JPH0993005A - Electrode for high frequency circuit, transmission line and resonator using the same - Google Patents

Electrode for high frequency circuit, transmission line and resonator using the same

Info

Publication number
JPH0993005A
JPH0993005A JP7244147A JP24414795A JPH0993005A JP H0993005 A JPH0993005 A JP H0993005A JP 7244147 A JP7244147 A JP 7244147A JP 24414795 A JP24414795 A JP 24414795A JP H0993005 A JPH0993005 A JP H0993005A
Authority
JP
Japan
Prior art keywords
frequency circuit
dielectric
high frequency
electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7244147A
Other languages
Japanese (ja)
Other versions
JP3314594B2 (en
Inventor
Michiaki Matsuo
道明 松尾
Kazuaki Takahashi
和晃 高橋
Morikazu Sagawa
守一 佐川
Mitsuo Makimoto
三夫 牧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24414795A priority Critical patent/JP3314594B2/en
Publication of JPH0993005A publication Critical patent/JPH0993005A/en
Application granted granted Critical
Publication of JP3314594B2 publication Critical patent/JP3314594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-loss electrode for high frequency circuit, for which a surface effect is reduced, for a circuit such as a transmission line or resonator to be used in a high frequency area. SOLUTION: Concerning structure, plural metal films 11-13 on which high frequency currents flow, dielectric films 21-22 for separating he metal films 11-13 and connection conductors 31-32 for connecting the plural metal films 11-13 are provided and the metal films 11-13 and the dielectric films 21-22 are mutually laminated. Since the plural metal films 11-13 are electrically connected by the connection conductors 31-32 at the peripheral edge part or central part of metal films 11-13, the high frequency current flows while being distributed to the plural metal films 11-13. Thus, the electrode for high frequency circuit, for which the concentration of currents onto the surfaces of metal films is relaxed and the loss in the high frequency area is reduced in comparison with an electrode composed of a single metal film, is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、UHF帯からミリ波帯
などの高い周波数帯の信号を扱う回路もしくは部品に利
用される高周波回路用電極及びこれを用いた伝送線路、
共振器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency circuit electrode used in a circuit or a component handling a signal in a high frequency band such as UHF band to millimeter wave band, and a transmission line using the same.
It relates to a resonator.

【0002】[0002]

【従来の技術】近年の情報通信分野のマルチメディア化
に伴い、特に無線通信の分野では画像等の大容量高速デ
ータ伝送の必要性が高まっている。また、携帯電話等の
利用者増加に伴って通信チャネル確保の必要性も高まっ
てきている。以上のことから、無線通信に適用する周波
数は高周波化してきており、この流れは今後も続くもの
と思われる。適用周波数の高周波化により、無線通信機
器においては高周波回路部分の損失の増大が問題とな
る。特に回路部品及び伝送線路の導体損失が周波数が高
くなるにつれて増大することから、これらの回路部品及
び線路に用いられる電極の低損失化が重要な課題とな
る。
2. Description of the Related Art With the recent development of multimedia in the field of information communication, there is an increasing need for large-capacity high-speed data transmission of images and the like, especially in the field of wireless communication. Further, as the number of users of mobile phones and the like increases, the necessity of securing communication channels is also increasing. From the above, the frequency applied to wireless communication is increasing, and this trend is expected to continue in the future. Increasing the applied frequency raises a problem of increased loss in the high frequency circuit part in the wireless communication device. In particular, since the conductor loss of the circuit components and the transmission line increases as the frequency increases, it is an important subject to reduce the loss of the electrodes used for these circuit components and lines.

【0003】以下に従来の高周波回路に用いられる電極
について説明する。ここではマイクロストリップ構造の
伝送線路を高周波回路として取り上げる。
The electrodes used in the conventional high frequency circuit will be described below. Here, the microstrip structure transmission line is taken as a high-frequency circuit.

【0004】図11は線路幅が一様なマイクロストリッ
プ線路の斜視図である。図11において、104は誘電
体よりなる誘電体基板、105は誘電体基板104の裏
面に設けた金属膜のみで構成された接地電極、101は
誘電体基板104の上面に金属膜のみで構成された高周
波信号を伝搬する伝送線路電極である。
FIG. 11 is a perspective view of a microstrip line having a uniform line width. In FIG. 11, reference numeral 104 is a dielectric substrate made of a dielectric material, 105 is a ground electrode formed only on a metal film provided on the back surface of the dielectric substrate 104, and 101 is formed on the upper surface of the dielectric substrate 104 only by a metal film. It is a transmission line electrode that propagates high frequency signals.

【0005】この伝送線路電極101に高周波信号を与
えると、高周波信号は、進行方向に若干の電磁界成分を
有する準TEMモードとして伝搬する。上記構成により
この回路は高周波において伝送線路として動作する。
When a high frequency signal is applied to the transmission line electrode 101, the high frequency signal propagates as a quasi-TEM mode having a slight electromagnetic field component in the traveling direction. With the above configuration, this circuit operates as a transmission line at high frequencies.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
伝送線路電極は、金属膜のみで構成されていることによ
り、周波数が高くなるにつれて高周波電流が金属膜表面
へ集中する表皮効果により、損失が増大するという問題
を有していた。
However, since the conventional transmission line electrode is composed only of the metal film, the loss increases due to the skin effect in which the high frequency current concentrates on the surface of the metal film as the frequency increases. Had the problem of doing.

【0007】図11の従来例では、接地電極105と伝
送線路電極101において、誘電体基板104と接して
いる表面に高周波電流が集中して流れる。高周波電流に
対する抵抗値は、導体中の電流が流れる部分の断面積に
反比例することから、電流が集中するほど抵抗値が大き
くなるため損失は増大する。高周波電流の大部分は金属
表面部分に流れることから、単に金属膜の厚さを厚くす
るだけでは損失増大の問題は解決できない。
In the conventional example of FIG. 11, in the ground electrode 105 and the transmission line electrode 101, high frequency current concentrates on the surface in contact with the dielectric substrate 104. Since the resistance value for a high-frequency current is inversely proportional to the cross-sectional area of the portion of the conductor where the current flows, the resistance value increases as the current concentrates, and the loss increases. Since most of the high-frequency current flows to the metal surface portion, simply increasing the thickness of the metal film cannot solve the problem of increased loss.

【0008】本発明は、前記従来の課題を解決するもの
で、高周波領域において低損失な電極を提供することを
目的とするものである。
The present invention solves the above-mentioned conventional problems, and an object thereof is to provide an electrode having low loss in a high frequency region.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の高周波回路用電極は、高周波電流が流れる
複数の金属膜と、前記複数の金属膜を分離する誘電体膜
と、前記複数の金属膜を接続する接続導体を具備し、前
記金属膜と前記誘電体膜を交互に積層した構造として、
前記接続導体により前記複数の金属膜の一部もしくは全
てを接続することにより、金属膜のみによる電極に比べ
て低損失な高周波回路用電極を構成するものである。
In order to achieve the above object, a high frequency circuit electrode of the present invention comprises a plurality of metal films through which a high frequency current flows, a dielectric film for separating the plurality of metal films, and A structure comprising a connecting conductor for connecting a plurality of metal films, wherein the metal film and the dielectric film are alternately laminated,
By connecting a part or all of the plurality of metal films with the connection conductor, a high-frequency circuit electrode having a lower loss than that of an electrode having only the metal film is configured.

【0010】[0010]

【作用】本発明は、複数の金属膜の間に誘電体膜を設け
て分離し、接続導体により前記複数の金属膜を接続する
ことで、各金属膜に高周波電流が分配して流れることか
ら、単一の金属膜を用いた電極に比べて金属膜表面への
電流集中が緩和され、高周波領域における損失を低減し
た高周波回路用電極が実現できる。
According to the present invention, a dielectric film is provided between a plurality of metal films to separate them, and the plurality of metal films are connected by a connecting conductor, whereby a high-frequency current is distributed and flows to each metal film. As compared with an electrode using a single metal film, current concentration on the surface of the metal film is relaxed, and a high frequency circuit electrode with reduced loss in the high frequency region can be realized.

【0011】[0011]

【実施例】【Example】

(実施例1)以下、本発明の第1の実施例について、図
1を参照しながら説明する。図1の(a)は本発明の第
1の実施例における高周波回路用電極を用いたマイクロ
ストリップ型伝送線路の断面図であり、図1(b)は同
高周波回路用電極を用いたマイクロストリップ型伝送線
路の斜視図である。なお、図1(a)は、図1(b)に
おいてA−A’で示した面で切り取った部分の断面を示
している。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to FIG. 1A is a cross-sectional view of a microstrip type transmission line using a high frequency circuit electrode according to the first embodiment of the present invention, and FIG. 1B is a microstrip using the same high frequency circuit electrode. It is a perspective view of a mold transmission line. Note that FIG. 1A shows a cross section of a portion cut by the plane indicated by AA ′ in FIG.

【0012】図1において、11〜13は金属膜、21
〜22は金属膜11〜13を分離する誘電体膜、31〜
32は線路形状の金属膜11〜13の両端で金属膜11
〜13の全てを接続するとともに必要に応じて外部回路
と接続される接続導体、42は伝送線路を実装する誘電
体基板、52は誘電体基板42の裏面に設けた単一金属
膜からなる接地導体である。
In FIG. 1, 11 to 13 are metal films, 21
22 are dielectric films 31 to 31 for separating the metal films 11 to 13.
Reference numeral 32 denotes the metal films 11 at both ends of the line-shaped metal films 11 to 13.
To 13 and connecting conductors that are connected to an external circuit as necessary, 42 is a dielectric substrate on which a transmission line is mounted, and 52 is a ground made of a single metal film provided on the back surface of the dielectric substrate 42. It is a conductor.

【0013】以上のように構成された高周波回路用電極
について、以下その動作を説明する。接続導体31〜3
2を高周波信号により励振すると、励起した高周波電流
は接続導体によって接続された3つの金属膜11〜13
に分配して流れる。
The operation of the high-frequency circuit electrode having the above structure will be described below. Connection conductors 31 to 3
When 2 is excited by a high frequency signal, the excited high frequency current causes the three metal films 11 to 13 connected by the connection conductors.
Distribute and flow to.

【0014】金属膜が単層である場合には、励起された
高周波電流が金属の表面部分に集中する表皮効果が生
じ、電流の流れる部分の断面積が小さくなることから、
抵抗値が増加して損失の増大を招く。
When the metal film is a single layer, the skin effect in which the excited high frequency current is concentrated on the surface portion of the metal occurs and the cross-sectional area of the current flowing portion becomes small,
The resistance value increases, leading to an increase in loss.

