JPH1010047A - Method of analyzing interface - Google Patents

Method of analyzing interface

Info

Publication number
JPH1010047A
JPH1010047A JP16442496A JP16442496A JPH1010047A JP H1010047 A JPH1010047 A JP H1010047A JP 16442496 A JP16442496 A JP 16442496A JP 16442496 A JP16442496 A JP 16442496A JP H1010047 A JPH1010047 A JP H1010047A
Authority
JP
Japan
Prior art keywords
interface
wavelength
harmonic
intensity
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16442496A
Other languages
Japanese (ja)
Other versions
JP2850856B2 (en
Inventor
Koji Watabe
宏治 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16442496A priority Critical patent/JP2850856B2/en
Publication of JPH1010047A publication Critical patent/JPH1010047A/en
Application granted granted Critical
Publication of JP2850856B2 publication Critical patent/JP2850856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily and nondestructively evaluate a semiconductor interface in the atmosphere without depending on film thickness and specify a chemical bonding seed or the like in the interface by measuring the intensity of generated higher harmonics while changing the wavelength of a laser beam. SOLUTION: The laser beam from a light source 1 is incident on a sample 4 at 45 deg. while passing it through the OPO 2 of a wavelength converting device to change the wavelength. In this case, the wavelength is continuously changed within a desired range. The second higher harmonics generated by the sample 4 are converged by a lens 5, passed through a polarizer 6 to select a polarized component, and then received by a spectroscope 7. The second harmonic intensity to the incident wavelength is automatically read by a PC(personal computer) 9 through a digital oscilloscope 8. The PC 9 determines wavelengths of one or a plurality of peaks of the second harmonic intensity generated from the interface, and specifies a chemical bonding seed and its composition ratio in the interface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体界面を非破
壊で評価し、その界面での化学結合種及び構成比を特定
する界面分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interface analysis method for non-destructively evaluating a semiconductor interface and specifying chemical bond species and a composition ratio at the interface.

【0002】[0002]

【従来の技術】従来の界面評価法としては、例えば電子
顕微鏡やX線光電子スペクトロスコピー(XPS)によ
る観察法がある。しかし、電子顕微鏡による観察は特殊
な試料作製を必要とするので、検査後に半導体の製造工
程に戻すことはできず、更に空間的な結晶構造の観察が
その目的となるので、結合状態の情報を得ることができ
ない。また、XPSによる評価法は、真空中での観察と
なるので大がかりな装置が必要となり、更に観察しよう
とする膜が厚い場合は界面近傍の測定は極めて困難とな
る。
2. Description of the Related Art Conventional interface evaluation methods include, for example, an observation method using an electron microscope or X-ray photoelectron spectroscopy (XPS). However, observation with an electron microscope requires special sample preparation, so it is not possible to return to the semiconductor manufacturing process after inspection, and to observe the spatial crystal structure. I can't get it. In addition, since the XPS evaluation method requires observation in a vacuum, a large-scale apparatus is required. Further, when the film to be observed is thick, it is extremely difficult to measure the vicinity of the interface.

【0003】[0003]

【発明が解決しようとする課題】本発明は、第2高調波
発生を利用することによって、界面からの情報を膜厚に
依存することなく選択的に取り出し、大気中において半
導体界面を簡便かつ非破壊で評価し、界面での化学結合
種等を特定できる界面分析方法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention utilizes the second harmonic generation to selectively extract information from the interface without depending on the film thickness, and to easily and non-integrate the semiconductor interface in the atmosphere. An object of the present invention is to provide an interface analysis method which can evaluate by destruction and specify a chemical bond species at an interface.

【0004】[0004]

【課題を解決するための手段】本発明の上記目的は、半
導体界面にレーザービームを入射させ、界面から発生す
る第2高調波を測定する界面分析方法であって、該半導
体界面に入射するレーザービームの波長を変化させなが
ら、それぞれの波長で発生する第2高調波の強度を測定
し、該第2高調波強度の波長依存性から該半導体界面で
の化学結合種を特定することを特徴とする界面分析方法
により達成できる。
SUMMARY OF THE INVENTION The object of the present invention is to provide a method of analyzing an interface, in which a laser beam is incident on a semiconductor interface and a second harmonic generated from the interface is measured. While changing the wavelength of the beam, the intensity of the second harmonic generated at each wavelength is measured, and the chemical bond species at the semiconductor interface is specified from the wavelength dependence of the intensity of the second harmonic. This can be achieved by the following interface analysis method.

