eiの関係と、△QiとEocv,iの関係を求めてお
く。リチウムイオン電池の場合、Eocvの温度依存性
は小さいので室温での関係で代表してもよい。また、各
区間での電池反応のエントロピー変化(△S)iのデー
タを測定しておく。これには、電池の起電力の温度係数
を測定するか、あるいは電池を熱的に外部から隔離して
一定電気量放電させて、そのときのエネルギ収支から見
積ってもよい。これらの実験データを図3のようにして
記憶装置に格納しておけばよい。
For this purpose, a constant power discharge curve at a constant temperature is divided for each constant minute electric quantity (ΔQ), and the i-th minute electric quantity ΔQi from the full charge and the average terminal voltage Ei in that section are calculated. The relationship and the relationship between △ Qi and Eocv, i are determined in advance. In the case of a lithium-ion battery, the temperature dependence of Eocv is small, so that the relationship at room temperature may be represented. In addition, data of the entropy change (△ S) i of the battery reaction in each section is measured in advance. For this purpose, the temperature coefficient of the electromotive force of the battery may be measured, or the battery may be thermally isolated from the outside to discharge a constant amount of electricity, and then estimated from the energy balance at that time. These experiment data may be stored in the storage device as shown in FIG.

【0011】以下、図1のフローチャートを用いて走行
可能距離の算出方法を説明する。
Hereinafter, a method of calculating the travelable distance will be described with reference to the flowchart of FIG.

【0012】まず第一に、電気自動車の予定走行モード
を選択して、それに対応する平均放電電力Poを決める
(S1)。次に、電池温度Trと開回路電圧Eocv,
rを測定する(S2)。これらと実験的にあらかじめ求
めておいた前述の△QiとEocv,iの関係から、満
充電状態からの放電電気量を見積もり、対応する微小電
気量区間△Qr(満充電からr番目)を決める(S
3)。次に、温度Trでの放電曲線データから平均端子
電圧Erを読み込む(S4)。この区間ではErの下側
の斜線部分の面積から有効電力量(△Hr=Er・△
Q)を計算して記憶する(S5)。上の黒く塗りつぶし
た部分の面積から電池での内部抵抗と分極による発熱量
(△qr,r=0.24(Eocv,r−Er)・△
Q)を計算する(S6)。次に、この区間での電池反応
のエントロピー変化(△S)iを読み込み(S7)、こ
れによる発熱量(△qs,r=−Tr・(△S)r・△
Q)を計算する(S8)。これらの総和がこの区間での
電池の発熱量になるとみなす。次の微小電気量区間△Q
r+1で、この発熱に対応するぶんだけ電池温度が上昇
していると考えて、Trでの電池の実効比熱(Cp,e
ff(Tr))を表から読み込み(S9)、これから電
池の温度(Tr+1=Tr+(△qr,r+△qs,
r)/Cp,eff(Tr))を計算する(S10)。
この区間で、算出された温度での放電曲線データから平
均端子電圧Er+1と平均開回路電圧Eocv,r+1
を読み込み、以下同様な見積りを行う(S11)。読み
込んだ平均端子電圧Er+lが放電終止電圧Eend以
下になるまでこのプロセスを繰り返す(S12)。端子
電圧が放電終止電圧Eendになる直前までの有効電力
量の総和をとり、有効残存電力量(Heff)を計算し
(S13)、それを出力Poでの単位距離走行に必要な
電力量(β)で除して、放電末期までに走行可能な距離
(L)を算出する(S14)。
First, a scheduled driving mode of an electric vehicle is selected, and an average discharge power Po corresponding to the selected mode is determined (S1). Next, the battery temperature Tr and the open circuit voltage Eocv,
r is measured (S2). From these and the relationship between △ Qi and Eocv, i previously obtained experimentally in advance, the amount of discharge electricity from the fully charged state is estimated, and the corresponding minute electricity amount section △ Qr (rth from full charge) is determined. (S
3). Next, the average terminal voltage Er is read from the discharge curve data at the temperature Tr (S4). In this section, the active power amount ({Hr = Er △}) is calculated from the area of the shaded area below Er.
Q) is calculated and stored (S5). From the area of the upper black portion, the heat generated by the internal resistance and polarization of the battery ({qr, r = 0.24 (Eocv, r−Er))}
Q) is calculated (S6). Next, the entropy change (△ S) i of the battery reaction in this section is read (S7), and the resulting heat value (△ qs, r = −Tr · (△ S) r · △).
Q) is calculated (S8). The sum of these is considered to be the calorific value of the battery in this section. The next minute electricity section △ Q
At r + 1, it is considered that the battery temperature has increased by an amount corresponding to this heat generation, and the effective specific heat of the battery at Tr (Cp, e)
ff (Tr)) is read from the table (S9), and the battery temperature (Tr + 1 = Tr + (△ qr, r + △ qs,
r) / Cp, eff (Tr)) is calculated (S10).
In this section, the average terminal voltage Er + 1 and the average open circuit voltage Eocv, r + 1 are calculated from the discharge curve data at the calculated temperature.
Is read, and the same estimation is performed (S11). This process is repeated until the read average terminal voltage Er + 1 becomes equal to or lower than the discharge end voltage Eend (S12). The sum of the active power amounts immediately before the terminal voltage becomes equal to the end-of-discharge voltage Eend is calculated, and the effective remaining power amount (Heff) is calculated (S13). ) To calculate the distance (L) that can travel by the end of discharge (S14).