【0015】しかしながら本実施例によれば、接続導体
31〜32で複数の金属膜11〜13が接続された構成
であることから、高周波電流が分配されるため、金属表
面への集中が分散され、抵抗値を低くすることができ、
低損失な電極が実現できる。また、本実施例では接続導
体31〜32を具備していることから、各金属膜11〜
13への電流分配は主として接続導体31〜32を介し
て行われており、誘電体膜21〜22の厚さは損失改善
効果にはほとんど影響しない。よって、本実施例に示し
たマイクロストリップ型伝送線路は、単層金属膜の電極
を用いた線路に比べて単位長さあたりの伝送損失が低く
なる。
However, according to the present embodiment, since the plurality of metal films 11 to 13 are connected by the connecting conductors 31 to 32, the high frequency current is distributed, so that the concentration on the metal surface is dispersed. , The resistance value can be lowered,
A low loss electrode can be realized. Further, in this embodiment, since the connection conductors 31 to 32 are provided, the metal films 11 to 11 are formed.
The current distribution to 13 is mainly performed via the connecting conductors 31 to 32, and the thickness of the dielectric films 21 to 22 hardly affects the loss improving effect. Therefore, the microstrip type transmission line shown in this embodiment has a lower transmission loss per unit length than a line using electrodes of a single-layer metal film.

【0016】以上のように、本実施例によれば、誘電体
膜で分離された複数の金属膜11〜13と、金属膜11
〜13どうしを接続する接続導体31〜32により、高
周波電流に対する抵抗値を低減し、高周波領域で低損失
な電極が実現可能であるとともに、高周波回路用電極を
用いることにより、低損失な伝送線路が実現できる。
As described above, according to this embodiment, the plurality of metal films 11 to 13 separated by the dielectric film and the metal film 11 are used.
The connection conductors 31 to 32 connecting the elements 13 to 13 can reduce the resistance value to a high frequency current and realize a low loss electrode in a high frequency region, and a low loss transmission line by using a high frequency circuit electrode. Can be realized.

【0017】(実施例2)次に、本発明の第2の実施例
について、図2を参照しながら説明する。図2(a)は
本発明の第2の実施例における高周波回路用電極を用い
たマイクロストリップ型伝送線路の断面図であり、図2
(b)は同高周波回路用電極を用いたマイクロストリッ
プ型伝送線路の斜視図である。なお、図2(a)は、図
2(b)においてA−A’で示した面で切り取った部分
の断面を示している。
(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2A is a sectional view of a microstrip type transmission line using a high frequency circuit electrode according to the second embodiment of the present invention.
(B) is a perspective view of the microstrip type transmission line using the same high frequency circuit electrode. Note that FIG. 2A shows a cross section of a portion cut by a plane indicated by AA ′ in FIG.

【0018】図2において図1の構成と異なる点は、接
続導体31〜32を金属膜12〜13のみに接続した点
と、誘電体基板42の裏面に設けられた接地導体につい
ても接続導体33で接続された金属膜14〜15と誘電
体膜23からなる多層構造とした点である。図1と同一
番号を付したものは、図1と同じ働きをするものであ
る。
2 is different from the configuration of FIG. 1 in that the connection conductors 31 to 32 are connected only to the metal films 12 to 13 and the ground conductor provided on the back surface of the dielectric substrate 42 is also the connection conductor 33. The point is that it has a multi-layer structure composed of the metal films 14 to 15 and the dielectric film 23 connected by. The same reference numerals as those in FIG. 1 have the same functions as those in FIG.

【0019】以上のように構成された高周波回路用電極
について、以下その動作を説明する。基本動作は上記第
1の実施例と同じである。高周波電流は接続導体31〜
32より接続された金属膜12〜13に分配して流れ
る。
The operation of the high-frequency circuit electrode configured as described above will be described below. The basic operation is the same as in the first embodiment. The high frequency current is connected to the connection conductors 31 to 31.
32 distributes and flows to the connected metal films 12 to 13.

【0020】また、金属膜11は金属膜12〜13と接
続していないが、誘電体膜21を介した電磁界結合の働
きにより同じく高周波電流が分配される。よって第1の
実施例と同様に低損失化が図れる。
Although the metal film 11 is not connected to the metal films 12 to 13, the high frequency current is similarly distributed by the function of electromagnetic field coupling through the dielectric film 21. Therefore, the loss can be reduced as in the first embodiment.

【0021】また、誘電体基板42の裏面にある接地導
体にも高周波電流が流れることから、この接地導体に対
しても接続導体33で接続された金属膜14〜15と誘
電体膜23からなる多層構造とし、電流を複数の金属膜
14〜15に分配できる構成をとることにより、より低
損失な伝送線路が実現できる。
Further, since a high-frequency current also flows in the ground conductor on the back surface of the dielectric substrate 42, the metal film 14 to 15 and the dielectric film 23 connected to the ground conductor by the connection conductor 33 are also formed. A transmission line with lower loss can be realized by adopting a multi-layer structure and by adopting a configuration capable of distributing current to the plurality of metal films 14 to 15.

【0022】よって、本実施例に示した伝送線路は単層
金属膜の電極を用いた線路に比べて単位長さあたりの伝
送損失を小さくすることができる。
Therefore, the transmission line shown in this embodiment can reduce the transmission loss per unit length as compared with the line using the electrode of the single-layer metal film.

【0023】以上のように、本実施例によれば、金属膜
12〜13どうしを接続する接続導体31〜32と、誘
電体膜21〜22及び23を介した電磁界結合の働きに
より、誘電体膜21〜22及び23で分離された複数の
金属膜12〜13及び14〜15に電流を分配できる構
造であることから、表皮効果による電流の集中を緩和し
て高周波電流に対する抵抗値を低くできるため、低損失
な電極が実現できる。また、高周波回路用電極を伝送線
路部分及び接地導体部分に用いることにより、低損失な
伝送線路が実現できる。
As described above, according to the present embodiment, by the action of the electromagnetic field coupling through the connection conductors 31 to 32 connecting the metal films 12 to 13 and the dielectric films 21 to 22 and 23, the dielectric effect is achieved. Since the current can be distributed to the plurality of metal films 12 to 13 and 14 to 15 separated by the body films 21 to 22 and 23, the concentration of the current due to the skin effect is relaxed and the resistance value to the high frequency current is lowered. Therefore, an electrode with low loss can be realized. Moreover, a low-loss transmission line can be realized by using the high-frequency circuit electrode in the transmission line portion and the ground conductor portion.

【0024】(実施例3)次に、本発明の第3の実施例
について、図3を参照しながら説明する。図3(a)は
本発明の第3の実施例における高周波回路用電極を用い
たマイクロストリップ型伝送線路の断面図であり、図3
(b)は同高周波回路用電極を用いたマイクロストリッ
プ型伝送線路の斜視図である。なお、図3(a)は、図
3(b)においてB−B’で示した面で切り取った部分
の断面を示している。
(Embodiment 3) Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 3A is a sectional view of a microstrip type transmission line using a high frequency circuit electrode according to a third embodiment of the present invention.
(B) is a perspective view of the microstrip type transmission line using the same high frequency circuit electrode. Note that FIG. 3A shows a cross section of a portion cut by the plane indicated by BB ′ in FIG. 3B.

【0025】図3において図1の構成と異なる点は、金
属膜11〜13の周囲部分の全ての端部において金属膜
どうしを接続する接続導体31〜32及び34〜35を
設けた点である。図1と同一番号を付したものは、図1
と同じ働きをするものである。
3 is different from that of FIG. 1 in that connection conductors 31 to 32 and 34 to 35 for connecting metal films are provided at all end portions of the peripheral portions of the metal films 11 to 13. . Those having the same numbers as those in FIG.
It has the same function as.

【0026】以上のように構成された高周波回路用電極
について、以下その動作を説明する。基本動作は上記第
1の実施例と同じである。本実施例の高周波回路用電極
は、金属膜を接続する接続導体として、伝送線路の励振
端に設けた接続導体31〜32のみならず、側面部分に
も接続導体34〜35を設けることにより、高周波電流
の分配効率をさらに高めたものである。電流は特に線路
の端部に集中することから、この端部に電流を分配する
接続導体34〜35を設けることにより、さらに低損失
化を図ることができる。
The operation of the high-frequency circuit electrode configured as described above will be described below. The basic operation is the same as in the first embodiment. In the high-frequency circuit electrode of this embodiment, not only the connection conductors 31 to 32 provided at the excitation end of the transmission line but also the connection conductors 34 to 35 provided on the side surface portion are provided as connection conductors for connecting the metal film. The distribution efficiency of the high frequency current is further enhanced. Since the electric current is particularly concentrated at the end of the line, by providing the connecting conductors 34 to 35 for distributing the electric current at this end, it is possible to further reduce the loss.

【0027】以上のように、本実施例によれば、金属膜
11〜13の周囲部分の全ての端部にて複数の金属膜を
接続する接続導体31〜32及び34〜35を設けるこ
とにより、誘電体膜21〜22で分離された複数の金属
膜11〜13に電流を分配できる構造であることから、
表皮効果による電流の集中を緩和して高周波電流に対す
る抵抗値を低くできるため、低損失な電極が実現でき
る。また、高周波回路用電極を用いることにより、低損
失な伝送線路が実現できる。
As described above, according to this embodiment, by providing the connection conductors 31 to 32 and 34 to 35 for connecting a plurality of metal films at all the ends of the peripheral portions of the metal films 11 to 13, Since it has a structure in which a current can be distributed to the plurality of metal films 11 to 13 separated by the dielectric films 21 to 22,
Since the concentration of current due to the skin effect can be relaxed and the resistance value to high frequency current can be lowered, a low loss electrode can be realized. Moreover, a low-loss transmission line can be realized by using the electrodes for high frequency circuits.

【0028】(実施例4)次に、本発明の第4の実施例
について、図4を参照しながら説明する。図4(a)は
本発明の第4の実施例における高周波回路用電極を用い
たマイクロストリップ型伝送線路の断面図であり、図4
(b)は同高周波回路用電極を用いたマイクロストリッ
プ型伝送線路の斜視図である。なお、図4(a)は、図
4(b)においてB−B’で示した面で切り取った部分
の断面を示している。
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 4A is a sectional view of a microstrip type transmission line using a high frequency circuit electrode according to a fourth embodiment of the present invention.
(B) is a perspective view of the microstrip type transmission line using the same high frequency circuit electrode. Note that FIG. 4A shows a cross section of a portion cut by the plane indicated by BB ′ in FIG. 4B.

【0029】図4において図1の構成と異なる点は、金
属膜11〜13と誘電体膜21〜22が膜表面の一部分
で重なった積層構造をなしている点である。図1と同一
番号を付したものは、図1と同じ働きをするものであ
る。
4 is different from the structure shown in FIG. 1 in that the metal films 11 to 13 and the dielectric films 21 to 22 have a laminated structure in which a part of the film surface overlaps. The same reference numerals as those in FIG. 1 have the same functions as those in FIG.

【0030】以上のように構成された高周波回路用電極
について、以下その動作を説明する。基本動作は上記第
1の実施例と同じである。誘電体膜21〜22と金属膜
11〜13が膜表面の一部分だけで重なりあった構造の
場合、金属膜間の電磁界結合は全表面が重なった構造に
比べて弱くなることから、電磁界結合による電流分配効
率は低下する。
The operation of the high-frequency circuit electrode configured as described above will be described below. The basic operation is the same as in the first embodiment. In the case of the structure in which the dielectric films 21 to 22 and the metal films 11 to 13 are overlapped with each other only on a part of the film surface, the electromagnetic field coupling between the metal films is weaker than the structure in which all the surfaces are overlapped. The current distribution efficiency due to the coupling is reduced.