【0005】媒質の分極Pは、下記式(1)The polarization P of the medium is given by the following equation (1)

【0006】[0006]

【数1】 [式(1)中、χ(1) 、χ(2) は、それぞれ1次の線形
感受率テンソル、2次の非線形感受率テンソルであり、
qは基準座標、Eは光電場である]で表すことができ
る。
(Equation 1) [In Equation (1), χ (1) and χ (2) are a first-order linear susceptibility tensor and a second-order nonlinear susceptibility tensor, respectively.
q is a reference coordinate, and E is a photoelectric field].

【0007】式(1)の第1項は線形な反射や屈折の項
である。第2項はラマン分極の項で、媒質の分極率が基
準座標qで表されるような媒質の変位の関数であるとき
に、分極にqの振動数の変調が加わる項である。第3項
は第2高調波等を生成する2次の非線形項で、電場の2
乗に比例した分極である。
The first term in equation (1) is a linear reflection or refraction term. The second term is a term of Raman polarization, in which the polarization is modulated by the frequency of q when the polarizability of the medium is a function of the displacement of the medium as represented by the reference coordinate q. The third term is a second-order nonlinear term that generates a second harmonic or the like.
Polarization proportional to the power.

【0008】本発明は、式(1)の第3項に起因する第
2高調波を利用した半導体界面での化学的結合種の特
定、及びその結合種が界面に占める割合(構造比)を評
価する手法である。第2高調波は、結晶の反転対称性が
崩れる表面・界面から発生する。反転とは、座標を反転
することで物理量をみることを意味しており、例えば1
次元で考えると-xをx で置き換えることで表すことがで
きる。電場は物質とは無関係な場であるのでE-x=−E
x であるが、分極は反転対称性がある場合P-x=−Px
、反転対称性がない場合P-x≠Px である。従ってP-
xと−Px は、下記式(2-1),(2-2)
According to the present invention, the chemical bond species at the semiconductor interface is specified by using the second harmonic caused by the third term of the equation (1), and the ratio (structure ratio) of the bond species to the interface is determined. It is a technique to evaluate. The second harmonic is generated from the surface / interface where the inversion symmetry of the crystal is broken. Inversion means that a physical quantity is observed by inverting coordinates.
In terms of dimensions, it can be expressed by replacing -x with x. Since the electric field is a field unrelated to matter, E−x = −E
x, but if the polarization has inversion symmetry, P-x = -Px
, P-x ≠ Px when there is no inversion symmetry. Therefore P-
x and -Px are given by the following equations (2-1) and (2-2)

【0009】[0009]

【数2】 で表され、反転対称性がある場合(P-x=−Px ),χ
xxx (2)=−χxxx (2)=0となり、反転対称性が崩れる場
合(P-x≠Px ),χxxx (2)≠0となる。
(Equation 2) Where there is inversion symmetry (P−x = −Px), χ
xxx (2) = −χ xxx (2) = 0, and when the inversion symmetry is broken (P−x ≠ Px), χ xxx (2) ≠ 0.

【0010】そして、第2高調波の強度に影響を与える
非線形感受率テンソル成分は、下記式(3)
The nonlinear susceptibility tensor component which affects the intensity of the second harmonic is expressed by the following equation (3).

【0011】[0011]

【数3】 [式(3)中、Nは注目する原子数、An ,M1mはそれ
ぞれ周波数ω0 における吸収、ラマン過程の遷移モーメ
ント、Γv は遷移の均一幅である]で表される。この式
(3)を参照すれば、試料に入射するレーザーの波長を
変化させると、その第2高調波の強度は入射する光の周
波数に依存することがわかる。一方、界面での化学結合
種は、その原子の組み合わせによって決定される特有の
共鳴準位を有している。そして、前述の第2高調波の強
度が最大になる周波数、すなわち共鳴周波数はω=ω0
であり、ω0 は界面における化学結合種を反映した値で
あるから、界面から発生する第2高調波の強度のピーク
が現れる波長を求めることにより、界面での化学的な結
合種を知ることができる。
(Equation 3) Wherein (3), N is the number of atoms of interest, An, M1m absorption at each frequency omega 0, the transition moments of the Raman process, .gamma.V is uniform width of the transition] represented by. Referring to this equation (3), it can be seen that when the wavelength of the laser incident on the sample is changed, the intensity of the second harmonic depends on the frequency of the incident light. On the other hand, the chemical bond species at the interface has a unique resonance level determined by the combination of its atoms. The frequency at which the intensity of the second harmonic is maximized, that is, the resonance frequency is ω = ω 0
Since ω 0 is a value reflecting the chemical bond species at the interface, the chemical bond species at the interface can be known by determining the wavelength at which the peak of the intensity of the second harmonic generated from the interface appears. Can be.