【0013】ここで、対応する温度での放電曲線データ
がないときには、たとえばEocvとEを温度に対して
直線近似して補間すればよい。
Here, when there is no discharge curve data at the corresponding temperature, for example, Eocv and E may be linearly approximated to the temperature and interpolated.

【0014】電気自動車が満充電状態からの放電電気量
を精度よく測定する方法を備えていれば、その方法によ
って電気自動車の走行中でも任意の時点で微小電気量区
間△Qrを決められ前述の方法を適用できるのはいうま
でもない。
If the electric vehicle is provided with a method for accurately measuring the amount of discharged electricity from the fully charged state, the minute electric amount section △ Qr can be determined at any time during the operation of the electric vehicle by the method. Needless to say, it can be applied.

【0015】また、電池が劣化すると、Eocv−Q曲
線がQ方向に圧縮されるとともに、△Eirと△Epo
lが増加するので定電力放電曲線はさらに下へくるが、
電池の劣化状態に対応して、前述の放電曲線データパッ
ケージをもつことによって、本発明を劣化電池にも適用
することができる。
When the battery deteriorates, the Eocv-Q curve is compressed in the Q direction, and the ΔEir and ΔEpo
As l increases, the constant power discharge curve goes further down,
By having the above-mentioned discharge curve data package corresponding to the state of deterioration of the battery, the present invention can be applied to a deteriorated battery.

【0016】更に、電池の放電性能を規定するパラメー
ターで識別された劣化電池のデータパッケージを選択で
きるようにすることによって、劣化状態により即した高
精度の適用が可能となり、記憶容量の節約にもなる。
Furthermore, by selecting a data package of a deteriorated battery identified by a parameter defining the discharge performance of the battery, it is possible to apply the data package with high accuracy in accordance with the state of deterioration and to save storage capacity. Become.

【0017】更に、任意の劣化状態の電池のEocv−
Q曲線を近似式化して関数表現し、内部抵抗による電圧
降下(△Eir)と活物質内でのイオンの拡散プロセス
によって決まる濃度分極などによる分極(△Epol)
を近似式として関数表現すれば、本発明の精度を上げる
とともに記憶容量を節約できる。
In addition, the Eocv-
The Q curve is approximated and expressed as a function, and the voltage drop due to internal resistance (△ Eir) and the polarization due to concentration polarization determined by the ion diffusion process in the active material (△ Epol)
Is expressed as a function as an approximate expression, the accuracy of the present invention can be improved and the storage capacity can be saved.

【0018】以上、本発明の実施の形態を図により詳述
してきたが、具体的な構成はこの実施の形態に限られる
ものではなく、本発明の要旨を逸脱しない範囲における
設計の変更等があっても、本発明に含まれる。
Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and a design change or the like may be made without departing from the gist of the present invention. If so, they are included in the present invention.

【0019】[0019]