【0031】しかしながら本実施例の高周波回路用電極
は、金属膜11〜13を接続する接続導体31〜32を
具備していることから、主として接続導体31〜32に
より金属膜11〜13に高周波電流が分配されるため、
分配効率は低下せず、表皮効果が低減できる。
However, since the high-frequency circuit electrode of this embodiment is provided with the connecting conductors 31 to 32 for connecting the metal films 11 to 13, a high-frequency current is mainly applied to the metal films 11 to 13 by the connecting conductors 31 to 32. Is distributed,
The distribution efficiency does not decrease and the skin effect can be reduced.

【0032】以上のように、本実施例によれば、誘電体
膜21〜22と金属膜11〜13が膜表面の一部分だけ
で重なった積層構造をなしている場合でも、金属膜11
〜13どうしを接続する接続導体31〜32により、高
周波電流が複数の金属膜11〜13に分配され、抵抗値
を低くできることから低損失な電極が実現できる。
As described above, according to this embodiment, even if the dielectric films 21 to 22 and the metal films 11 to 13 have a laminated structure in which only a part of the film surface overlaps, the metal film 11 is formed.
High-frequency currents are distributed to the plurality of metal films 11 to 13 by the connection conductors 31 to 32 connecting the elements 13 to 13 and the resistance value can be reduced, so that a low-loss electrode can be realized.

【0033】(実施例5)次に、本発明の第5の実施例
について、図5を参照しながら説明する。図5は本発明
の第5の実施例における高周波回路用電極の組立斜視図
である。
(Fifth Embodiment) Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 5 is an assembled perspective view of a high frequency circuit electrode according to a fifth embodiment of the present invention.

【0034】図5において、61〜63は金属膜11〜
13の内部に設けられ当該金属膜11〜13間を接続す
るスルーホールである。
In FIG. 5, 61 to 63 are metal films 11 to 11.
It is a through hole which is provided inside 13 and connects between the metal films 11 to 13.

【0035】図5において図1に示した高周波回路用電
極の構成と異なる点は、図1では複数の金属膜11〜1
3を接続導体31〜32で接続したが、当該接続導体3
1〜32の代わりにスルーホール61〜63を設けた点
である。なお、図1と同一番号を付したものは、図1と
同じ働きをするものである。
5 is different from the structure of the high-frequency circuit electrode shown in FIG. 1 in that it has a plurality of metal films 11 to 1 in FIG.
3 was connected by the connection conductors 31 to 32, but the connection conductor 3
The point is that through holes 61 to 63 are provided instead of 1 to 32. The same reference numerals as those in FIG. 1 have the same functions as those in FIG.

【0036】以上のように構成された高周波回路用電極
について、以下その動作を説明する。基本動作は上記第
1の実施例と同じである。本実施例では、金属膜11〜
13及び誘電体膜21〜22にスルーホール61〜63
を設けることにより、前記スルーホール61〜63の働
きによって各金属膜11〜13に高周波電流が分配され
ることから、表皮効果による電流集中が緩和され低損失
化が図れる。
The operation of the high-frequency circuit electrode configured as described above will be described below. The basic operation is the same as in the first embodiment. In this embodiment, the metal films 11 to 11
13 and the dielectric films 21 to 22 through holes 61 to 63
Since the high-frequency current is distributed to the metal films 11 to 13 by the action of the through holes 61 to 63, the current concentration due to the skin effect is alleviated and the loss can be reduced.

【0037】本実施例の高周波回路用電極を作成する際
に、誘電体膜21〜22の生成や膜の積層の過程におい
て膜内に穴があいてしまうといった場合、また、誘電体
膜21〜22の材質が粗悪で金属膜11〜13を分離で
きないといった場合には、複数の導体膜を電気的に接続
するスルーホールが形成されたことになり、本実施例の
電極構造と同じとなる。もちろん意図的にスルーホール
を形成して本実施例の高周波回路電極が実現できること
は言うまでもない。
When the electrodes for the high frequency circuit of this embodiment are produced, if there is a hole in the film during the process of forming the dielectric films 21 to 22 or laminating the films, the dielectric film 21 to When the material of 22 is poor and the metal films 11 to 13 cannot be separated, it means that through holes for electrically connecting a plurality of conductor films are formed, which is the same as the electrode structure of this embodiment. Of course, it goes without saying that the high frequency circuit electrode of this embodiment can be realized by intentionally forming a through hole.

【0038】以上のように、本実施例によれば、誘電体
膜21〜22で分離された複数の金属膜11〜13と、
少なくとも金属膜11〜13内に設けられ当該金属膜1
1〜13間を接続するスルーホール61〜63により、
高周波電流に対する抵抗値を低くできるため、低損失な
電極が実現できる。
As described above, according to this embodiment, the plurality of metal films 11 to 13 separated by the dielectric films 21 to 22,
The metal film 1 is provided at least in the metal films 11 to 13.
Through holes 61 to 63 connecting between 1 to 13
Since the resistance value to the high frequency current can be lowered, a low loss electrode can be realized.

【0039】なお、本実施例ではスルーホール61〜6
3が3つの場合の実施例を示したが、スルーホールの数
は幾つでもよいことは言うまでもない。また、スルーホ
ールにより全ての金属膜11〜13を接続した実施例を
示したが、金属膜のうちの一部を接続した構成であって
も同様の効果が得られることは言うまでもない。また、
スルーホールの径の変化やスルーホールへの金属充填が
可能である。
In this embodiment, the through holes 61 to 6 are used.
Although the example in which three is three is shown, it goes without saying that the number of through holes may be any number. Further, although the example in which all the metal films 11 to 13 are connected by the through holes is shown, it is needless to say that the same effect can be obtained even if a part of the metal films is connected. Also,
It is possible to change the diameter of the through hole and fill the through hole with metal.

【0040】(実施例6)次に、本発明の第6の実施例
について、図6を参照しながら説明する。図6(a)は
本発明の第6の実施例における高周波回路用電極を用い
た高周波信号の伝送線路の斜視図、図6(b)は同断面
図である。
(Sixth Embodiment) Next, a sixth embodiment of the present invention will be described with reference to FIG. FIG. 6A is a perspective view of a high-frequency signal transmission line using a high-frequency circuit electrode according to a sixth embodiment of the present invention, and FIG. 6B is a sectional view of the same.

【0041】図6において図1の構成と異なる点は、誘
電体基板42の表面の伝送線路を実装する部分に溝を設
け、前記溝内に金属膜11〜13及び誘電体膜21〜2
2を交互に重ねた積層構造とするとともに、当該積層の
断面を誘電体基板42の表面に露出させ接続導体31で
接続した点である。図1と同一番号を付したものは、図
1と同じ働きをするものである。
6 is different from that of FIG. 1 in that a groove is provided in a portion of the surface of the dielectric substrate 42 where the transmission line is mounted, and the metal films 11 to 13 and the dielectric films 21 to 2 are provided in the groove.
This is a point that a laminated structure in which two layers are alternately stacked is formed, and a cross section of the laminated layer is exposed on the surface of the dielectric substrate 42 and is connected by the connection conductor 31. The same reference numerals as those in FIG. 1 have the same functions as those in FIG.

【0042】以上のように構成された高周波回路用電極
について、以下その動作を説明する。基本動作は上記第
1の実施例と同じである。本実施例の高周波回路用電極
は、前記第1の実施例と同様に、誘電体膜21〜22で
分離された金属膜11〜13を接続導体31で接続する
ことにより、高周波電流が各金属膜へ分配されることか
ら、表皮効果を緩和した低損失な電極が実現できる。
The operation of the high-frequency circuit electrode configured as described above will be described below. The basic operation is the same as in the first embodiment. In the high-frequency circuit electrode of this embodiment, as in the first embodiment, by connecting the metal films 11 to 13 separated by the dielectric films 21 to 22 with the connection conductor 31, a high-frequency current is applied to each metal. Since it is distributed to the membrane, a low-loss electrode with reduced skin effect can be realized.

【0043】本実施例の電極は、誘電体基板42上に溝
を設け、その内部に金属膜11〜13を設けた構成であ
ることから、溝を構成しない場合に比べて伝送線路幅に
対する金属膜面積を広くとることが可能となり、単位長
さあたりの伝送線路の抵抗値を更に低くできる。よっ
て、本実施例に示した伝送線路は単層金属膜の電極を用
いた伝送線路に比べて伝送損失を小さくすることが可能
である。
Since the electrode of this embodiment has a structure in which a groove is provided on the dielectric substrate 42 and the metal films 11 to 13 are provided inside the electrode, the metal with respect to the width of the transmission line is compared with the case where the groove is not formed. The film area can be increased, and the resistance value of the transmission line per unit length can be further reduced. Therefore, the transmission line shown in this embodiment can reduce the transmission loss as compared with the transmission line using the electrodes of the single-layer metal film.

【0044】なお、図6において誘電体基板上に設けた
溝の断面は方形であるが、U字形といった曲面形状とす
ると、溝を加工が容易で、金属膜11〜13及び誘電体
膜21〜22を積層しやすいため、本実施例の高周波回
路用電極を容易に形成できる。
Although the groove provided on the dielectric substrate in FIG. 6 has a rectangular cross section, if the groove has a curved surface such as a U shape, the groove can be easily processed, and the metal films 11 to 13 and the dielectric films 21 to 21 are formed. Since the electrodes 22 are easily laminated, the high-frequency circuit electrode of this embodiment can be easily formed.

【0045】また、接続導体31は金属膜11〜13及
び誘電体膜21〜22を積層した端部上面に設けたが、
端部側面に設けても良い。以上のように、本実施例によ
れば、誘電体膜21〜22で分離された複数の金属膜1
1〜13と、金属膜11〜13どうしを接続する接続導
体31により、複数の金属膜11〜13に電流を分配で
きる構造であることから、表皮効果による電流の集中を
緩和して高周波電流に対する抵抗値を低くできるため、
低損失な電極が実現できる。
The connection conductor 31 is provided on the upper surface of the end portion where the metal films 11 to 13 and the dielectric films 21 to 22 are laminated.
It may be provided on the side surface of the end portion. As described above, according to this embodiment, the plurality of metal films 1 separated by the dielectric films 21 to 22 are formed.
1 to 13 and the connection conductor 31 that connects the metal films 11 to 13 has a structure in which the current can be distributed to the plurality of metal films 11 to 13, so that the concentration of the current due to the skin effect is relaxed and the high frequency current is applied. Since the resistance value can be lowered,
A low loss electrode can be realized.