【0012】また、本発明においては、第2高調波強度
の複数のピークが現れる各波長から半導体界面での複数
の化学結合種を特定し、かつ該複数の化学結合種のピー
ク強度の比から該化学結合種間の構成比を求めることも
可能である。例えば、波長を変化させることにより、波
長λ1 に共鳴ピークを有する化学結合種Aを特定し、波
長λ2 に共鳴ピークを有する化学結合種Bを特定し、A
とBのピーク強度の比から界面に存在するABの割合
(構成比)を求めることができる。
In the present invention, a plurality of chemical bond species at a semiconductor interface are specified from each wavelength at which a plurality of peaks of the second harmonic intensity appear, and a ratio of peak intensities of the plurality of chemical bond species is determined. It is also possible to determine the composition ratio between the chemical bond species. For example, by changing the wavelength, a chemical bond species A having a resonance peak at wavelength λ1 is specified, a chemical bond species B having a resonance peak at wavelength λ2 is specified, and A
From the ratio of the peak intensities of B and B, the ratio of AB existing at the interface (composition ratio) can be determined.

【0013】この様に、本発明では界面に敏感な第2高
調波発生を利用し、レーザービームの波長を変化させな
がら、発生する第2高調波の強度を測定することによっ
て、界面からの情報を膜厚に依存することなく選択的に
取り出し、先に述べた本発明の目的を達成できることと
なる。
As described above, the present invention utilizes the generation of the second harmonic which is sensitive to the interface, and measures the intensity of the generated second harmonic while changing the wavelength of the laser beam. Can be selectively taken out without depending on the film thickness, and the object of the present invention described above can be achieved.

【0014】[0014]

【発明の実施の形態】以下に、発明の実施の形態によ
り、更に詳しく本発明を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail by embodiments of the present invention.

【0015】図1は、本発明において用いられる測定装
置の一例を示す概略構成図である。この測定装置は、光
源1のNd−YAGレーザーを波長変換装置であるOP
O(optical parametric oscillators)2を通して、試
料4に対して45°で入射でき、その波長は200〜2
000nm程度までほぼ連続的に変化させることがで
き、λ/2板3によって偏光方向を変えることができ
る。試料4から発生した第2高調波は、レンズ5によっ
て集光された後、分光器7によって選択的に受光され
る。受光する偏光成分は、偏光子6を通して選択するこ
とができる。入射波長に対する第2高調波強度は、デジ
タルオシロスコープ8を介してPC(personalcomputer
)9に自動的に取り込まれる。
FIG. 1 is a schematic diagram showing an example of a measuring apparatus used in the present invention. This measuring apparatus uses an Nd-YAG laser of a light source 1 as a wavelength converter OP.
O (optical parametric oscillators) 2 can be incident on the sample 4 at 45 °, and the wavelength is 200 to 2
It can be changed almost continuously up to about 000 nm, and the polarization direction can be changed by the λ / 2 plate 3. The second harmonic generated from the sample 4 is collected by the lens 5 and then selectively received by the spectroscope 7. The polarization component to be received can be selected through the polarizer 6. The intensity of the second harmonic with respect to the incident wavelength is determined via a digital oscilloscope 8 through a PC (personal computer).
9) Automatically imported into 9.