【発明の効果】 以上説明してきたように本発明によれ
ば、電気自動車の走行による電池温度変化を考慮して電
池の放電末期までに必要最小限の出力を確保した状態で
走行できる距離を算出できる。また、劣化電池の任意条
件での放電曲線を近似式化すれば、システムが持つ必要
があるデータの量は激減するとともに予測精度が上が
る。また、走行中一定時間ごとに、電池の温度を測定し
てこのシミュレーションを繰り返し、逐次走行可能距離
を更新していけば実用的で精度の高い残存容量計を構成
できる。同時に、電池の温度上昇予測を行なうことがで
きるので、電池の冷却機構の必要性時期予測にも役立
つ。更に、極々の走行モードに対応する種々の温度での
放電データを使用することによって、途中で走行モード
が変わるようなより現実的な走行についても対応でき
る。また、このことによってナビゲーションシステムと
組み合わせて、電気自動車のドライビングシミュレーシ
ョンを行なうことができる。ナビゲーションシステムの
地図に電気自動車の典型的走行モードでの必要電力情報
があればより現実的なシミュレーションへ繋がる。ま
た、電気自動車に実際の走行でのモードと必要電力量を
学習し記憶する機構をつければ、電気自動車のドライビ
ングシミュレーションをより高度化できる。このよう
に、本発明は電気自動車の普及を大きく促進するもので
あり、産業上寄与するところ大である。
As described above, according to the present invention, the distance that can be traveled with the minimum output required by the end of discharging of the battery is calculated in consideration of the battery temperature change due to the running of the electric vehicle. it can. Further, if the discharge curve of the deteriorated battery under an arbitrary condition is approximated, the amount of data that the system needs to have is drastically reduced and the prediction accuracy is improved. In addition, a practical and highly accurate remaining capacity meter can be configured by measuring the temperature of the battery at regular intervals during traveling and repeating this simulation to sequentially update the possible travel distance. At the same time, the battery temperature rise can be predicted, which is useful for predicting the necessity time of the battery cooling mechanism. Further, by using the discharge data at various temperatures corresponding to the extreme driving modes, it is possible to cope with more realistic driving in which the driving mode changes halfway. In addition, a driving simulation of an electric vehicle can be performed in combination with the navigation system. If the map of the navigation system has the necessary power information in the typical driving mode of the electric vehicle, it leads to a more realistic simulation. In addition, if the electric vehicle is provided with a mechanism for learning and storing the mode and the required power amount in the actual running, the driving simulation of the electric vehicle can be further enhanced. As described above, the present invention greatly promotes the spread of electric vehicles, and greatly contributes to the industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態のフローチャートであ
る。
FIG. 1 is a flowchart of an embodiment of the present invention.

【図2】 定電力放電曲線の温度依存性と開回路電圧一
放電電気量関係を示す図である。
FIG. 2 is a diagram showing a temperature dependence of a constant power discharge curve and a relationship between an open circuit voltage and a discharge electricity amount.

【図3】 実験データの格納方法の例である。FIG. 3 is an example of a method of storing experimental data.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気自動車用二次電池の残存電力量から
電気自動車の走行可能距離を算出する方法において、そ
の時点での電池温度と開回路電圧を検出して、あらかじ
め実験的に求めておいた一定温度下一定電力での放電電
気量と電池の端子電圧の関係と電池反応のエントロピー
変化による発熱量から、一定の微小電気量を放電するあ
いだでの電池の総発熱量と有効仕事量を算出し、総発熱
量とあらかじめ求めておいた電池の比熱から次の一定微
小電気量放電区間での電池温度を算出するプロセスを電
池の端子電圧が放電終止電圧を超えるまで繰り返して行
い、その時点までの有効仕事量の総和から走行可能距離
を算出することを特徴とする電気自動車の走行可能距離
算出方法。
In a method for calculating a travelable distance of an electric vehicle from an amount of remaining power of an electric vehicle secondary battery, a battery temperature and an open circuit voltage at that time are detected and experimentally obtained in advance. From the relationship between the amount of discharged electricity and the terminal voltage of the battery at a constant temperature and constant power, and the amount of heat generated by the entropy change of the battery reaction, the total amount of heat and the effective work amount of the battery during discharging a small amount of small electricity are calculated. The process of calculating and calculating the battery temperature in the next constant minute amount of electricity discharge section from the total calorific value and the previously determined specific heat of the battery is repeated until the terminal voltage of the battery exceeds the discharge end voltage, and at that time A travelable distance calculation method for calculating the travelable distance from the total sum of the effective work load up to the vehicle.
【請求項2】 前記電気自動車用二次電池がリチウムイ
オン電池であることを特徴とする請求項1記載の電気自
動車の走行可能距離算出方法。
2. The method according to claim 1, wherein the secondary battery for an electric vehicle is a lithium ion battery.
JP8257231A 1996-09-30 1996-09-30 Travelable distance calculation for electric vehicle Pending JPH10108301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8257231A JPH10108301A (en) 1996-09-30 1996-09-30 Travelable distance calculation for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8257231A JPH10108301A (en) 1996-09-30 1996-09-30 Travelable distance calculation for electric vehicle

Publications (1)

Publication Number Publication Date
JPH10108301A true JPH10108301A (en) 1998-04-24

Family

ID=17303505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8257231A Pending JPH10108301A (en) 1996-09-30 1996-09-30 Travelable distance calculation for electric vehicle

Country Status (1)