【0046】また、電極を実装する面に溝を形成し、そ
の内部に金属膜11〜13と誘電体膜21〜22を形成
することにより、金属膜面積が広くとれることから、さ
らに電極の低損失化が図れる。
Further, by forming a groove on the surface on which the electrode is mounted and forming the metal films 11 to 13 and the dielectric films 21 to 22 inside the groove, a large metal film area can be obtained, so that the electrode can be made lower. Loss can be achieved.

【0047】(実施例7)次に、本発明の第7の実施例
について、図7を参照しながら説明する。図7(a)は
本発明の第7の実施例における高周波回路用電極を用い
た高周波信号の伝送線路の斜視図であり、図7(b)は
図7(a)の伝送線路部分に用いた高周波回路用電極の
断面を拡大した拡大断面図である。
(Embodiment 7) Next, a seventh embodiment of the present invention will be described with reference to FIG. FIG. 7A is a perspective view of a high-frequency signal transmission line using a high-frequency circuit electrode according to a seventh embodiment of the present invention, and FIG. 7B is used for the transmission line portion of FIG. 7A. It is an expanded sectional view which expanded the cross section of the electrode for high frequency circuits.

【0048】図7において図1の構成と異なる点は、金
属膜11〜13と誘電体膜21〜22を、電極を実装す
る誘電体基板42の表面に対して垂直に実装し、当該誘
電体基板42の表面に対して水平方向に交互に重ねて積
層した点である。図1と同一番号を付したものは、図1
と同じ働きをするものである。
7 is different from that of FIG. 1 in that the metal films 11 to 13 and the dielectric films 21 to 22 are mounted vertically to the surface of the dielectric substrate 42 on which the electrodes are mounted, and This is the point where they are stacked alternately in the horizontal direction on the surface of the substrate 42. Those having the same numbers as those in FIG.
It has the same function as.

【0049】以上のように構成された高周波回路用電極
について、以下その動作を説明する。基本動作は上記第
1の実施例と同じである。金属膜11〜13と誘電体膜
21〜22が、誘電体基板42の表面に対して水平方向
に交互に重なった構造であっても、第1の実施例と同様
に、高周波電流は接続導体31により接続された3つの
金属膜に分配して流れる。よって、表皮効果を緩和した
低損失な電極が実現でき、本実施例に示した伝送線路は
単層金属膜の電極を用いた線路に比べて単位長さあたり
の伝送損失を小さくすることができる。
The operation of the high-frequency circuit electrode configured as described above will be described below. The basic operation is the same as in the first embodiment. Even in the structure in which the metal films 11 to 13 and the dielectric films 21 to 22 are alternately overlapped with each other in the horizontal direction with respect to the surface of the dielectric substrate 42, as in the first embodiment, the high frequency current is the connecting conductor. It flows by being distributed to the three metal films connected by 31. Therefore, it is possible to realize a low-loss electrode in which the skin effect is relaxed, and the transmission line shown in this embodiment can reduce the transmission loss per unit length as compared with a line using an electrode of a single-layer metal film. .

【0050】以上のように、本実施例によれば、誘電体
膜21〜22で分離された複数の金属膜11〜13と、
当該金属膜11〜13どうしを接続する接続導体31に
より、複数の金属膜11〜13に電流を分配できる構造
であることから、表皮効果による電流の集中を緩和して
高周波電流に対する抵抗値を低くできるため、低損失な
電極が実現できる。
As described above, according to this embodiment, the plurality of metal films 11 to 13 separated by the dielectric films 21 to 22,
Since the connection conductor 31 connecting the metal films 11 to 13 has a structure in which the current can be distributed to the plurality of metal films 11 to 13, the concentration of the current due to the skin effect is relaxed and the resistance value to the high frequency current is lowered. Therefore, an electrode with low loss can be realized.

【0051】(実施例8)次に、本発明の第8の実施例
について、図8を参照しながら説明する。図8(a)は
本発明の第8の実施例における高周波回路用電極を用い
た高周波信号の伝送線路の斜視図であり、図8(b)は
図8(a)の伝送線路部分に用いた高周波回路用電極の
断面を拡大した拡大断面図である。
(Embodiment 8) Next, an eighth embodiment of the present invention will be described with reference to FIG. FIG. 8A is a perspective view of a high-frequency signal transmission line using a high-frequency circuit electrode according to an eighth embodiment of the present invention, and FIG. 8B is used for the transmission line portion of FIG. 8A. It is an expanded sectional view which expanded the cross section of the electrode for high frequency circuits.

【0052】図8(a)、(b)において図1の構成と
異なる点は、線路形状の金属膜11〜13を誘電体基板
42の表面方向に並べて配置した点である。図1と同一
番号を付したものは、図1と同じ働きをするものであ
る。
8A and 8B is different from the configuration of FIG. 1 in that the line-shaped metal films 11 to 13 are arranged side by side in the surface direction of the dielectric substrate 42. The same reference numerals as those in FIG. 1 have the same functions as those in FIG.

【0053】なお、図8(c)は図8(a)の伝送線路
に対して接続導体36〜39を新たに設け、金属膜11
〜13を分離する誘電体膜21〜22の代わりに空気を
用いた伝送線路の構造を示した図である。
Incidentally, in FIG. 8C, connection conductors 36 to 39 are newly provided for the transmission line of FIG.
It is the figure which showed the structure of the transmission line which used air instead of the dielectric films 21-22 which isolate | separate-.

【0054】以上のように構成された高周波回路用電極
について、以下その動作を図8(a)及び(b)を用い
て説明する。基本動作は上記第1の実施例と同じであ
る。誘電体膜21〜22により金属膜11〜13は分離
され、接続導体31〜32で金属膜11〜13が接続さ
れていることから、励起した高周波電流は接続導体31
〜32により金属膜11〜13に分配して流れるため、
抵抗値が低減でき、低損失な電極が実現できる。
The operation of the high-frequency circuit electrode configured as described above will be described below with reference to FIGS. 8 (a) and 8 (b). The basic operation is the same as in the first embodiment. Since the metal films 11 to 13 are separated by the dielectric films 21 to 22 and the metal films 11 to 13 are connected by the connection conductors 31 to 32, the excited high frequency current is generated by the connection conductor 31.
~ 32 because it distributes and flows to the metal films 11 to 13,
The resistance value can be reduced and a low loss electrode can be realized.

【0055】次に図8(c)について説明する。図8
(c)は、図8(a)で示した伝送線路に対して、金属
膜11〜13を接続する接続導体36〜39を設け、誘
電体膜21〜22の代わりに当該誘電体膜21〜22を
省き、空気を用いたものである。前記接続導体36〜3
9を通して複数の金属膜11〜13を電気的に接続した
構造とすることにより、各金属膜11〜13への高周波
電流の分配効率が更に高まる。よって、表皮効果による
電流集中が緩和され低損失化が図れる。なお、図8
(c)の実施例では誘電体膜として空気を利用している
が、この場合でも、複数の金属膜11〜13が分離して
いれば、各金属膜に電流が分配される構造となる点は他
の実施例と同じであることから、同様に低損失な電極が
実現できる。
Next, FIG. 8C will be described. FIG.
8C shows connection conductors 36 to 39 for connecting the metal films 11 to 13 to the transmission line shown in FIG. 8A, and the dielectric films 21 to 22 are provided instead of the dielectric films 21 to 22. 22 is omitted and air is used. The connection conductors 36 to 3
With the structure in which a plurality of metal films 11 to 13 are electrically connected through 9, the distribution efficiency of the high frequency current to each metal film 11 to 13 is further increased. Therefore, the current concentration due to the skin effect is alleviated and the loss can be reduced. Note that FIG.
Although air is used as the dielectric film in the embodiment of (c), even in this case, if a plurality of metal films 11 to 13 are separated, a current is distributed to each metal film. Is the same as that of the other embodiments, so that an electrode with a low loss can be similarly realized.

【0056】以上のように、本実施例によれば、誘電体
膜21〜22で分離された複数の金属膜11〜13と、
当該金属膜11〜13どうしを接続する接続導体31〜
32により、複数の金属膜11〜13に電流を分配でき
る構造であることから、表皮効果による電流の集中を緩
和して高周波電流に対する抵抗値を低くできるため、低
損失な電極が実現できる。さらに、金属膜11〜13内
部に金属膜11〜13どうしを接続する接続導体36〜
39を設けることにより、接続導体36〜39部分だけ
でなく金属膜11〜13内部でも電流が分配されること
から、抵抗値を更に低くできるため、さらに電極の低損
失化を図ることができる。
As described above, according to this embodiment, the plurality of metal films 11 to 13 separated by the dielectric films 21 to 22,
Connection conductors 31 to connect the metal films 11 to 13
Since 32 has a structure in which a current can be distributed to the plurality of metal films 11 to 13, the concentration of the current due to the skin effect can be relaxed and the resistance value to the high frequency current can be lowered, so that a low loss electrode can be realized. Further, the connection conductors 36 to connect the metal films 11 to 13 inside the metal films 11 to 13
By providing 39, the current is distributed not only in the connection conductors 36 to 39 but also in the metal films 11 to 13, so that the resistance value can be further reduced, and thus the loss of the electrode can be further reduced.

【0057】なお、接続導体36〜39には、金属膜間
を電気的に接続できればエアブリッジやリボン、ワイヤ
ボンディングといった他の形状の導体でも本実施例の高
周波回路用電極が実現できる。また、接続導体の数は幾
つでもよいことは言うまでもない。
The connecting conductors 36 to 39 can be realized by using electrodes of other shapes such as air bridges, ribbons, and wire bonding as long as the metal films can be electrically connected. Needless to say, the number of connecting conductors may be any number.

【0058】(実施例9)次に、本発明の第9の実施例
について、図9を参照しながら説明する。図9(a)は
本発明の第9の実施例における高周波回路用電極を用い
た同軸型伝送線路の斜視図であり、図9(b)は図9
(a)の同軸線路の断面を拡大した拡大断面図である。
(Embodiment 9) Next, a ninth embodiment of the present invention will be described with reference to FIG. FIG. 9A is a perspective view of a coaxial type transmission line using a high frequency circuit electrode according to a ninth embodiment of the present invention, and FIG.
It is an expanded sectional view which expanded the cross section of the coaxial line of (a).

【0059】図9において、43は同軸形状の誘電体で
ある。図9において図1と異なる点は、高周波回路用電
極を適用する高周波回路として同軸型伝送線路を実施例
に挙げ、金属膜11〜13及び誘電体膜21〜22を同
心円状に交互に重ねて積層した点である。図1と同一番
号を付したものは、図1と同じ働きをするものである。
In FIG. 9, 43 is a coaxial dielectric. 9 is different from FIG. 1 in that a coaxial type transmission line is taken as an example of a high-frequency circuit to which electrodes for high-frequency circuits are applied, and metal films 11 to 13 and dielectric films 21 to 22 are concentrically stacked alternately. The points are stacked. The same reference numerals as those in FIG. 1 have the same functions as those in FIG.