【0016】この測定装置を用い、照射位置はそのまま
で、OPO2によって入射波長を変化させながら、それ
ぞれの入射波長に対する第2高調波を分光器7によって
選択的に受光させる。このとき、λ/2板3と偏光子6
によって決定される入射偏光成分、受光偏光成分によっ
て様々な非線形感受率テンソル成分を取り出せばよい。
例えばSi(100)基板を用いた場合は、s−偏光受
光で第2高調波の発生は禁制となるので、p−偏光受光
する必要がある。また、s−偏光入射でχzxx成分のみ
を受光できるのに対し、p−偏光入射ではχzxxxzx,
χzzz 成分を受光できる。
Using this measuring apparatus, the second harmonic for each incident wavelength is selectively received by the spectroscope 7 while changing the incident wavelength with OPO2 while keeping the irradiation position as it is. At this time, the λ / 2 plate 3 and the polarizer 6
Various nonlinear susceptibility tensor components may be extracted depending on the incident polarization component and the reception polarization component determined by the above.
For example, when a Si (100) substrate is used, the generation of the second harmonic is forbidden when receiving s-polarized light, so that it is necessary to receive p-polarized light. Also, only χ zxx components can be received at s-polarized light incidence, while χ zxx , χ xzx ,
χ The zzz component can be received.

【0017】具体的に述べると、酸窒化膜/Si界面か
らの第2高調波を測定する場合、第2高調波の強度を縦
軸にとり、横軸に検出した第2高調波の周波数をとれ
ば、ω=ω1 、ω=ω2 でピークが現れる。それぞれの
共鳴ピークから、界面におけるSi−Oボンド、Si−
Nボンドの存在を確認することができる。また、それぞ
れのピーク強度比から、界面における化学結合種の構成
比を求めることができる。ただし、本発明はSi−Oボ
ンド、Si−Nボンドの分析に限定されず、これ以外で
も、例えば水素アニール処理した酸化膜/Si界面のS
i−Hボンド、低誘電率SiOF膜/Si界面のSi−
Fボンドなど種々の分析が可能である。
Specifically, when measuring the second harmonic from the oxynitride film / Si interface, take the intensity of the second harmonic on the vertical axis and take the frequency of the detected second harmonic on the horizontal axis. For example, peaks appear at ω = ω 1 and ω = ω 2 . From each resonance peak, the Si—O bond and Si—
The presence of the N bond can be confirmed. Further, the composition ratio of the chemical bond species at the interface can be obtained from each peak intensity ratio. However, the present invention is not limited to the analysis of the Si—O bond and the Si—N bond.
i-H bond, low dielectric constant SiOF film / Si-
Various analyzes such as F bond are possible.

【0018】また、第2高調波は界面から発生するの
で、分析対象物たる基板上に酸化膜、窒化膜等の無定形
の材料を堆積した後であっても、その無定形の材料層を
通してレーザービームを入射させて、本発明の界面分析
方法を実施できる。したがって、膜上に更に半導体構成
材料等を堆積したことによる膜界面の変化に対しても評
価できることとなる。
Further, since the second harmonic is generated from the interface, even after depositing an amorphous material such as an oxide film and a nitride film on the substrate to be analyzed, it passes through the amorphous material layer. The interface analysis method of the present invention can be performed by irradiating a laser beam. Therefore, it is possible to evaluate a change in a film interface caused by further depositing a semiconductor constituent material or the like on the film.

【0019】[0019]

【実施例】以下に、発明の実施例を説明する。Embodiments of the present invention will be described below.

【0020】N2 Oガス雰囲気中で作成した酸窒化膜/
Si(100)を試料とし、図1に示した測定装置を用
い、s−偏光入射、p−偏光受光の条件でχzxx 成分の
変化に基づく第2高調波強度の変化をプロットした。図
2は、本実施例で発生した第2高調波強度の波長依存性
を示すグラフであり、縦軸に第2高調波強度をとり、横
軸に第2高調波の波長をとった。
An oxynitride film formed in an N 2 O gas atmosphere
Using Si (100) as a sample, the change in the second harmonic intensity based on the change in the χzxx component was plotted under the conditions of s-polarized light incidence and p-polarized light reception using the measurement apparatus shown in FIG. FIG. 2 is a graph showing the wavelength dependence of the intensity of the second harmonic generated in this example. The vertical axis represents the intensity of the second harmonic, and the horizontal axis represents the wavelength of the second harmonic.