Country Link
JP (1) JPH10108301A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524327A (en) * 1998-08-28 2002-08-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Vehicle control and monitoring equipment
JP2003086255A (en) * 2001-09-12 2003-03-20 Toyota Motor Corp State estimating method of secondary battery
US7459884B2 (en) 2004-04-27 2008-12-02 Sony Corporation Remaining capacity calculation method for secondary battery, and battery pack
US20130218447A1 (en) * 2010-10-13 2013-08-22 Audi Ag Method for determining the range of a motor vehicle
JP2013190259A (en) * 2012-03-13 2013-09-26 Sony Corp Method for measuring derivative of open circuit voltage with respect to battery temperature, device for measuring derivative of open circuit voltage with respect to battery temperature, battery temperature estimation method, battery temperature estimation device, battery degradation state prediction method, and battery degradation state prediction device
CN111398733A (en) * 2020-03-19 2020-07-10 华中科技大学 Ocean nuclear power platform power grid ground fault line selection protection method and system
CN114026624A (en) * 2019-07-03 2022-02-08 日立安斯泰莫株式会社 Identifying objects by far infrared camera
CN115320385A (en) * 2022-07-28 2022-11-11 重庆金康赛力斯新能源汽车设计院有限公司 Thermal runaway early warning method, device, equipment and storage medium of vehicle battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524327A (en) * 1998-08-28 2002-08-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Vehicle control and monitoring equipment
JP2003086255A (en) * 2001-09-12 2003-03-20 Toyota Motor Corp State estimating method of secondary battery
US7459884B2 (en) 2004-04-27 2008-12-02 Sony Corporation Remaining capacity calculation method for secondary battery, and battery pack
US20130218447A1 (en) * 2010-10-13 2013-08-22 Audi Ag Method for determining the range of a motor vehicle
JP2013190259A (en) * 2012-03-13 2013-09-26 Sony Corp Method for measuring derivative of open circuit voltage with respect to battery temperature, device for measuring derivative of open circuit voltage with respect to battery temperature, battery temperature estimation method, battery temperature estimation device, battery degradation state prediction method, and battery degradation state prediction device
CN114026624A (en) * 2019-07-03 2022-02-08 日立安斯泰莫株式会社 Identifying objects by far infrared camera
CN114026624B (en) * 2019-07-03 2023-09-29 日立安斯泰莫株式会社 Recognition of objects by far infrared camera
CN111398733A (en) * 2020-03-19 2020-07-10 华中科技大学 Ocean nuclear power platform power grid ground fault line selection protection method and system
CN115320385A (en) * 2022-07-28 2022-11-11 重庆金康赛力斯新能源汽车设计院有限公司 Thermal runaway early warning method, device, equipment and storage medium of vehicle battery
CN115320385B (en) * 2022-07-28 2024-04-30 重庆金康赛力斯新能源汽车设计院有限公司 Thermal runaway early warning method, device, equipment and storage medium for vehicle battery

Similar Documents

Publication Publication Date Title
US7646176B2 (en) Controller for rechargeable battery and temperature estimation method and deterioration determination method for rechargeable battery
EP1798100B1 (en) Battery management system
US7646166B2 (en) Method and apparatus for modeling diffusion in an electrochemical system
US7656124B2 (en) Battery management system and driving method thereof
US20180313906A1 (en) Battery system in vehicle and aging deterioration estimation method for battery
US7800345B2 (en) Battery management system and method of operating same
US7928736B2 (en) Method of estimating state of charge for battery and battery management system using the same
EP2841956B1 (en) An imbedded chip for battery applications
JP5715694B2 (en) Battery control device, battery system
US8108161B2 (en) State estimating device of secondary battery
US6356083B1 (en) State of charge algorithm for a battery
US9128159B2 (en) Plug-in charge capacity estimation method for lithium iron-phosphate batteries
CN100428559C (en) Method and apparatus for estimating state of charge of secondary battery
EP3664247A1 (en) Charging time computation method and charge control device
US8054046B2 (en) Fast search algorithm for finding initial diffusion voltage in electro-chemical systems
US10059222B2 (en) Battery temperature estimation system
WO2008053969A1 (en) Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium containing abnormality detecting program for storage element is recorded
US9197078B2 (en) Battery parameter estimation
JP5040733B2 (en) Method for estimating chargeable / dischargeable power of battery
JP2021009103A (en) Battery control system
JPH10108301A (en) Travelable distance calculation for electric vehicle
KR20210121610A (en) Vehicle and controlling method of vehicle
Chen Heat Generation Measurements of Prismatic Lithium Ion Batteries
Tripathy et al. Internal temperature prediction of Lithium-ion cell using differential voltage technique
JP7375473B2 (en) Energy storage amount estimating device, energy storage amount estimation method, and computer program