【0060】以上のように構成された高周波回路用電極
について、以下その動作を説明する。基本動作は上記第
1の実施例と同じである。同軸の中心導体に励起された
高周波電流は接続導体31〜32により接続された金属
膜11〜13及び14〜15に分配して流れる。
The operation of the high-frequency circuit electrode configured as described above will be described below. The basic operation is the same as in the first embodiment. The high frequency current excited in the coaxial center conductor is distributed and flows to the metal films 11 to 13 and 14 to 15 connected by the connection conductors 31 to 32.

【0061】よって、本実施例に示した伝送線路は金属
のみで構成された電極を用いた伝送線路に比べて単位長
さあたりの伝送損失を小さくすることができる。同軸型
伝送線路はTEMモード伝送路であり、誘電体43内に
生じる電磁波により同軸の中心導体だけでなく外導体に
も高周波電流が流れることから、外導体にも本実施例の
高周波回路用電極を使用することによって伝送損失を更
に低減している。
Therefore, the transmission line shown in the present embodiment can reduce the transmission loss per unit length as compared with the transmission line using the electrodes made of only metal. The coaxial type transmission line is a TEM mode transmission line, and since a high frequency current flows through the outer conductor as well as the coaxial center conductor due to the electromagnetic waves generated in the dielectric body 43, the high frequency circuit electrode of this embodiment is also applied to the outer conductor. The transmission loss is further reduced by using.

【0062】以上のように、本実施例によれば、誘電体
膜21〜22及び43で分離された複数の金属膜11〜
13及び14〜15と、金属膜11〜13及び14〜1
5どうしを接続する接続導体31〜32により、高周波
電流に対する抵抗値を低くできるため、低損失な電極が
実現できる。
As described above, according to this embodiment, the plurality of metal films 11 to 11 separated by the dielectric films 21 to 22 and 43 are formed.
13 and 14 to 15 and metal films 11 to 13 and 14 to 1
Since the connection conductors 31 to 32 connecting the five elements can reduce the resistance value to the high frequency current, a low loss electrode can be realized.

【0063】(実施例10)次に、本発明の第10の実
施例について、図10を参照しながら説明する。図10
(a)は本発明の第10の実施例における高周波回路用
電極を用いた誘電体同軸共振器の斜視図であり、図10
(b)は図10(a)においてA−A’で示した面で切
り取った部分の断面を示している。
(Embodiment 10) Next, a tenth embodiment of the present invention will be described with reference to FIG. FIG.
FIG. 10A is a perspective view of a dielectric coaxial resonator using a high frequency circuit electrode according to a tenth embodiment of the present invention.
FIG. 10B shows a cross section of a portion cut by the plane indicated by AA ′ in FIG.

【0064】図10において図1の構成と異なる点は、
高周波回路用電極を適用する高周波回路として誘電体同
軸共振器を実施例とし、高周波回路用電極を誘電体ブロ
ック41の表面に施した点である。図1と同一番号を付
したものは、図1と同じ働きをするものである。
10 is different from that of FIG. 1 in that
The dielectric coaxial resonator is used as an example of a high-frequency circuit to which the high-frequency circuit electrode is applied, and the high-frequency circuit electrode is provided on the surface of the dielectric block 41. The same reference numerals as those in FIG. 1 have the same functions as those in FIG.

【0065】以上のように構成された高周波回路用電極
について、以下その動作を説明する。基本動作は上記第
1の実施例と同じである。誘電体共振器が励振される
と、高周波電流が励起され、接続導体31により接続さ
れた金属膜11〜13に分配して流れる。よって第1の
実施例と同様に電極部分の低損失化を図ることができ、
本実施例に示した共振器は単層金属膜の電極を用いた共
振器に比べて導体損失が低減できるため、無負荷Qの高
い共振器が実現できる。
The operation of the high-frequency circuit electrode configured as described above will be described below. The basic operation is the same as in the first embodiment. When the dielectric resonator is excited, a high frequency current is excited and distributed and flows to the metal films 11 to 13 connected by the connection conductor 31. Therefore, as in the first embodiment, it is possible to reduce the loss of the electrode portion,
Since the resonator shown in the present embodiment can reduce the conductor loss as compared with the resonator using the electrode of the single-layer metal film, a resonator having a high unloaded Q can be realized.

【0066】以上のように、本実施例によれば、金属膜
11〜13どうしを接続する接続導体31と誘電体膜2
1〜22を介した電磁界結合の働きにより、誘電体膜2
1〜22で分離された複数の金属膜11〜13に電流を
分配できる構造であることから、表皮効果による電流の
集中を緩和して高周波電流に対する抵抗値を低くできる
ため、低損失な電極が実現できる。また、高周波回路用
電極を用いることにより、無負荷Qの高い共振器が実現
できる。
As described above, according to this embodiment, the connection conductor 31 for connecting the metal films 11 to 13 and the dielectric film 2 are connected.
Due to the function of electromagnetic field coupling through 1 to 22, the dielectric film 2
Since the current can be distributed to the plurality of metal films 11 to 13 separated by 1 to 22, the concentration of the current due to the skin effect can be relaxed and the resistance value to the high frequency current can be lowered, so that a low loss electrode can be obtained. realizable. Further, by using the high frequency circuit electrode, a resonator with a high unloaded Q can be realized.

【0067】なお、本発明の高周波回路用電極を適用す
る実施例として、実施例1〜8では裏面を接地導体とし
た誘電体基板上に形成した伝送線路を示し、実施例9で
は同軸型伝送線路を示し、実施例10では誘電体同軸共
振器を示したが、コプレナ型等の他の種類の伝送線路や
導波管といった導体電極を有するあらゆる高周波回路の
電極として利用可能である。
As an example to which the high-frequency circuit electrode of the present invention is applied, Examples 1 to 8 show a transmission line formed on a dielectric substrate whose back surface is a ground conductor, and Example 9 shows a coaxial type transmission. Although a line is shown and the dielectric coaxial resonator is shown in the tenth embodiment, it can be used as an electrode of any high-frequency circuit having a conductor electrode such as a transmission line of another type such as a coplanar type or a waveguide.

【0068】また、実施例1〜10では主として金属膜
3層、誘電体膜2層からなる電極構造を示したが、2層
以上の金属膜を誘電体膜と交互に積層した構造であれば
何層でも本発明の高周波回路用電極を構成できることは
言うまでもない。
In the first to tenth embodiments, the electrode structure mainly composed of three layers of metal film and two layers of dielectric film is shown. However, if the structure is such that two or more metal films are alternately laminated with the dielectric film. It goes without saying that the high-frequency circuit electrode of the present invention can be composed of any number of layers.

【0069】また、実施例1〜10では主として、誘電
体膜により金属膜を分離した構成を示したが、誘電体膜
部分を空気の層、つまり空洞としても、金属膜が分離さ
れた構造であれば同様の効果が得られる。
In the first to tenth embodiments, the metal film is mainly separated by the dielectric film. However, even if the dielectric film portion is an air layer, that is, a cavity, the metal film is separated. If there is a similar effect.

【0070】また、実施例1〜10では主として、接続
導体を金属膜の端部の一部分のみに設けた構成を示した
が、実施例3のように金属膜の側面端部の全ての部分に
接続導体を設けて複数の金属膜を接続してもよい。
Further, in the first to tenth embodiments, the structure in which the connecting conductor is mainly provided in only a part of the end portion of the metal film is shown. However, as in the third embodiment, it is provided in all parts of the side surface end portion of the metal film. You may provide a connection conductor and may connect several metal films.

【0071】また、実施例1〜10において、複数の金
属膜のうちの一部分のみを接続導体により接続した構成
でも、接続されていない金属膜に対しては誘電体膜を介
した電磁界結合により電流が分配されることから同様の
効果が得られる。
Further, in the first to tenth embodiments, even in the structure in which only a part of the plurality of metal films is connected by the connecting conductor, the metal film which is not connected is coupled by the electromagnetic field through the dielectric film. A similar effect is obtained because the current is distributed.

【0072】さらに、実施例1〜10では主として、接
地導体部分は単層の金属膜とした構成を示したが、接地
導体についても金属膜と誘電体膜を交互に積層した同様
の構成をとることにより更に低損失化を図ることができ
る。
Furthermore, in Examples 1 to 10, the grounding conductor portion was mainly composed of a single-layer metal film, but the grounding conductor also has a similar structure in which metal films and dielectric films are alternately laminated. As a result, it is possible to further reduce the loss.

【0073】さらに、各実施例に開示された内容を適宜
組み合わせることも容易に可能である。
Further, the contents disclosed in the respective embodiments can be easily combined as appropriate.

【0074】[0074]

【発明の効果】以上のように、本発明は、複数の金属膜
と誘電体膜とを交互に積層して、複数の金属膜どうしを
接続する接続導体を設けた構造の電極で、高周波電流を
各導体膜に分配することで、表皮効果を緩和し、電極全
体の損失を低減することができる。また、本発明の高周
波回路用電極を共振器の電極として利用することにより
無負荷Qの高い共振器が構成できる。また、本発明の高
周波回路用電極を伝送線路の電極として用いることによ
り伝送損失の小さい伝送線路が構成可能である。なお、
本発明の高周波回路用電極を接地部分の電極にも適用す
れば、さらに低損失な高周波回路が実現できる。
As described above, according to the present invention, an electrode having a structure in which a plurality of metal films and dielectric films are alternately laminated and a connection conductor for connecting the plurality of metal films is provided, Is distributed to each conductor film, the skin effect can be mitigated and the loss of the entire electrode can be reduced. Further, by using the high-frequency circuit electrode of the present invention as an electrode of the resonator, a resonator having a high unloaded Q can be constructed. Further, by using the high-frequency circuit electrode of the present invention as an electrode of a transmission line, a transmission line with a small transmission loss can be constructed. In addition,
By applying the high-frequency circuit electrode of the present invention to the electrode of the ground portion, a high-frequency circuit with even lower loss can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の第1の実施例における高周波回
路用電極を利用した伝送線路の構成を示す断面図 (b)同斜視図
FIG. 1A is a cross-sectional view showing a configuration of a transmission line using a high-frequency circuit electrode according to a first embodiment of the present invention. FIG.

【図2】(a)本発明の第2の実施例における高周波回
路用電極を利用した伝送線路の構成を示す断面図 (b)同斜視図
FIG. 2 (a) is a cross-sectional view showing a configuration of a transmission line using a high-frequency circuit electrode according to a second embodiment of the present invention.

【図3】(a)本発明の第3の実施例における高周波回
路用電極を利用した伝送線路の構成を示す断面図 (b)同斜視図
FIG. 3 (a) is a sectional view showing a configuration of a transmission line using a high frequency circuit electrode according to a third embodiment of the present invention.

【図4】(a)本発明の第4の実施例における高周波回
路用電極を利用した伝送線路の構成を示す断面図 (b)同斜視図
FIG. 4 (a) is a sectional view showing the structure of a transmission line utilizing a high frequency circuit electrode in a fourth embodiment of the present invention.

【図5】本発明の第5の実施例における高周波回路用電
極の組立斜視図
FIG. 5 is an assembled perspective view of a high frequency circuit electrode according to a fifth embodiment of the present invention.