【0021】この図2に示す様に、第2高調波の波長が
370nmと380nmのときに強度ピークが表われて
おり、それぞれのピークから界面での化学的な結合種と
してSi−OボンドとSi−Nボンドの存在が明らかと
なった。更に、それぞれの波長でのピーク強度(370
nm=4.22、380nm=0.21)から、界面で
のSi−OボンドとSi−Nボンドの構成比は20:1
程度であることが分かった。
As shown in FIG. 2, the intensity peaks appear when the wavelength of the second harmonic is 370 nm and 380 nm, and from each of the peaks, a Si—O bond is formed as a chemical bond at the interface. The existence of the Si-N bond became apparent. Further, the peak intensity at each wavelength (370
nm = 4.22, 380 nm = 0.21), the composition ratio of the Si—O bond and the Si—N bond at the interface is 20: 1.
It turned out to be about.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
第2高調波発生を利用することによって、界面からの情
報を膜厚に依存することなく選択的に取り出し、大気中
において半導体界面を簡便かつ非破壊で、界面での化学
結合種及び構成比を特定できる。従って、製造工程中で
その界面をインラインで評価できる等の面から、産業上
非常に有用である。
As described above, according to the present invention,
By utilizing the second harmonic generation, information from the interface can be selectively extracted without depending on the film thickness, and the semiconductor interface can be easily and nondestructively exposed to the atmosphere in the atmosphere, and the chemical bonding species and the composition ratio at the interface can be determined. Can be identified. Therefore, it is industrially very useful in that the interface can be evaluated in-line during the manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において用いられる測定装置の一例を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of a measuring device used in the present invention.

【図2】実施例で発生した第2高調波強度の波長依存性
を示すグラフである。
FIG. 2 is a graph showing the wavelength dependence of the intensity of a second harmonic generated in an example.

【符号の説明】[Explanation of symbols]

1 レーザー光源 2 OPO(optical parametric oscillators) 3 λ/2板 4 試料 5 レンズ 6 偏光子 7 分光器 8 デジタルオシロスコープ 9 PC(personal computer) Reference Signs List 1 laser light source 2 OPO (optical parametric oscillators) 3 λ / 2 plate 4 sample 5 lens 6 polarizer 7 spectrometer 8 digital oscilloscope 9 PC (personal computer)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体界面にレーザービームを入射さ
せ、界面から発生する第2高調波を測定する界面分析方
法であって、 該半導体界面に入射するレーザービームの波長を変化さ
せながら、それぞれの波長で発生する第2高調波の強度
を測定し、該第2高調波強度の波長依存性から該半導体
界面での化学結合種を特定することを特徴とする界面分
析方法。
1. An interface analysis method in which a laser beam is incident on a semiconductor interface and a second harmonic generated from the interface is measured, wherein each wavelength is changed while changing the wavelength of the laser beam incident on the semiconductor interface. Measuring the intensity of the second harmonic generated in step (a), and identifying the chemical bond species at the semiconductor interface from the wavelength dependence of the intensity of the second harmonic.
【請求項2】 第2高調波強度のピークが現れる波長か
ら半導体界面での化学結合種を特定する請求項1記載の
半導体界面分析方法。
2. The semiconductor interface analysis method according to claim 1, wherein the chemical bond species at the semiconductor interface is specified from the wavelength at which the peak of the second harmonic intensity appears.
【請求項3】 第2高調波強度の複数のピークが現れる
各波長から半導体界面での複数の化学結合種を特定し、
かつ該複数の化学結合種のピーク強度の比から該化学結
合種間の構成比を求める請求項1記載の界面分析方法。
3. Specifying a plurality of chemical bond species at a semiconductor interface from each wavelength at which a plurality of peaks of the second harmonic intensity appear,
2. The method according to claim 1, wherein a composition ratio between the chemical bond species is determined from a ratio of peak intensities of the plurality of chemical bond species.
【請求項4】 分析対象物の上に無定形の材料を堆積
し、該無定形の材料層を通してレーザービームを入射さ
せる請求項1記載の界面分析方法。
4. The interface analysis method according to claim 1, wherein an amorphous material is deposited on the object to be analyzed, and a laser beam is incident through the amorphous material layer.
JP16442496A 1996-06-25 1996-06-25 Interface analysis method Expired - Lifetime JP2850856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16442496A JP2850856B2 (en) 1996-06-25 1996-06-25 Interface analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16442496A JP2850856B2 (en) 1996-06-25 1996-06-25 Interface analysis method

Publications (2)

Publication Number Publication Date
JPH1010047A true JPH1010047A (en) 1998-01-16
JP2850856B2 JP2850856B2 (en) 1999-01-27

Family

ID=15792897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16442496A Expired - Lifetime JP2850856B2 (en) 1996-06-25 1996-06-25 Interface analysis method

Country Status (1)