【図6】(a)本発明の第6の実施例における高周波回
路用電極を利用した伝送線路の斜視図 (b)同断面図
FIG. 6 (a) is a perspective view of a transmission line using a high frequency circuit electrode according to a sixth embodiment of the present invention (b) is a sectional view of the same.

【図7】(a)本発明の第7の実施例における高周波回
路用電極を利用した伝送線路の斜視図 (b)同断面図
FIG. 7 (a) is a perspective view of a transmission line using a high frequency circuit electrode according to a seventh embodiment of the present invention. FIG.

【図8】(a)本発明の第8の実施例における高周波回
路用電極を利用した伝送線路の斜視図 (b)同断面図 (c)同斜視図
FIG. 8A is a perspective view of a transmission line using an electrode for a high frequency circuit according to an eighth embodiment of the present invention. FIG. 8B is a sectional view thereof. FIG. 8C is a perspective view thereof.

【図9】(a)本発明の第9の実施例における高周波回
路用電極を利用した同軸型伝送線路の斜視図 (b)同断面図
FIG. 9 (a) is a perspective view of a coaxial type transmission line using a high frequency circuit electrode according to a ninth embodiment of the present invention (b) is a sectional view thereof

【図10】(a)本発明の第10の実施例における高周
波回路用電極を利用した誘電体同軸共振器の斜視図 (b)同断面図
FIG. 10 (a) is a perspective view of a dielectric coaxial resonator using a high frequency circuit electrode according to a tenth embodiment of the present invention. FIG.

【図11】従来の電極を利用した伝送線路を示す斜視図FIG. 11 is a perspective view showing a conventional transmission line using electrodes.

【符号の説明】[Explanation of symbols]

11、12、13、14、15、101 金属膜 21、22、23 誘電体膜 31、32、33、34、35、36、37、38、3
9 接続導体 41 誘電体ブロック 42、104 誘電体基板 43 同軸型誘電体 52、105 接地導体 61、62、63 スルーホール
11, 12, 13, 14, 15, 101 Metal film 21, 22, 23 Dielectric film 31, 32, 33, 34, 35, 36, 37, 38, 3
9 connection conductor 41 dielectric block 42, 104 dielectric substrate 43 coaxial dielectric 52, 105 grounding conductor 61, 62, 63 through hole

フロントページの続き (72)発明者 牧本 三夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Mitsuo Makimoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】 誘電体上に形成した複数の金属膜と、前
記複数の金属膜を分離するとともに、前記金属膜と交互
に重なった積層構造とする誘電体膜と、前記複数の金属
膜を電気的に接続する接続導体とを具備した高周波回路
用電極。
1. A plurality of metal films formed on a dielectric, a plurality of metal films are separated from each other, and a plurality of metal films are laminated alternately with the metal films. An electrode for a high-frequency circuit, which comprises a connection conductor for electrically connecting.
【請求項2】 接続導体は、金属膜の周囲部分の全ての
端部に設けられたことを特徴とする請求項1記載の高周
波回路用電極。
2. The electrode for a high frequency circuit according to claim 1, wherein the connection conductor is provided at all end portions of a peripheral portion of the metal film.
【請求項3】 接続導体は、金属膜の周囲部分のうちで
外部回路と接続する端部に設けられたことを特徴とする
請求項1記載の高周波回路用電極。
3. The high-frequency circuit electrode according to claim 1, wherein the connection conductor is provided at an end portion of the peripheral portion of the metal film, which is connected to an external circuit.
【請求項4】 接続導体は、金属膜の内部に設けられた
ことを特徴とする請求項1〜3のいずれかに記載の高周
波回路用電極。
4. The high frequency circuit electrode according to claim 1, wherein the connection conductor is provided inside the metal film.
【請求項5】 接続導体はスルーホールであることを特
徴とする請求項1〜4のいずれかに記載の高周波回路用
電極。
5. The high frequency circuit electrode according to claim 1, wherein the connection conductor is a through hole.
【請求項6】 接続導体はワイヤボンディングで形成さ
れたことを特徴とする請求項1〜4のいずれかに記載の
高周波回路用電極。
6. The high frequency circuit electrode according to claim 1, wherein the connection conductor is formed by wire bonding.
【請求項7】 接続導体はリボンであることを特徴とす
る請求項1〜4のいずれかに記載の高周波回路用電極。
7. The high frequency circuit electrode according to claim 1, wherein the connection conductor is a ribbon.
【請求項8】 接続導体はエアブリッジであることを特
徴とする請求項1〜4のいずれかに記載の高周波回路用
電極。
8. The high-frequency circuit electrode according to claim 1, wherein the connecting conductor is an air bridge.
【請求項9】 接続導体は、複数の金属膜のうちの一部
のみを接続していることを特徴とする請求項1〜8のい
ずれかに記載の高周波回路用電極。
9. The electrode for a high frequency circuit according to claim 1, wherein the connection conductor connects only a part of the plurality of metal films.
【請求項10】 接続導体は、複数の金属膜の全てを接
続していることを特徴とする請求項1〜8のいずれかに
記載の高周波回路用電極。
10. The high frequency circuit electrode according to claim 1, wherein the connection conductor connects all of the plurality of metal films.
【請求項11】 金属膜と誘電体膜は膜の表面全体が重
なった積層構造をなしていることを特徴とする請求項1
〜10のいずれかに記載の高周波回路用電極。
11. The metal film and the dielectric film have a laminated structure in which the entire surfaces of the films are overlapped with each other.
10. The electrode for a high frequency circuit according to any one of items 10 to 10.
【請求項12】 金属膜と誘電体膜は膜の表面の一部分
だけが重なった積層構造をなしていることを特徴とする
請求項1〜10のいずれかに記載の高周波回路用電極。
12. The high frequency circuit electrode according to claim 1, wherein the metal film and the dielectric film have a laminated structure in which only a part of the surface of the film overlaps.
【請求項13】 誘電体膜は空気もしくは真空である請
求項1〜12のいずれかに記載の高周波回路用電極。
13. The high frequency circuit electrode according to claim 1, wherein the dielectric film is air or vacuum.
【請求項14】 電極を実装する誘電体基板を具備し、
金属膜と誘電体膜は前記誘電体基板上において、前記誘
電体基板の表面に対して垂直な膜圧方向に重なった積層
構造をなしていることを特徴とする請求項1〜13のい
ずれかに記載の高周波回路用電極。
14. A dielectric substrate having electrodes mounted thereon,
The metal film and the dielectric film have a laminated structure on the dielectric substrate such that they overlap each other in a film pressure direction perpendicular to the surface of the dielectric substrate. The high-frequency circuit electrode according to.
【請求項15】 電極を実装する誘電体基板と、前記誘
電体基板の表面に形成された溝を具備し、金属膜と誘電
体膜は前記溝の内側において重なった積層構造をなして
いることを特徴とする請求項1〜13のいずれかに記載
の高周波回路用電極。
15. A dielectric substrate on which electrodes are mounted, and a groove formed on the surface of the dielectric substrate, wherein the metal film and the dielectric film have a laminated structure in which they overlap each other inside the groove. The electrode for a high frequency circuit according to any one of claims 1 to 13.
【請求項16】 溝の断面はU字形の曲線であることを
特徴とする請求項15記載の高周波回路用電極。
16. The electrode for a high frequency circuit according to claim 15, wherein the cross section of the groove is a U-shaped curve.
【請求項17】 電極を実装する誘電体基板を具備し、
金属膜と誘電体膜は、前記金属膜と前記誘電体膜の表面
が前記誘電体基板の表面に対して垂直となるように実装
され、かつ前記誘電体基板の表面に対して平行となる膜
圧方向に重なった積層構造をなしていることを特徴とす
る請求項1〜13のいずれかに記載の高周波回路用電
極。
17. A dielectric substrate on which electrodes are mounted,
The metal film and the dielectric film are mounted such that the surfaces of the metal film and the dielectric film are perpendicular to the surface of the dielectric substrate and are parallel to the surface of the dielectric substrate. The electrode for a high frequency circuit according to any one of claims 1 to 13, wherein the electrode has a laminated structure in which the electrodes overlap in the pressure direction.
【請求項18】 電極を実装する誘電体基板を具備し、
金属膜と誘電体膜は前記誘電体基板の表面上に並べて配
置され、前記金属膜と前記誘電体膜は側面において互い
に接触していることを特徴とする請求項1〜13のいず
れかに記載の高周波回路用電極。
18. A dielectric substrate having electrodes mounted thereon,
14. The metal film and the dielectric film are arranged side by side on the surface of the dielectric substrate, and the metal film and the dielectric film are in contact with each other on the side surface thereof. High frequency circuit electrode.
【請求項19】 電極を実装する誘電体基板を具備し、
金属膜と誘電体膜は前記誘電体基板の表面において同心
円状に重なった積層構造をなしていることを特徴とする
請求項1〜13のいずれかに記載の高周波回路電極。
19. A dielectric substrate having electrodes mounted thereon,
The high frequency circuit electrode according to any one of claims 1 to 13, wherein the metal film and the dielectric film have a laminated structure in which they are concentrically overlapped on the surface of the dielectric substrate.
【請求項20】 誘電体基板を誘電体ブロックに置き換
えて構成した請求項14〜19のいずれかに記載の高周
波回路用電極。
20. The electrode for a high frequency circuit according to claim 14, wherein the dielectric substrate is replaced with a dielectric block.
【請求項21】 誘電体上に形成された高周波信号を伝
送する伝送線路と接地導体を具備し、前記伝送線路と前
記接地導体のどちらか一方のみに請求項14〜20のい
ずれかに記載の高周波回路用電極を施したことを特徴と
する高周波伝送線路。
21. A transmission line for transmitting a high-frequency signal, which is formed on a dielectric, and a ground conductor are provided, and only one of the transmission line and the ground conductor is provided. A high-frequency transmission line characterized by being provided with electrodes for a high-frequency circuit.
【請求項22】 誘電体上に形成された高周波信号を伝
送する伝送線路と接地導体を具備し、前記伝送線路と前
記接地導体の両方に請求項14〜20のいずれかに記載
の高周波回路用電極を施したことを特徴とする高周波伝
送線路。
22. A high-frequency circuit according to claim 14, further comprising a transmission line formed on a dielectric for transmitting a high-frequency signal and a ground conductor, both of which being the transmission line and the ground conductor. A high-frequency transmission line characterized by having electrodes.
【請求項23】 誘電体上に形成された共振導体と接地
導体を具備し、前記共振導体と前記接地導体のどちらか
一方のみに請求項14〜20のいずれかに記載の高周波
回路用電極を施したことを特徴とする高周波共振器。
23. A high frequency circuit electrode according to claim 14, comprising a resonance conductor and a ground conductor formed on a dielectric, and only one of the resonance conductor and the ground conductor. A high-frequency resonator characterized by being applied.
【請求項24】 誘電体上に形成された共振導体と接地
導体を具備し、前記共振導体と前記接地導体の両方に請
求項14〜20のいずれかに記載の高周波回路用電極を
施したことを特徴とする高周波共振器。
24. A resonance conductor and a ground conductor formed on a dielectric material are provided, and the high-frequency circuit electrode according to claim 14 is applied to both the resonance conductor and the ground conductor. High-frequency resonator characterized by.
JP24414795A 1995-09-22 1995-09-22 High frequency circuit electrode, transmission line and resonator using the same Expired - Fee Related JP3314594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24414795A JP3314594B2 (en) 1995-09-22 1995-09-22 High frequency circuit electrode, transmission line and resonator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24414795A JP3314594B2 (en) 1995-09-22 1995-09-22 High frequency circuit electrode, transmission line and resonator using the same

Publications (2)

Publication Number Publication Date
JPH0993005A true JPH0993005A (en) 1997-04-04
JP3314594B2 JP3314594B2 (en) 2002-08-12

Family

ID=17114466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24414795A Expired - Fee Related JP3314594B2 (en) 1995-09-22 1995-09-22 High frequency circuit electrode, transmission line and resonator using the same

Country Status (1)

Country Link
JP (1) JP3314594B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917236A2 (en) * 1997-10-09 1999-05-19 Murata Manufacturing Co., Ltd. High-frequency transmission line, dielectric resonator, filter, duplexer, and communication device
EP0984502A2 (en) * 1998-09-01 2000-03-08 Murata Manufacturing Co., Ltd. High frequency low loss electrode
JP2001133641A (en) * 1999-11-05 2001-05-18 Sumitomo Osaka Cement Co Ltd Optical waveguide element
EP1102344A2 (en) * 1999-11-05 2001-05-23 Murata Manufacturing Co., Ltd. Dielectric resonator, dielectric filter, dielectric duplexer, and communication device
WO2001069710A1 (en) * 2000-03-15 2001-09-20 Matsushita Electric Industrial Co., Ltd. Multilayer electronic part, multilayer antenna duplexer, and communication apparatus
JP2001358140A (en) * 2000-06-13 2001-12-26 Oki Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
US6456861B1 (en) 1998-09-01 2002-09-24 Murata Manufacturing Co., Ltd. High frequency low loss electrode having laminated main and sub conductors
WO2002103838A1 (en) * 2001-06-18 2002-12-27 Nokia Corporation Conductor structure
JP2003017680A (en) * 2001-06-28 2003-01-17 Ngk Insulators Ltd Electronic part
US6683260B2 (en) 2000-07-04 2004-01-27 Matsushita Electric Industrial Co., Ltd. Multilayer wiring board embedded with transmission line conductor
JP2009194605A (en) * 2008-02-14 2009-08-27 Furuno Electric Co Ltd High frequency transmission circuit, distributor, distributed coupling type distributor, and resonance circuit
FR2931301A1 (en) * 2008-05-19 2009-11-20 St Microelectronics Sa COPLANARY WAVE GUIDE
ITMI20092185A1 (en) * 2009-12-14 2011-06-15 Siae Microelettronica Spa LINE IN MICRO STRIP FOR HIGH FREQUENCY TRANSMISSIONS
JP2014175864A (en) * 2013-03-08 2014-09-22 Nucurrent Inc Highly efficient multilayer wire structure for radio communication
JP5967290B2 (en) * 2013-07-09 2016-08-10 株式会社村田製作所 High frequency transmission line
US9941743B2 (en) 2015-08-07 2018-04-10 Nucurrent, Inc. Single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
US9941729B2 (en) 2015-08-07 2018-04-10 Nucurrent, Inc. Single layer multi mode antenna for wireless power transmission using magnetic field coupling
US9941590B2 (en) 2015-08-07 2018-04-10 Nucurrent, Inc. Single structure multi mode antenna for wireless power transmission using magnetic field coupling having magnetic shielding
US9948129B2 (en) 2015-08-07 2018-04-17 Nucurrent, Inc. Single structure multi mode antenna for wireless power transmission using magnetic field coupling having an internal switch circuit
US9960628B2 (en) 2015-08-07 2018-05-01 Nucurrent, Inc. Single structure multi mode antenna having a single layer structure with coils on opposing sides for wireless power transmission using magnetic field coupling
US9960629B2 (en) 2015-08-07 2018-05-01 Nucurrent, Inc. Method of operating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US10063100B2 (en) 2015-08-07 2018-08-28 Nucurrent, Inc. Electrical system incorporating a single structure multimode antenna for wireless power transmission using magnetic field coupling
JP2018174591A (en) * 2012-05-01 2018-11-08 ナノトン, インコーポレイテッド Radio frequency (rf) conductive medium
US10424969B2 (en) 2016-12-09 2019-09-24 Nucurrent, Inc. Substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10636563B2 (en) 2015-08-07 2020-04-28 Nucurrent, Inc. Method of fabricating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US10658847B2 (en) 2015-08-07 2020-05-19 Nucurrent, Inc. Method of providing a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US10879705B2 (en) 2016-08-26 2020-12-29 Nucurrent, Inc. Wireless connector receiver module with an electrical connector
US10903688B2 (en) 2017-02-13 2021-01-26 Nucurrent, Inc. Wireless electrical energy transmission system with repeater
US10985465B2 (en) 2015-08-19 2021-04-20 Nucurrent, Inc. Multi-mode wireless antenna configurations
JPWO2021106442A1 (en) * 2019-11-29 2021-06-03
US11056922B1 (en) 2020-01-03 2021-07-06 Nucurrent, Inc. Wireless power transfer system for simultaneous transfer to multiple devices
US11152151B2 (en) 2017-05-26 2021-10-19 Nucurrent, Inc. Crossover coil structure for wireless transmission
US11205849B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Multi-coil antenna structure with tunable inductance
US11227712B2 (en) 2019-07-19 2022-01-18 Nucurrent, Inc. Preemptive thermal mitigation for wireless power systems
US11271430B2 (en) 2019-07-19 2022-03-08 Nucurrent, Inc. Wireless power transfer system with extended wireless charging range
US11283303B2 (en) 2020-07-24 2022-03-22 Nucurrent, Inc. Area-apportioned wireless power antenna for maximized charging volume
US11335999B2 (en) 2009-03-09 2022-05-17 Nucurrent, Inc. Device having a multi-layer-multi-turn antenna with frequency
US20220200342A1 (en) 2020-12-22 2022-06-23 Nucurrent, Inc. Ruggedized communication for wireless power systems in multi-device environments
US11695302B2 (en) 2021-02-01 2023-07-04 Nucurrent, Inc. Segmented shielding for wide area wireless power transmitter
US11876386B2 (en) 2020-12-22 2024-01-16 Nucurrent, Inc. Detection of foreign objects in large charging volume applications
US11996706B2 (en) 2023-06-29 2024-05-28 Nucurrent, Inc. Segmented shielding for wide area wireless power transmitter