Country Link
JP (1) JP2850856B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512539A (en) * 2003-11-25 2007-05-17 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ Method for determining the optical nonlinearity profile of a material
US8032322B2 (en) 2005-03-17 2011-10-04 The Board Of Trustees Of The Leland Stanford Junior University Apparatus for measuring a frequency-domain optical coherence tomography power spectrum from a sample
US8082117B2 (en) 2005-04-05 2011-12-20 The Board Of Trustees Of The Leland Stanford Junior University Optical image processing using minimum phase functions
US8150644B2 (en) 2005-03-17 2012-04-03 The Board Of Trustees Of The Leland Stanford Junior University Femtosecond spectroscopy using minimum or maximum phase functions

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512539A (en) * 2003-11-25 2007-05-17 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ Method for determining the optical nonlinearity profile of a material
JP4818122B2 (en) * 2003-11-25 2011-11-16 ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ Method for determining the optical nonlinearity profile of a material
US8032322B2 (en) 2005-03-17 2011-10-04 The Board Of Trustees Of The Leland Stanford Junior University Apparatus for measuring a frequency-domain optical coherence tomography power spectrum from a sample
US8150644B2 (en) 2005-03-17 2012-04-03 The Board Of Trustees Of The Leland Stanford Junior University Femtosecond spectroscopy using minimum or maximum phase functions
US8219350B2 (en) 2005-03-17 2012-07-10 The Board Of Trustees Of The Leland Stanford Junior University Apparatus for measuring a frequency-domain optical coherence tomography power spectrum from a sample
US8874403B2 (en) 2005-03-17 2014-10-28 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for processing optical coherence tomography imaging data
US8082117B2 (en) 2005-04-05 2011-12-20 The Board Of Trustees Of The Leland Stanford Junior University Optical image processing using minimum phase functions
US9170599B2 (en) 2005-04-05 2015-10-27 The Board Of Trustees Of The Leland Stanford Junior University Optical image processing using maximum or minimum phase functions

Also Published As

Publication number Publication date
JP2850856B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
US8513608B2 (en) Coating film inspection apparatus and inspection method
US8759778B2 (en) Terahertz time domain and frequency domain spectroscopy
Blum et al. Understanding tip‐enhanced Raman spectra of biological molecules: a combined Raman, SERS and TERS study
US4750822A (en) Method and apparatus for optically detecting surface states in materials
US6788405B2 (en) Nonlinear optical system for sensing the presence of contamination on a semiconductor wafer
US7304305B2 (en) Difference-frequency surface spectroscopy
JP2009521796A (en) Method for characterization of light reflection of strain and active dopants in semiconductor structures
JP2009524035A (en) Ellipsometric Raman system and method for analyzing samples
US5557409A (en) Characterization of an external silicon interface using optical second harmonic generation
WO2006051766A1 (en) Optical measurement evaluating method and optical measurement evaluating device
Schaller et al. Near-field infrared sum-frequency generation imaging of chemical vapor deposited zinc selenide
Groenzin et al. Sum-frequency generation: Polarization surface spectroscopy analysis of the vibrational surface modes on the basal face of ice Ih
TWI798614B (en) Combined ocd and photoreflectance apparatus, system and method
US11749083B2 (en) Method and apparatus for optical ice detection
JP2850856B2 (en) Interface analysis method
Hatta et al. A Polarization Modulation Infrared Reflection Technique Applied to Study of Thin Films on Metal and Semiconductor Surfaces
JP4031712B2 (en) Spectroscopic measurement method and spectroscopic measurement apparatus for semiconductor multilayer film
JPH10115573A (en) Method and apparatus for measurement of tertiary nonlinear susceptibility rate
US20110102786A1 (en) Method of Determining the Spatial Configuration of Molecules in Particles or Macromolecules, Especially for Determining the Shape of Metal Nanoparticles and Device for the Implementation Thereof
US6054870A (en) Liquid crystal device evaluation method and apparatus
JP2715999B2 (en) Evaluation method for polycrystalline materials
Coufal Photothermal spectroscopy and its analytical application
US20040064263A1 (en) System and method for measuring properties of a semiconductor substrate in a non-destructive way
TWI420094B (en) Method of photo-reflectance characterization of strain and active dopant in semiconductor structures
Santos Sum Frequency Generation Imaging of Alkanethiol-covered Copper and Alloys: Spatial Distribution Analysis of Monolayer Order