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917236A3 (en) * 1997-10-09 2001-03-14 Murata Manufacturing Co., Ltd. High-frequency transmission line, dielectric resonator, filter, duplexer, and communication device
EP0917236A2 (en) * 1997-10-09 1999-05-19 Murata Manufacturing Co., Ltd. High-frequency transmission line, dielectric resonator, filter, duplexer, and communication device
US6438395B1 (en) 1998-09-01 2002-08-20 Murata Manufacturing Co., Ltd. High frequency low loss electrode with main and sub conductors
KR100327535B1 (en) * 1998-09-01 2002-03-14 무라타 야스타카 High Frequency Low Loss Electrode
EP0984502A2 (en) * 1998-09-01 2000-03-08 Murata Manufacturing Co., Ltd. High frequency low loss electrode
EP0984502A3 (en) * 1998-09-01 2001-08-16 Murata Manufacturing Co., Ltd. High frequency low loss electrode
KR100358072B1 (en) * 1998-09-01 2002-10-25 가부시키가이샤 무라타 세이사쿠쇼 High frequency low loss electode
US6456861B1 (en) 1998-09-01 2002-09-24 Murata Manufacturing Co., Ltd. High frequency low loss electrode having laminated main and sub conductors
US6556101B1 (en) 1999-11-05 2003-04-29 Murata Manufacturing Co. Ltd. Dielectric resonator, dielectric filter, dielectric duplexer, and communication device
EP1102344A3 (en) * 1999-11-05 2002-03-20 Murata Manufacturing Co., Ltd. Dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP2001133641A (en) * 1999-11-05 2001-05-18 Sumitomo Osaka Cement Co Ltd Optical waveguide element
EP1102344A2 (en) * 1999-11-05 2001-05-23 Murata Manufacturing Co., Ltd. Dielectric resonator, dielectric filter, dielectric duplexer, and communication device
WO2001069710A1 (en) * 2000-03-15 2001-09-20 Matsushita Electric Industrial Co., Ltd. Multilayer electronic part, multilayer antenna duplexer, and communication apparatus
US6822534B2 (en) 2000-03-15 2004-11-23 Matsushita Electric Industrial Co., Ltd. Laminated electronic component, laminated duplexer and communication device
JP4693959B2 (en) * 2000-06-13 2011-06-01 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor device
JP2001358140A (en) * 2000-06-13 2001-12-26 Oki Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
US6683260B2 (en) 2000-07-04 2004-01-27 Matsushita Electric Industrial Co., Ltd. Multilayer wiring board embedded with transmission line conductor
WO2002103838A1 (en) * 2001-06-18 2002-12-27 Nokia Corporation Conductor structure
JP2003017680A (en) * 2001-06-28 2003-01-17 Ngk Insulators Ltd Electronic part
JP2009194605A (en) * 2008-02-14 2009-08-27 Furuno Electric Co Ltd High frequency transmission circuit, distributor, distributed coupling type distributor, and resonance circuit
US9450280B2 (en) 2008-05-19 2016-09-20 Stmicroelectronics Sa Coplanar waveguide
US8390401B2 (en) 2008-05-19 2013-03-05 Stmicroelectronics, Sa Coplanar waveguide
FR2931301A1 (en) * 2008-05-19 2009-11-20 St Microelectronics Sa COPLANARY WAVE GUIDE
US8902025B2 (en) 2008-05-19 2014-12-02 Stmicroelectronics Sa Coplanar waveguide
US11335999B2 (en) 2009-03-09 2022-05-17 Nucurrent, Inc. Device having a multi-layer-multi-turn antenna with frequency
US11336003B2 (en) 2009-03-09 2022-05-17 Nucurrent, Inc. Multi-layer, multi-turn inductor structure for wireless transfer of power
US11476566B2 (en) 2009-03-09 2022-10-18 Nucurrent, Inc. Multi-layer-multi-turn structure for high efficiency wireless communication
US11916400B2 (en) 2009-03-09 2024-02-27 Nucurrent, Inc. Multi-layer-multi-turn structure for high efficiency wireless communication
ITMI20092185A1 (en) * 2009-12-14 2011-06-15 Siae Microelettronica Spa LINE IN MICRO STRIP FOR HIGH FREQUENCY TRANSMISSIONS
EP2337146A1 (en) 2009-12-14 2011-06-22 SIAE Microelettronica S.p.A. Microstrip line coupler for microwave transmission
JP2018174591A (en) * 2012-05-01 2018-11-08 ナノトン, インコーポレイテッド Radio frequency (rf) conductive medium
US11955685B2 (en) 2012-05-01 2024-04-09 Nanoton, Inc. Radio frequency (RF) conductive medium
JP2014175864A (en) * 2013-03-08 2014-09-22 Nucurrent Inc Highly efficient multilayer wire structure for radio communication
JP5967290B2 (en) * 2013-07-09 2016-08-10 株式会社村田製作所 High frequency transmission line
US9570786B2 (en) 2013-07-09 2017-02-14 Murata Manufacturing Co., Ltd. High-frequency transmission line
JPWO2015005028A1 (en) * 2013-07-09 2017-03-02 株式会社村田製作所 High frequency transmission line
US10658847B2 (en) 2015-08-07 2020-05-19 Nucurrent, Inc. Method of providing a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US9960628B2 (en) 2015-08-07 2018-05-01 Nucurrent, Inc. Single structure multi mode antenna having a single layer structure with coils on opposing sides for wireless power transmission using magnetic field coupling
US11955809B2 (en) 2015-08-07 2024-04-09 Nucurrent, Inc. Single structure multi mode antenna for wireless power transmission incorporating a selection circuit
US10063100B2 (en) 2015-08-07 2018-08-28 Nucurrent, Inc. Electrical system incorporating a single structure multimode antenna for wireless power transmission using magnetic field coupling
US9960629B2 (en) 2015-08-07 2018-05-01 Nucurrent, Inc. Method of operating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US11769629B2 (en) 2015-08-07 2023-09-26 Nucurrent, Inc. Device having a multimode antenna with variable width of conductive wire
US10636563B2 (en) 2015-08-07 2020-04-28 Nucurrent, Inc. Method of fabricating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US9941729B2 (en) 2015-08-07 2018-04-10 Nucurrent, Inc. Single layer multi mode antenna for wireless power transmission using magnetic field coupling
US11025070B2 (en) 2015-08-07 2021-06-01 Nucurrent, Inc. Device having a multimode antenna with at least one conductive wire with a plurality of turns
US9941743B2 (en) 2015-08-07 2018-04-10 Nucurrent, Inc. Single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
US11469598B2 (en) 2015-08-07 2022-10-11 Nucurrent, Inc. Device having a multimode antenna with variable width of conductive wire
US11196266B2 (en) 2015-08-07 2021-12-07 Nucurrent, Inc. Device having a multimode antenna with conductive wire width
US9948129B2 (en) 2015-08-07 2018-04-17 Nucurrent, Inc. Single structure multi mode antenna for wireless power transmission using magnetic field coupling having an internal switch circuit
US11205849B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Multi-coil antenna structure with tunable inductance
US9941590B2 (en) 2015-08-07 2018-04-10 Nucurrent, Inc. Single structure multi mode antenna for wireless power transmission using magnetic field coupling having magnetic shielding
US11205848B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Method of providing a single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
US11316271B2 (en) 2015-08-19 2022-04-26 Nucurrent, Inc. Multi-mode wireless antenna configurations
US10985465B2 (en) 2015-08-19 2021-04-20 Nucurrent, Inc. Multi-mode wireless antenna configurations
US11670856B2 (en) 2015-08-19 2023-06-06 Nucurrent, Inc. Multi-mode wireless antenna configurations
US10903660B2 (en) 2016-08-26 2021-01-26 Nucurrent, Inc. Wireless connector system circuit
US10879704B2 (en) 2016-08-26 2020-12-29 Nucurrent, Inc. Wireless connector receiver module
US11011915B2 (en) 2016-08-26 2021-05-18 Nucurrent, Inc. Method of making a wireless connector transmitter module
US10938220B2 (en) 2016-08-26 2021-03-02 Nucurrent, Inc. Wireless connector system
US10886751B2 (en) 2016-08-26 2021-01-05 Nucurrent, Inc. Wireless connector transmitter module
US10897140B2 (en) 2016-08-26 2021-01-19 Nucurrent, Inc. Method of operating a wireless connector system
US10879705B2 (en) 2016-08-26 2020-12-29 Nucurrent, Inc. Wireless connector receiver module with an electrical connector
US10916950B2 (en) 2016-08-26 2021-02-09 Nucurrent, Inc. Method of making a wireless connector receiver module
US10931118B2 (en) 2016-08-26 2021-02-23 Nucurrent, Inc. Wireless connector transmitter module with an electrical connector
US10432033B2 (en) 2016-12-09 2019-10-01 Nucurrent, Inc. Electronic device having a sidewall configured to facilitate through-metal energy transfer via near field magnetic coupling
US11764614B2 (en) 2016-12-09 2023-09-19 Nucurrent, Inc. Method of fabricating an antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10868444B2 (en) 2016-12-09 2020-12-15 Nucurrent, Inc. Method of operating a system having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10432032B2 (en) 2016-12-09 2019-10-01 Nucurrent, Inc. Wireless system having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10432031B2 (en) 2016-12-09 2019-10-01 Nucurrent, Inc. Antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US11418063B2 (en) 2016-12-09 2022-08-16 Nucurrent, Inc. Method of fabricating an antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10424969B2 (en) 2016-12-09 2019-09-24 Nucurrent, Inc. Substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10892646B2 (en) 2016-12-09 2021-01-12 Nucurrent, Inc. Method of fabricating an antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US11223235B2 (en) 2017-02-13 2022-01-11 Nucurrent, Inc. Wireless electrical energy transmission system
US11264837B2 (en) 2017-02-13 2022-03-01 Nucurrent, Inc. Transmitting base with antenna having magnetic shielding panes
US11177695B2 (en) 2017-02-13 2021-11-16 Nucurrent, Inc. Transmitting base with magnetic shielding and flexible transmitting antenna
US10903688B2 (en) 2017-02-13 2021-01-26 Nucurrent, Inc. Wireless electrical energy transmission system with repeater
US11705760B2 (en) 2017-02-13 2023-07-18 Nucurrent, Inc. Method of operating a wireless electrical energy transmission system
US11223234B2 (en) 2017-02-13 2022-01-11 Nucurrent, Inc. Method of operating a wireless electrical energy transmission base
US11502547B2 (en) 2017-02-13 2022-11-15 Nucurrent, Inc. Wireless electrical energy transmission system with transmitting antenna having magnetic field shielding panes
US10958105B2 (en) 2017-02-13 2021-03-23 Nucurrent, Inc. Transmitting base with repeater
US11431200B2 (en) 2017-02-13 2022-08-30 Nucurrent, Inc. Method of operating a wireless electrical energy transmission system
US11277028B2 (en) 2017-05-26 2022-03-15 Nucurrent, Inc. Wireless electrical energy transmission system for flexible device orientation
US11652511B2 (en) 2017-05-26 2023-05-16 Nucurrent, Inc. Inductor coil structures to influence wireless transmission performance
US11283296B2 (en) 2017-05-26 2022-03-22 Nucurrent, Inc. Crossover inductor coil and assembly for wireless transmission
US11277029B2 (en) 2017-05-26 2022-03-15 Nucurrent, Inc. Multi coil array for wireless energy transfer with flexible device orientation
US11152151B2 (en) 2017-05-26 2021-10-19 Nucurrent, Inc. Crossover coil structure for wireless transmission
US11283295B2 (en) 2017-05-26 2022-03-22 Nucurrent, Inc. Device orientation independent wireless transmission system
US11282638B2 (en) 2017-05-26 2022-03-22 Nucurrent, Inc. Inductor coil structures to influence wireless transmission performance
US11227712B2 (en) 2019-07-19 2022-01-18 Nucurrent, Inc. Preemptive thermal mitigation for wireless power systems
US11271430B2 (en) 2019-07-19 2022-03-08 Nucurrent, Inc. Wireless power transfer system with extended wireless charging range
US11756728B2 (en) 2019-07-19 2023-09-12 Nucurrent, Inc. Wireless power transfer system with extended wireless charging range
JPWO2021106442A1 (en) * 2019-11-29 2021-06-03
US11056922B1 (en) 2020-01-03 2021-07-06 Nucurrent, Inc. Wireless power transfer system for simultaneous transfer to multiple devices
US11811223B2 (en) 2020-01-03 2023-11-07 Nucurrent, Inc. Wireless power transfer system for simultaneous transfer to multiple devices
US11658517B2 (en) 2020-07-24 2023-05-23 Nucurrent, Inc. Area-apportioned wireless power antenna for maximized charging volume
US11283303B2 (en) 2020-07-24 2022-03-22 Nucurrent, Inc. Area-apportioned wireless power antenna for maximized charging volume
US11876386B2 (en) 2020-12-22 2024-01-16 Nucurrent, Inc. Detection of foreign objects in large charging volume applications
US11881716B2 (en) 2020-12-22 2024-01-23 Nucurrent, Inc. Ruggedized communication for wireless power systems in multi-device environments
US20220200342A1 (en) 2020-12-22 2022-06-23 Nucurrent, Inc. Ruggedized communication for wireless power systems in multi-device environments
US11695302B2 (en) 2021-02-01 2023-07-04 Nucurrent, Inc. Segmented shielding for wide area wireless power transmitter
US11996706B2 (en) 2023-06-29 2024-05-28 Nucurrent, Inc. Segmented shielding for wide area wireless power transmitter

Also Published As

Publication number Publication date
JP3314594B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
JPH0993005A (en) Electrode for high frequency circuit, transmission line and resonator using the same
US7902944B2 (en) Stacked resonator
JP3255118B2 (en) Transmission line and transmission line resonator
JP2651336B2 (en) Directional coupler
JPH07221512A (en) High frequency connection line
JP2001230610A (en) Laminated dielectric resonator
JP4818894B2 (en) High frequency transmission line
JP2000013106A (en) Dielectric filter, shared transmitter/receiver sharing unit and communication equipment
JP4381701B2 (en) Connection structure between coaxial connector and multilayer board
US7525401B2 (en) Stacked filter
JPH06140804A (en) Strip line filter
US6677838B2 (en) Coplanar waveguide with a low characteristic impedance on a silicon substrate using a material with a high dielectric constant
JP2000174515A (en) Coplanar waveguide - waveguide converter
JP7077137B2 (en) Transmission lines and connectors
JPH1013113A (en) Connecting method for distributed constant lines and microwave circuit
JP2004312217A (en) Waveguide dielectric filter
WO2023098172A1 (en) Signal transmission structure, electronic device and pcb
JP2003069316A (en) Layered directional coupler
JP3185837B2 (en) High frequency line
JP3895197B2 (en) Microwave / millimeter wave transmission circuit
JP2001298306A (en) High frequency transmission line substrate and high frequency package
JP2768411B2 (en) Dielectric waveguide directional coupler
JP2000049502A (en) Connecting method for micro strip line
JPH0735932A (en) Hybrid optical waveguide circuit
JP2001036311A (en) Directional coupler

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees