JPH0990405A - Thin-film transistor - Google Patents

Thin-film transistor

Info

Publication number
JPH0990405A
JPH0990405A JP24347995A JP24347995A JPH0990405A JP H0990405 A JPH0990405 A JP H0990405A JP 24347995 A JP24347995 A JP 24347995A JP 24347995 A JP24347995 A JP 24347995A JP H0990405 A JPH0990405 A JP H0990405A
Authority
JP
Japan
Prior art keywords
gate electrode
tft
lower gate
gate electrodes
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24347995A
Other languages
Japanese (ja)
Inventor
Masahiro Fujiwara
正弘 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP24347995A priority Critical patent/JPH0990405A/en
Publication of JPH0990405A publication Critical patent/JPH0990405A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the increase in off current by light incidence and to lessen the adverse influence of the capacitors by light shielding films on images. SOLUTION: Upper gate electrodes 106, 107 and lower gate electrodes 102 are formed via insulating films 103, 105 above and below a semiconductor thin film having channel regions 104, source regions and drain regions 112. The lower gate electrodes 102 overlap at least partly on the adjacent upper gate electrodes 106, 107 and do not overlap on the source regions and drain regions 111, 112. An impurity of the same conduction type as the conduction type of the source regions and drain regions 111, 112 may be introduced into the parts 114 on the lower electrodes of the semiconductor thin film. The upper gate electrodes 106, 107 and the lower gate electrodes 102 may be connected to the same signal lines and the specified voltage may be impressed on the lower gate electrodes 102.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、たとえばアクティ
ブマトリックス型液晶パネル(以下、AMLCDと称す
る)にマトリックス状に設けられた画素のオンオフを制
御するスイッチング素子として好適に用いられる薄膜ト
ランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor preferably used as a switching element for controlling ON / OFF of pixels provided in a matrix on an active matrix type liquid crystal panel (hereinafter referred to as AMLCD).

【0002】[0002]

【従来の技術】近年、多結晶シリコン(以下、p−Si
と称する)を半導体層に用いた薄膜トランジスタ(以
下、TFTと称する)に関する研究が活発に行われてい
る。このp−Si・TFTを上述した画素用のスイッチ
ング素子として用いたAMLCDにおいては、ドライバ
回路を同一基板上に形成することが可能であり、コスト
低減、基板サイズの縮小化等の効果が期待できる。ま
た、上記p−Si・TFTにおいては、ゲート電極をマ
スクとしてイオン注入を行うことにより、ゲート電極と
ソース領域およびドレイン領域とを自己整合的に作製す
ることが可能となる。このため、p−Si・TFTを画
素のスイッチング素子として用いた場合に、画素電極と
ゲート電極との間の容量結合による画素信号の変動を抑
えることができる。
2. Description of the Related Art In recent years, polycrystalline silicon (hereinafter referred to as p-Si
(Hereinafter, referred to as "TFT") as a semiconductor layer has been actively researched. In the AMLCD using the p-Si.TFT as the switching element for the pixel described above, the driver circuit can be formed on the same substrate, and effects such as cost reduction and substrate size reduction can be expected. . In the p-Si TFT, the gate electrode and the source region and the drain region can be self-aligned by performing ion implantation with the gate electrode as a mask. Therefore, when the p-Si.TFT is used as a pixel switching element, it is possible to suppress variation in the pixel signal due to capacitive coupling between the pixel electrode and the gate electrode.

【0003】しかし、画素のスイッチング素子としてp
−Si・TFTを用いた場合には、非晶質シリコン(以
下、a−Si:Hと称する)を半導体層に用いたa−S
i:H・TFTに比べてオフ電流が高く、特に、ソース
−ドレイン電圧が高くなると、急激にオフ電流が増加す
るという問題がある。このような現象が生じる理由は、
ソースードレイン電圧が高くなると、ドレイン端の電界
強度が強くなって、欠陥準位を介したトンネル電流や熱
励起電流等が流れるためであると一般に説明されてい
る。
However, p is used as a pixel switching element.
In the case of using -Si.TFT, a-S using amorphous silicon (hereinafter referred to as a-Si: H) for the semiconductor layer is used.
The off current is higher than that of the i: H.TFT, and in particular, when the source-drain voltage becomes higher, the off current sharply increases. The reason for this phenomenon is
It is generally explained that when the source-drain voltage becomes higher, the electric field strength at the drain end becomes stronger, and a tunnel current, a thermal excitation current, or the like flows through the defect level.

【0004】この問題を解決するために、例えば図10
に示すような複数のゲート電極205、206を有する
デュアルゲート構造のTFTが提案されている(特公平
5−44195号)。また、図11に示すようなオフセ
ット領域またはLDD(Lightly Doped
Drain)領域213aを有するオフセット構造また
はLDD構造のTFTが提案されている(特公平3−3
4699号)。さらに、図12に示すようなデュアルゲ
ートのオフセット構造またはLDD構造のTFTが提案
されている(特開平2−135780号)。尚、これら
の図において、201はガラス基板、202は絶縁膜、
203はチャンネル領域、204はゲート絶縁膜、20
5および206はゲート電極、207は層間絶縁膜、2
08および209はソース電極およびドレイン電極、2
10、211および213はソース領域およびドレイン
領域、213aはオフセット領域またはLDD領域を示
す。
To solve this problem, for example, FIG.
A dual-gate structure TFT having a plurality of gate electrodes 205 and 206 as shown in (4) has been proposed (Japanese Patent Publication No. 5-44195). In addition, an offset region or an LDD (Lightly Doped) as shown in FIG.
A TFT having an offset structure or an LDD structure having a drain region 213a has been proposed (Japanese Patent Publication No. 3-3).
4699). Furthermore, a TFT having a dual-gate offset structure or LDD structure as shown in FIG. 12 has been proposed (Japanese Patent Laid-Open No. 2-135780). In these figures, 201 is a glass substrate, 202 is an insulating film,
203 is a channel region, 204 is a gate insulating film, 20
5 and 206 are gate electrodes, 207 is an interlayer insulating film, 2
08 and 209 are source and drain electrodes, 2
Reference numerals 10, 211 and 213 denote source and drain regions and 213a denotes an offset region or LDD region.

【0005】このように複数のゲート電極205、20
6を設けた構造では、ソース−ドレイン電圧が個々のゲ
ート電極に対応したTFTに分割されるので、オフ電流
が低減される。また、オフセット領域またはLDD領域
213aを設けた構造では、ソース−ドレイン電圧がオ
フセット領域またはLDD領域に分散されるので、電界
強度が減少してオフ電流が低減される。オフセット構造
またはLDD構造では、ソース−ドレイン抵抗が増大し
てオン電流が減少するという欠点もあるが、p−Si・
TFTでは移動度が高いので問題が生じない。
As described above, the plurality of gate electrodes 205, 20
In the structure provided with 6, the source-drain voltage is divided into the TFTs corresponding to the individual gate electrodes, so that the off current is reduced. In the structure provided with the offset region or the LDD region 213a, the source-drain voltage is dispersed in the offset region or the LDD region, so that the electric field strength is reduced and the off current is reduced. The offset structure or the LDD structure has a drawback that the source-drain resistance increases and the on-current decreases, but p-Si.
Since the TFT has high mobility, no problem occurs.

【0006】[0006]

【発明が解決しようとする課題】一般に、トップゲート
構造のTFTには、基板裏面からの光入射により光伝導
が生じて、オフ電流が増加するという問題がある。従来
のa−Si:H・TFTでは、一般に逆スタガ構造が採
用されるので、ゲート電極が自動的に遮光膜となって、
問題は生じない。しかし、トップゲート構造を採用した
場合には、このような光入射によるオフ電流の増加とい
う問題が生じる。
In general, a TFT having a top gate structure has a problem that photoconduction occurs due to light incident from the back surface of the substrate and the off current increases. In the conventional a-Si: H.TFT, an inverted stagger structure is generally adopted, so that the gate electrode automatically becomes a light-shielding film.
No problem. However, when the top gate structure is adopted, there is a problem that the off current increases due to such light incidence.

【0007】この問題を解決するために、トップゲート
構造のTFTでは、図13に示すように、チャンネル領
域304の下側に、絶縁膜303を介してゲート電極3
06よりも大きい形状の遮光膜302を形成することが
一般的に行われている。この場合は、プロセス温度の関
係から遮光膜として金属を用いることが多いので、図1
3および図14に示すように、ソース領域およびドレイ
ン領域310、311と遮光膜302との間に寄生容量
312、313が発生する。このため、遮光膜302を
ゲートバスラインやソースバスライン等と接続すると、
バスラインの電圧変化がこの寄生容量を介して画素電圧
の変動をもたらすことになり、画像に悪影響を与えると
いう問題がある。尚、この図13において、301はガ
ラス基板、302は遮光膜、303は絶縁膜、304は
チャンネル領域、305はゲート絶縁膜、306はゲー
ト電極、307は層間絶縁膜、308および309はソ
ース領域およびドレイン電極、310および311はソ
ース領域およびドレイン領域、312および313は寄
生容量を示す。
In order to solve this problem, in the TFT having the top gate structure, as shown in FIG. 13, the gate electrode 3 is formed below the channel region 304 with the insulating film 303 interposed therebetween.
Generally, the light shielding film 302 having a shape larger than 06 is formed. In this case, a metal is often used as the light-shielding film because of the process temperature.
As shown in FIG. 3 and FIG. 14, parasitic capacitances 312 and 313 are generated between the source and drain regions 310 and 311 and the light shielding film 302. Therefore, if the light shielding film 302 is connected to a gate bus line, a source bus line, etc.,
There is a problem that a change in the voltage of the bus line causes a change in the pixel voltage via the parasitic capacitance, which adversely affects the image. In FIG. 13, 301 is a glass substrate, 302 is a light shielding film, 303 is an insulating film, 304 is a channel region, 305 is a gate insulating film, 306 is a gate electrode, 307 is an interlayer insulating film, and 308 and 309 are source regions. And drain electrodes, 310 and 311 indicate source and drain regions, and 312 and 313 indicate parasitic capacitances.

【0008】本発明は、このような従来技術の課題を解
決すべくなされたものであり、光入射によるオフ電流の
増加を防ぐことができ、遮光膜による寄生容量が画像に
悪影響を及ぼすのを防ぐことができる薄膜トランジスタ
(TFT)を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems of the prior art. It is possible to prevent an increase in off-current due to the incidence of light and prevent the parasitic capacitance due to the light-shielding film from adversely affecting the image. It is an object to provide a thin film transistor (TFT) that can be prevented.

【0009】[0009]

【課題を解決するための手段】本発明の薄膜トランジス
タは、チャンネル領域の両側にソース領域とドレイン領
域とを有する半導体薄膜の該チャンネル領域を挟んで一
方側に、絶縁膜を介して2以上の上部ゲート電極が形成
され、他方側に絶縁膜を介して1以上の下部ゲート電極
が、各下部ゲート電極の両端部を相互に隣接する上部ゲ
ート電極の各々に対して重畳させて形成され、そのこと
により上記目的が達成される。
A thin film transistor according to the present invention includes a semiconductor thin film having a source region and a drain region on both sides of a channel region, sandwiching the channel region on one side, and at least two upper portions with an insulating film interposed therebetween. A gate electrode is formed, and one or more lower gate electrodes are formed on the other side through an insulating film by overlapping both ends of each lower gate electrode with each of the upper gate electrodes adjacent to each other. The above object is achieved by the above.

【0010】本発明の薄膜トランジスタにおいて、前記
半導体薄膜の前記上部ゲート電極とは重畳しない部分
に、前記ソース領域およびドレイン領域に導入されてい
る不純物と同じ導電型の不純物が該ソース領域およびド
レイン領域よりも低濃度に導入されている構成とするこ
とができる。
In the thin film transistor of the present invention, an impurity of the same conductivity type as the impurities introduced into the source region and the drain region is formed in a portion of the semiconductor thin film which does not overlap with the upper gate electrode from the source region and the drain region. Can be configured to be introduced at a low concentration.

【0011】本発明の薄膜トランジスタにおいて、前記
上部ゲート電極および下部ゲート電極が同一の信号線に
接続されている構成、または前記下部ゲート電極に一定
の電圧が印加されている構成とすることができる。
In the thin film transistor of the present invention, the upper gate electrode and the lower gate electrode may be connected to the same signal line, or a constant voltage may be applied to the lower gate electrode.

【0012】以下に、本発明の作用について説明する。The operation of the present invention will be described below.

【0013】本発明にあっては、半導体薄膜を挟んで2
以上の上部ゲート電極と1以上の下部ゲート電極とが形
成され、各下部ゲート電極の両端部が相互に隣接する上
部ゲート電極の各々に対して重畳している。この構造に
より、ソース−ドレイン電圧が各々のゲート電極に対応
したTFTに分散され、これによりオフ電流が低減され
る。
In the present invention, the semiconductor thin film is sandwiched between the two
The above upper gate electrode and one or more lower gate electrodes are formed, and both ends of each lower gate electrode overlap with each other of the adjacent upper gate electrodes. With this structure, the source-drain voltage is distributed to the TFTs corresponding to the respective gate electrodes, thereby reducing the off current.

【0014】また、MIS型TFTでは、キャリアがゲ
ート電極に近い絶縁膜の界面に形成されるので、下部ゲ
ート電極で構成されるTFTと、上部ゲート電極で構成
されるTFTの間では、チャンネル領域の膜厚方向の中
央部が空乏化する。その結果、さらにオフ電流が低減さ
れる。
In the MIS type TFT, carriers are formed at the interface of the insulating film close to the gate electrode, so that a channel region is formed between the TFT composed of the lower gate electrode and the TFT composed of the upper gate electrode. The central part in the film thickness direction of is depleted. As a result, the off current is further reduced.

【0015】さらに、光が基板裏面から入射しても、下
部ゲート電極で構成されるTFTが下部ゲート電極の陰
になるので、光電流の発生が抑えられる。
Further, even if light is incident from the back surface of the substrate, the TFT composed of the lower gate electrode is behind the lower gate electrode, so that generation of photocurrent can be suppressed.

【0016】また、上部ゲート電極とソース領域および
ドレイン領域とは自己整合的に形成でき、下部ゲート電
極はソース領域およびドレイン領域と重ならないので、
画素電極とゲート電極との容量結合による画素電圧の変
動が抑制される。
Further, the upper gate electrode and the source region and the drain region can be formed in a self-aligned manner, and the lower gate electrode does not overlap the source region and the drain region.
Fluctuations in pixel voltage due to capacitive coupling between the pixel electrode and the gate electrode are suppressed.

【0017】半導体薄膜の上部ゲート電極とは重畳しな
い部分に、ソース領域およびドレイン領域と同じ導電型
の不純物を低濃度に導入すると、下部ゲート電極がオフ
レベルになった時に、半導体薄膜の下部ゲート電極上の
部分が空乏化され、さらにオフ電流の低減を図ることが
できる。このLDD領域は、上部ゲート電極をマスクと
して不純物導入を行うことにより、注入領域を正確に制
御できる。
If impurities of the same conductivity type as those of the source region and the drain region are introduced into the portion of the semiconductor thin film which does not overlap with the upper gate electrode at a low concentration, when the lower gate electrode is turned off, the lower gate of the semiconductor thin film is turned on. The portion on the electrode is depleted, and the off current can be further reduced. In this LDD region, the implantation region can be accurately controlled by introducing impurities using the upper gate electrode as a mask.

【0018】上部ゲート電極および下部ゲート電極は、
同一の信号線に接続してもよく、下部ゲート電極に一定
の電圧を印加してもよい。下部ゲート電極に一定の電圧
を印加する場合には、全体として最もオンオフ比が高く
なるように電圧を印加する。この場合、下部ゲート電極
と上部ゲート電極とを接続する必要が無い。
The upper gate electrode and the lower gate electrode are
They may be connected to the same signal line, or a constant voltage may be applied to the lower gate electrode. When a constant voltage is applied to the lower gate electrode, the voltage is applied so that the on / off ratio becomes highest as a whole. In this case, it is not necessary to connect the lower gate electrode and the upper gate electrode.

【0019】[0019]

【実施形態】以下、本発明の実施形態について、図面を
参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】本実施形態のTFTは、例えば図1(a)
に示すように、ガラス基板101上に、チャンネル領域
104、ソース領域およびドレイン領域111、112
を有する半導体薄膜が形成され、その上下に、絶縁膜1
03、105を介して上部ゲート電極106、107お
よび下部ゲート電極102が形成されている。下部ゲー
ト電極102はソース領域およびドレイン領域111、
112と重なっておらず、また、その一部は、隣接する
上部ゲート電極106、107と重なっている。その上
には、上部ゲート電極106、107を覆うように層間
絶縁膜108が形成され、絶縁膜105および層間絶縁
膜108に形成されたコンタクトホールを介して、ソー
ス電極およびドレイン電極109、110がソース領域
およびドレイン領域111、112に接続されている。
The TFT of this embodiment has, for example, the structure shown in FIG.
, The channel region 104, the source region and the drain region 111, 112 are formed on the glass substrate 101.
Is formed on the upper and lower sides of the semiconductor thin film.
Upper gate electrodes 106 and 107 and lower gate electrode 102 are formed via 03 and 105. The lower gate electrode 102 includes a source region and a drain region 111,
It does not overlap 112, and a part thereof overlaps the adjacent upper gate electrodes 106 and 107. An interlayer insulating film 108 is formed thereon so as to cover the upper gate electrodes 106 and 107, and source and drain electrodes 109 and 110 are formed through contact holes formed in the insulating film 105 and the interlayer insulating film 108. It is connected to the source and drain regions 111 and 112.

【0021】この構造によれば、従来の複数ゲート電極
を有するTFTと同様に、ソース−ドレイン電圧が個々
のゲート電極に対応したTFTに分割されるので、オフ
電流が低減される。
According to this structure, similarly to the conventional TFT having a plurality of gate electrodes, the source-drain voltage is divided among the TFTs corresponding to the individual gate electrodes, so that the off current is reduced.

【0022】本実施形態の構造をMIS型TFTに適用
した場合には、キャリアがそれぞれのゲート電極に近い
絶縁膜の界面に形成され、例えばNch TFTのオフ
状態では、図1(b)に示すように、正孔が絶縁膜10
3、105とチャンネル領域104との界面に形成され
る。このため、中央の下部ゲート電極102で構成され
るTFTと、両端の上部ゲート電極106、107で構
成されるTFTの間で、チャンネル領域104の膜厚方
向の中央部113が空乏化する。その結果、膜厚分のオ
フセット領域が形成されることになり、さらにオフ電流
が低減される。また、本実施形態においては、図2
(c)に示すように、光が基板裏面から入射する場合、
下部ゲート電極102で構成されるTFTが下部ゲート
電極102の陰になる。このため、チャンネル104で
の正孔−電子対の発生が抑えられ、オフ電流の増加を防
ぐことができる。光が基板表面から入射する場合には、
従来のトップゲート構造のTFTと同様に、上部ゲート
電極106、107により遮光することができる。
When the structure of this embodiment is applied to a MIS type TFT, carriers are formed at the interface of the insulating film close to the respective gate electrodes. For example, in the off state of the Nch TFT, it is shown in FIG. 1 (b). As described above, holes are generated in the insulating film 10.
It is formed at the interface between the channel regions 104 and 104. Therefore, the central portion 113 in the film thickness direction of the channel region 104 is depleted between the TFT formed of the central lower gate electrode 102 and the TFT formed of the upper gate electrodes 106 and 107 at both ends. As a result, an offset region corresponding to the film thickness is formed, and the off current is further reduced. Further, in the present embodiment, FIG.
As shown in (c), when light enters from the back surface of the substrate,
The TFT composed of the lower gate electrode 102 is behind the lower gate electrode 102. Therefore, generation of hole-electron pairs in the channel 104 is suppressed, and an increase in off current can be prevented. When light enters from the substrate surface,
Like the conventional top gate structure TFT, the upper gate electrodes 106 and 107 can shield light.

【0023】また、本実施形態においては、上部ゲート
電極105、106とソース領域およびドレイン領域1
11、112とは自己整合的に形成することができ、か
つ、下部ゲート電極102はソース領域およびドレイン
領域111、112と重ならないので、画素電極とゲー
ト電極との容量結合による画素電圧の変動が抑制され、
画像への悪影響が少なくなる。
Further, in this embodiment, the upper gate electrodes 105 and 106 and the source and drain regions 1 are formed.
11 and 112 can be formed in a self-aligned manner, and the lower gate electrode 102 does not overlap the source region and the drain region 111 and 112, so that the pixel voltage varies due to capacitive coupling between the pixel electrode and the gate electrode. Suppressed,
The adverse effect on the image is reduced.

【0024】さらに、図2(d)に示すように、半導体
薄膜の下部電極102上の部分114に、ソース領域お
よびドレイン領域111、112と同じ導電型の不純物
を低濃度に導入すると、下部ゲート電極102がオフレ
ベルになった時に、チャンネル領域104にソース領域
およびドレイン領域111、112と反対導電型のキャ
リアが発生するのを防ぐことができる。その結果、半導
体薄膜の下部ゲート電極102上の部分114を空乏化
して実質的に高抵抗とすることができ、オフ電流の低減
を図ることができる。また、従来のLDD構造と同様
に、ソース−ドレイン電圧がLDD領域に分散されこと
によっても、オフ電流が低減される。このLDD領域1
14は、上部ゲート電極106、107をマスクとして
不純物導入を行うことにより、注入領域を正確に制御で
き、容易に作製することができる。上部ゲート電極10
5、106および下部ゲート電極102は、同一の信号
線に接続して使用することもでき、下部ゲート電極10
2に一定の電圧が印加されるようにしてもよい。下部ゲ
ート電極102に一定の電圧を印加する場合には、全体
として最もオンオフ比が高くなるような電圧を印加す
る。この場合、下部ゲート電極102と上部ゲート電極
105、106とを接続する必要が無いので、プロセス
の簡略化を図ることができる。
Further, as shown in FIG. 2D, when impurities of the same conductivity type as the source and drain regions 111 and 112 are introduced into the portion 114 on the lower electrode 102 of the semiconductor thin film at a low concentration, the lower gate is formed. It is possible to prevent carriers of the opposite conductivity type from the source and drain regions 111 and 112 from being generated in the channel region 104 when the electrode 102 is turned off. As a result, the portion 114 of the semiconductor thin film on the lower gate electrode 102 can be depleted to have a substantially high resistance, and the off current can be reduced. Further, as in the conventional LDD structure, the off-current is reduced by distributing the source-drain voltage in the LDD region. This LDD region 1
By implanting impurities using the upper gate electrodes 106 and 107 as masks, the implantation region 14 can be controlled accurately and can be easily manufactured. Upper gate electrode 10
5, 106 and the lower gate electrode 102 can be used by connecting to the same signal line.
A constant voltage may be applied to 2. When a constant voltage is applied to the lower gate electrode 102, a voltage that has the highest on / off ratio as a whole is applied. In this case, since it is not necessary to connect the lower gate electrode 102 and the upper gate electrodes 105 and 106, the process can be simplified.

【0025】ここでは、1つの下部ゲート電極102と
2つの上部ゲート電極105、106を有する構成につ
いて説明したが、下部ゲート電極が1以上で上部ゲート
電極が2以上の構成としてもよい。この場合にも、同様
の効果が得られることはもちろんである。また、Nch
TFTについて説明したが、Pch TFTについて
も同様である。
Although the structure having one lower gate electrode 102 and the two upper gate electrodes 105 and 106 has been described here, the structure may be one or more lower gate electrodes and two or more upper gate electrodes. In this case as well, the same effect can be obtained. Also, Nch
Although the TFT has been described, the same applies to the Pch TFT.

【0026】[0026]

【実施例】以下、本発明の具体的な実施例について説明
する。
EXAMPLES Specific examples of the present invention will be described below.

【0027】(実施例1)図4(g)に本実施例1のT
FTの断面図を示す。
(Embodiment 1) FIG.
The cross section of FT is shown.

【0028】このTFTは、ガラス基板401上に、p
−Siからなる半導体薄膜404が形成され、その上下
に、絶縁膜403、405を介して上部ゲート電極40
6、406および下部ゲート電極402が形成されてい
る。下部ゲート電極402はソース領域およびドレイン
領域と重なっておらず、また、その一部は、隣接する上
部ゲート電極406、406と重なっている。その上に
は、上部ゲート電極406、406を覆うように層間絶
縁膜408が形成され、絶縁膜405および層間絶縁膜
408に形成されたコンタクトホールを介して、ソース
電極およびドレイン電極409、409がソース領域お
よびドレイン領域に接続されている。
This TFT is formed on a glass substrate 401 by p
A semiconductor thin film 404 made of —Si is formed, and the upper gate electrode 40 is formed above and below the semiconductor thin film 404 via insulating films 403 and 405.
6, 406 and the lower gate electrode 402 are formed. The lower gate electrode 402 does not overlap with the source region and the drain region, and a part thereof overlaps with the adjacent upper gate electrodes 406 and 406. An interlayer insulating film 408 is formed thereon so as to cover the upper gate electrodes 406, 406, and source and drain electrodes 409, 409 are formed through contact holes formed in the insulating film 405 and the interlayer insulating film 408. It is connected to the source region and the drain region.

【0029】このTFTの作製方法を図3および図4に
従って説明する。
A method of manufacturing this TFT will be described with reference to FIGS.

【0030】まず、図3(a)に示すように、ガラス基
板401上にTa膜を成膜し、これをパターニングして
下部ゲート電極402を形成する。
First, as shown in FIG. 3A, a Ta film is formed on a glass substrate 401, and the Ta film is patterned to form a lower gate electrode 402.

【0031】次に、図3(b)に示すように、厚み30
0nmのSiO2膜をAPCVD(常圧化学気相成長)
法により成膜し、下部ゲート電極402に対応したゲー
ト絶縁膜403を形成する。
Next, as shown in FIG. 3B, the thickness 30
APCVD (Normal pressure chemical vapor deposition) of 0 nm SiO 2 film
Then, a gate insulating film 403 corresponding to the lower gate electrode 402 is formed.

【0032】続いて、図3(c)に示すように、厚み5
0nmのp−Si膜をLPCVD(減圧化学気相成長)
法により成膜し、これをパターニングして半導体薄膜4
04を形成する。
Subsequently, as shown in FIG. 3C, the thickness 5
LPCVD (low pressure chemical vapor deposition) of 0 nm p-Si film
The semiconductor thin film 4 is formed by the method
04 is formed.

【0033】その後、図3(d)に示すように、厚み1
00nmのSiO2膜をAPCVD法により成膜し、上
部ゲート電極に対応したゲート絶縁膜405を形成す
る。
After that, as shown in FIG.
A SiO 2 film having a thickness of 00 nm is formed by APCVD method to form a gate insulating film 405 corresponding to the upper gate electrode.

【0034】次に、図4(e)に示すように、その上に
Ta膜を成膜し、これをパターニングして上部ゲート電
極406、406を形成する。
Next, as shown in FIG. 4 (e), a Ta film is formed thereon and is patterned to form upper gate electrodes 406 and 406.

【0035】続いて、図4(f)に示すように、中央の
下部ゲート電極402に対応したチャンネル領域をレジ
スト407により保護して、イオン注入法によりリンイ
オンを1×1015cm-2、90kVで注入する。レジス
トを除去した後、活性化アニールを600℃で20時間
行う。
Subsequently, as shown in FIG. 4F, the central channel region corresponding to the lower gate electrode 402 is protected by a resist 407, and phosphorus ions are added at 1 × 10 15 cm -2 , 90 kV by an ion implantation method. Inject. After removing the resist, activation annealing is performed at 600 ° C. for 20 hours.

【0036】さらに、図4(g)に示すように、厚み4
00nmのSiO2膜をAPCVD法により成膜して層
間絶縁膜408を形成後、コンタクトホールを形成し、
Al電極を形成してソース電極およびドレイン電極40
9、409とする。
Further, as shown in FIG.
A SiO 2 film having a thickness of 00 nm is formed by an APCVD method to form an interlayer insulating film 408, and then a contact hole is formed.
Source electrode and drain electrode 40 by forming an Al electrode
9 and 409.

【0037】この実施例では、上部ゲート電極長L1、
L2を各々4μm、上部ゲート電極間を3μm、下部ゲ
ート電極長L3を7μm、重なり領域を各々2μmと
し、チャンネル幅は3μmとした。
In this embodiment, the upper gate electrode length L1,
L2 was 4 μm each, upper gate electrodes were 3 μm apart, lower gate electrode length L3 was 7 μm, overlapping regions were 2 μm each, and channel width was 3 μm.

【0038】図5(a)および(b)に、本実施例1の
TFTについて、下部ゲート電極402を上部ゲート電
極406に接続した場合のドレイン電流−ゲート電圧
(ID−VG)曲線を示す。左側の図5(a)のグラフは
暗時を示し、右側の図5(b)のグラフは基板裏面から
の2000lxの光照射時を示す。また、通常のデュア
ルゲート構造のTFTを比較例として同図に点線で示し
た。比較例のTFTは、下部ゲート電極402の作製工
程がないこと、およびイオン注入工程で中央の下部ゲー
ト電極402に対応したチャンネル領域をレジスト40
7で保護しなかったこと以外は実施例1のTFTと同様
にして作製した。
[0038] FIGS. 5 (a) and (b), the TFT of the embodiment 1, the drain current in the case of connecting the bottom gate electrode 402 to the upper gate electrode 406 - the gate voltage (I D -V G) curve Show. The graph of FIG. 5A on the left side shows the dark time, and the graph of FIG. 5B on the right side shows the time of light irradiation of 2000 lx from the back surface of the substrate. Further, a normal dual-gate structure TFT is shown by a dotted line in the figure as a comparative example. In the TFT of the comparative example, there is no manufacturing process of the lower gate electrode 402, and the channel region corresponding to the lower gate electrode 402 at the center is resist 40 in the ion implantation process.
A TFT was manufactured in the same manner as the TFT of Example 1 except that it was not protected by 7.

【0039】この図5(a)および(b)によれば、暗
時のオフ電流については、本実施例1のTFTと比較例
のTFTとで、あまり差が見られない。しかし、基板裏
面から光を2000lx照射した時には、本実施例1の
TFTではオフ電流の増加が殆ど見られないが、比較例
のTFTでは1桁程度のオフ電流の増加が見られる。こ
のように、本実施例1の構造は、光入射時のオフ電流の
低減に非常に有効である。
According to FIGS. 5 (a) and 5 (b), there is not much difference in the off-current in the dark between the TFT of the first embodiment and the TFT of the comparative example. However, when 2000 lx of light is irradiated from the back surface of the substrate, the off-current hardly increases in the TFT of the first embodiment, but the off-current of the comparative example increases by about one digit. As described above, the structure of Example 1 is very effective in reducing the off-current when light is incident.

【0040】また、図5(c)に、本実施例1のTFT
について、下部ゲート電極402を上部ゲート電極40
6に接続しないで独立して変化させた場合の(ID
G)曲線を示す。この図5(c)によれば、下部ゲー
ト電極402の電圧VG2を正方向に高くしていくと、
中央の下部ゲート電極402に対応したTFTがオン状
態になるので、オン電流は増加する。しかし、この場
合、下部ゲート電極402に対応したTFTが単なる抵
抗体に近付くので、若干オフ電流が増加する。一方、下
部ゲート電極402の電圧VG2を負方向に高くしてい
くと、中央の下部ゲート電極402に対応したTFTが
オフ状態になるので、オン電流は減少するが、オフ電流
も減少する。
Further, FIG. 5C shows the TFT of the first embodiment.
The lower gate electrode 402 and the upper gate electrode 40
(I D − when changing independently without connecting to 6
V G ) curve is shown. According to FIG. 5C, when the voltage V G 2 of the lower gate electrode 402 is increased in the positive direction,
Since the TFT corresponding to the lower gate electrode 402 at the center is turned on, the on-current increases. However, in this case, since the TFT corresponding to the lower gate electrode 402 approaches a simple resistor, the off current slightly increases. On the other hand, when the voltage V G 2 of the lower gate electrode 402 is increased in the negative direction, the TFT corresponding to the central lower gate electrode 402 is turned off, so the on-current decreases but the off-current also decreases. .

【0041】図5(d)に、本実施例1のTFTについ
て、オンオフ比のVG2依存性を示す。尚、オンオフ比
は、VG=10V時とVG=−10V時とのドレイン電流
の比で定義した。この図5(d)によれば、本実施例1
のTFTでは、VG2が約−2V程度で最もオンオフ比
が高くなっている。従って、下部ゲート電極402にV
G2=−2Vの電圧を印加することにより、最も良好な
特性が得られると考えられる。尚、この値は、p−Si
やゲート絶縁膜の作製方法やサイズ等により変化するこ
とは言うまでもない。
FIG. 5D shows the V G 2 dependence of the on / off ratio of the TFT of the first embodiment. The on / off ratio was defined as the ratio of the drain current when V G = 10V and when V G = −10V. According to FIG. 5D, the first embodiment
The TFT has the highest on / off ratio when V G 2 is about −2V. Therefore, V is applied to the lower gate electrode 402.
It is considered that the best characteristics can be obtained by applying a voltage of G 2 = −2V. In addition, this value is p-Si
Needless to say, it varies depending on the manufacturing method and size of the gate insulating film.

【0042】また、本実施例1のTFTを液晶表示装置
のスイッチング素子として形成した場合、画素電極とゲ
ート電極との容量結合による画素電圧の変動が抑制さ
れ、画像への悪影響は見られなかった。
Further, when the TFT of the first embodiment is formed as a switching element of a liquid crystal display device, fluctuation of the pixel voltage due to capacitive coupling between the pixel electrode and the gate electrode is suppressed, and no adverse effect on the image is seen. .

【0043】(実施例2)図8に本実施例2のTFTの
断面図を示す。
(Embodiment 2) FIG. 8 shows a sectional view of a TFT of the present embodiment 2.

【0044】このTFTは、ガラス基板601上に、p
−Siからなる半導体薄膜604が形成され、その上下
に、絶縁膜603、605を介して上部ゲート電極60
6、606および下部ゲート電極602が形成されてい
る。半導体薄膜604の下部ゲート電極602上の部分
610には、ソース領域およびドレイン領域と同じ導電
型の不純物が低濃度に導入されている。下部ゲート電極
602はソース領域およびドレイン領域と重なっておら
ず、また、その一部は、隣接する上部ゲート電極60
6、606と重なっている。その上には、上部ゲート電
極606、606を覆うように層間絶縁膜608が形成
され、絶縁膜605および層間絶縁膜608に形成され
たコンタクトホールを介して、ソース電極およびドレイ
ン電極409、409がソース領域およびドレイン領域
に接続されている。
This TFT is formed on a glass substrate 601 with p
A semiconductor thin film 604 made of —Si is formed, and the upper gate electrode 60 is formed above and below the semiconductor thin film 604 via insulating films 603 and 605.
6, 606 and the lower gate electrode 602 are formed. In a portion 610 of the semiconductor thin film 604 on the lower gate electrode 602, impurities of the same conductivity type as those of the source region and the drain region are introduced at a low concentration. The lower gate electrode 602 does not overlap with the source region and the drain region, and a part of the lower gate electrode 602 is adjacent to the upper gate electrode 60.
It overlaps with 6,606. An interlayer insulating film 608 is formed thereon so as to cover the upper gate electrodes 606 and 606, and source and drain electrodes 409 and 409 are formed through contact holes formed in the insulating film 605 and the interlayer insulating film 608. It is connected to the source region and the drain region.

【0045】このTFTの作製方法を図6、図7および
図8に従って説明する。
A method of manufacturing this TFT will be described with reference to FIGS. 6, 7 and 8.

【0046】まず、図6(a)に示すように、ガラス基
板601上にTa膜を成膜し、これをパターニングして
下部ゲート電極602を形成する。
First, as shown in FIG. 6A, a Ta film is formed on a glass substrate 601, and this is patterned to form a lower gate electrode 602.

【0047】次に、図6(b)に示すように、厚み30
0nmのSiO2膜をAPCVD法により成膜し、下部
ゲート電極602に対応したゲート絶縁膜603を形成
する。 続いて、図6(c)に示すように、厚み50n
mのp−Si膜をLPCVD法により成膜し、これをパ
ターニングして半導体薄膜604を形成する。
Next, as shown in FIG. 6B, the thickness 30
A 0 nm SiO 2 film is formed by the APCVD method, and a gate insulating film 603 corresponding to the lower gate electrode 602 is formed. Then, as shown in FIG.
A p-Si film of m is formed by the LPCVD method and is patterned to form a semiconductor thin film 604.

【0048】その後、図6(d)に示すように、厚み1
00nmのSiO2膜をAPCVD法により成膜し、上
部ゲート電極に対応したゲート絶縁膜605を形成す
る。
Thereafter, as shown in FIG. 6D, the thickness 1
A SiO 2 film having a thickness of 00 nm is formed by APCVD method to form a gate insulating film 605 corresponding to the upper gate electrode.

【0049】次に、図7(e)に示すように、その上に
Ta膜を成膜し、これをパターニングして上部ゲート電
極606、606を形成する。
Next, as shown in FIG. 7E, a Ta film is formed thereon, and this is patterned to form upper gate electrodes 606 and 606.

【0050】続いて、図7(f)に示すように、イオン
注入法によりリンイオンを1×1012cm-2、90kV
で注入する。
Subsequently, as shown in FIG. 7 (f), phosphorus ions are added by ion implantation at 1 × 10 12 cm −2 and 90 kV.
Inject.

【0051】その後、図7(g)に示すように、中央の
下部ゲート電極602に対応したチャンネル領域をレジ
スト607により保護して、イオン注入法によりリンイ
オンを1×1015cm-2、90kVで注入する。レジス
トを除去した後、活性化アニールを600℃で20H行
う。
Then, as shown in FIG. 7G, the channel region corresponding to the lower gate electrode 602 at the center is protected by a resist 607, and phosphorus ions are applied at 1 × 10 15 cm -2 and 90 kV by an ion implantation method. inject. After removing the resist, activation annealing is performed at 600 ° C. for 20 hours.

【0052】さらに、図8に示すように、厚み400n
mのSiO2膜をAPCVD法により成膜して層間絶縁
膜608を形成後、コンタクトホールを形成し、Al電
極を形成してソース電極およびドレイン電極609、6
09とする。
Further, as shown in FIG.
m SiO 2 film is formed by an APCVD method to form an interlayer insulating film 608, a contact hole is formed, an Al electrode is formed, and a source electrode and a drain electrode 609, 6 are formed.
09.

【0053】この実施例では、上部ゲート電極長L1、
L2を各々4μm、上部ゲート電極間を3μm、下部ゲ
ート電極長L3を7μm、重なり領域を各々2μmと
し、チャンネル幅は3μmとした。
In this embodiment, the upper gate electrode length L1,
L2 was 4 μm each, upper gate electrodes were 3 μm apart, lower gate electrode length L3 was 7 μm, overlapping regions were 2 μm each, and channel width was 3 μm.

【0054】図9(a)および(b)に、本実施例2の
TFTについて、下部ゲート電極602を上部ゲート電
極606に接続した場合のドレイン電流−ゲート電圧
(ID−VG)曲線を示す。左側の図9(a)のグラフは
暗時を示し、右側の図9(b)のグラフは基板裏面から
の2000lxの光照射時を示す。また、実施例1のT
FTを点線で同図に示した。
[0054] FIG. 9 (a) and 9 (b), the TFT of the second embodiment, the drain current in the case of connecting the bottom gate electrode 602 to the upper gate electrode 606 - the gate voltage (I D -V G) curve Show. The graph of FIG. 9A on the left side shows the dark time, and the graph of FIG. 9B on the right side shows the time of light irradiation of 2000 lx from the back surface of the substrate. In addition, T of Example 1
The FT is shown in the figure by a dotted line.

【0055】この図9(a)および(b)によれば、本
実施例2のTFTは、実施例1のTFTに比べてオン電
流が増加している。これは、低濃度の不純物導入によ
り、下部ゲート電極602に対応したTFTの閾値電圧
が負方向にシフトしたためである。また、VGを十分負
側にすることにより、下部ゲート電極602に対応した
TFTのチャンネル領域が空乏層化するので、実施例1
のTFTに比べてオフ電流も低減している。さらに、光
照射によるオフ電流の増加も見られない。このように、
本実施例2の構造は、オフ電流の低減に非常に有効であ
る。
According to FIGS. 9 (a) and 9 (b), the ON current of the TFT of the second embodiment is larger than that of the TFT of the first embodiment. This is because the threshold voltage of the TFT corresponding to the lower gate electrode 602 is shifted in the negative direction due to the introduction of the low concentration impurity. Further, by making V G sufficiently negative, the channel region of the TFT corresponding to the lower gate electrode 602 becomes a depletion layer.
The off-current is also reduced as compared with the TFT. Further, no increase in off current due to light irradiation is observed. in this way,
The structure of Example 2 is very effective in reducing the off current.

【0056】また、図9(c)に、本実施例2のTFT
について、下部ゲート電極602を上部ゲート電極60
6に接続しないで独立して変化させた場合の(ID
G)曲線を示す。本実施例2のTFTについても、実
施例1のTFTと同様に、下部ゲート電極602の電圧
G2を負方向に高くしていくにつれてオン電流は減少
するが、オフ電流も減少するという傾向が見られた。
Further, FIG. 9C shows the TFT of the second embodiment.
The lower gate electrode 602 and the upper gate electrode 60.
(I D − when changing independently without connecting to 6
V G ) curve is shown. In the TFT of the second embodiment, as in the TFT of the first embodiment, the on-current decreases as the voltage V G 2 of the lower gate electrode 602 increases in the negative direction, but the off-current also tends to decrease. It was observed.

【0057】図9(d)に、本実施例2のTFTについ
て、オンオフ比のVG2依存性を示す。尚、オンオフ比
は、実施例1と同様に定義した。この図9(d)によれ
ば、本実施例2のTFTでは、VG2が約−7V程度で
最もオンオフ比が高くなっている。従って、下部ゲート
電極602にVG2=−7Vの電圧を印加することによ
り、最も良好な特性が得られると考えられる。尚、この
値についても、p−Siやゲート絶縁膜の作製方法やサ
イズ等により変化することは言うまでもない。
FIG. 9D shows the V G 2 dependency of the on / off ratio of the TFT of the second embodiment. The on / off ratio was defined as in Example 1. According to FIG. 9D, in the TFT of Example 2, the on / off ratio was highest when VG 2 was about −7V. Therefore, it is considered that the best characteristics can be obtained by applying the voltage V G 2 = −7V to the lower gate electrode 602. Needless to say, this value also changes depending on the manufacturing method, size, and the like of p-Si and the gate insulating film.

【0058】また、本実施例2のTFTも実施例1のT
FTと同様に、液晶表示装置のスイッチング素子として
形成した場合、画素電極とゲート電極との容量結合によ
る画素電圧の変動が抑制され、画像への悪影響は見られ
なかった。
The TFT of the second embodiment is also the T of the first embodiment.
Similar to the FT, when formed as a switching element of a liquid crystal display device, fluctuation of the pixel voltage due to capacitive coupling between the pixel electrode and the gate electrode was suppressed, and no adverse effect on the image was observed.

【0059】上記実施例1および2では、ゲート絶縁膜
にAPCVD法によるSiO2膜を、半導体層にLPC
VD法によるp−Si膜、ゲート電極にTaを用いた
が、その他の作製法や材料を用いてもよい。例えば、ゲ
ート絶縁膜の形成は、スパッタリング法やLPCVD
法、PCVD法等により行うことができ、SiN膜やT
25膜、Al23膜等を用いてもよい。上下の絶縁膜
の膜厚やそれらの膜厚比も、p−Si膜や絶縁膜の膜質
に応じて最適化することができる。p−Si膜の形成
は、LPCVD法やPCVD法によりa−Si膜を成膜
した後、固相成長やレーザーアニール、ランプアニール
等によりp−Si膜としてもよい。ゲート電極の材料と
しては、作製に耐える導電性材料であればいずれも用い
ることができる。 また、本発明より得られるTFT
は、AMLCDの画素用トランジスタや、他にイメージ
センサのスイッチングトランジスタなど、様々な用途に
適用することができる。
In Examples 1 and 2 above, the SiO 2 film formed by the APCVD method was used as the gate insulating film and the LPC was used as the semiconductor layer.
Although Ta is used for the p-Si film and the gate electrode by the VD method, other manufacturing methods and materials may be used. For example, the gate insulating film is formed by sputtering or LPCVD.
Method, PCVD method, etc.
An a 2 O 5 film, an Al 2 O 3 film or the like may be used. The film thicknesses of the upper and lower insulating films and the film thickness ratio thereof can be optimized according to the film quality of the p-Si film or the insulating film. The p-Si film may be formed by forming the a-Si film by the LPCVD method or the PCVD method, and then forming the p-Si film by solid phase growth, laser annealing, lamp annealing or the like. As a material for the gate electrode, any conductive material that can be manufactured can be used. In addition, the TFT obtained by the present invention
Can be applied to various applications such as a pixel transistor of AMLCD and a switching transistor of an image sensor.

【0060】[0060]

【発明の効果】以上の説明から明らかなように、本発明
によればTFTのオフ電流を低減でき、光入射によるオ
フ電流の増加も防ぐことができる。また、このTFTを
画素用スイッチング素子として用いると、画素電極とゲ
ート電極との容量結合による画素電圧の変動が抑制さ
れ、画像への悪影響も生じない。
As is apparent from the above description, according to the present invention, the off current of the TFT can be reduced and the increase of the off current due to the incidence of light can be prevented. Further, when the TFT is used as a pixel switching element, the fluctuation of the pixel voltage due to the capacitive coupling between the pixel electrode and the gate electrode is suppressed and the image is not adversely affected.

【0061】半導体薄膜の下部電極上の部分にLDD領
域を形成すると、さらにオフ電流の低減を図ることがで
きる。このLDD領域は、上部ゲート電極をマスクとし
て位置制御性良く形成することができる。
If the LDD region is formed on the lower electrode of the semiconductor thin film, the off current can be further reduced. This LDD region can be formed with good position controllability using the upper gate electrode as a mask.

【0062】上部ゲート電極および下部ゲート電極は、
同一の信号線に接続してもよく、下部ゲート電極に一定
の電圧を印加してもよい。下部ゲート電極に一定の電圧
を印加する場合には、全体として最もオンオフ比が高く
なるように電圧を印加することにより、特性を良好する
ことができる。このように下部ゲート電極に一定の電圧
を印加する場合には、下部ゲート電極と上部ゲート電極
とを接続する必要が無く、さらにプロセスが簡略化でき
る。
The upper gate electrode and the lower gate electrode are
They may be connected to the same signal line, or a constant voltage may be applied to the lower gate electrode. When a constant voltage is applied to the lower gate electrode, the characteristics can be improved by applying the voltage so that the overall on / off ratio becomes the highest. When a constant voltage is applied to the lower gate electrode as described above, it is not necessary to connect the lower gate electrode and the upper gate electrode, and the process can be further simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)および(b)は、本発明のTFTの一実
施形態を示す断面図である。
1A and 1B are cross-sectional views showing an embodiment of a TFT of the present invention.

【図2】(c)および(d)は、本発明のTFTの一実
施形態を示す断面図である。
2 (c) and (d) are cross-sectional views showing an embodiment of the TFT of the present invention.

【図3】(a)〜(d)は、実施例1のTFTの製造工
程を示す断面図である。
3 (a) to 3 (d) are cross-sectional views showing a manufacturing process of the TFT of Example 1. FIG.

【図4】(e)〜(g)は、実施例1のTFTの製造工
程を示す断面図である。
4 (e) to (g) are cross-sectional views showing a manufacturing process of the TFT of Example 1. FIG.

【図5】(a)〜(d)は、実施例1のTFTの特性を
示すグラフである。
5 (a) to (d) are graphs showing characteristics of the TFT of Example 1. FIG.

【図6】(a)〜(d)は、実施例2のTFTの製造工
程を示す断面図である。
6A to 6D are cross-sectional views showing the manufacturing process of the TFT of Example 2.

【図7】(e)〜(g)は、実施例2のTFTの製造工
程を示す断面図である。
7E to 7G are cross-sectional views showing the manufacturing steps of the TFT of Example 2.

【図8】実施例2のTFTの製造工程を示す断面図であ
る。
FIG. 8 is a cross-sectional view showing a manufacturing process of a TFT of Example 2.

【図9】(a)〜(d)は、実施例2のTFTの特性を
示すグラフである。
9A to 9D are graphs showing the characteristics of the TFT of Example 2. FIG.

【図10】従来のオフ電流を低減したTFTを示す断面
図である。
FIG. 10 is a cross-sectional view showing a conventional TFT with reduced off current.

【図11】従来のオフ電流を低減した他のTFTを示す
断面図である。
FIG. 11 is a cross-sectional view showing another conventional TFT with reduced off current.

【図12】従来のオフ電流を低減した更に他のTFTを
示す断面図である。
FIG. 12 is a cross-sectional view showing still another conventional TFT in which the off-current is reduced.

【図13】従来の遮光膜を形成したTFTを示す断面図
である。
FIG. 13 is a sectional view showing a conventional TFT having a light-shielding film formed thereon.

【図14】図13のTFTの等価回路である。FIG. 14 is an equivalent circuit of the TFT of FIG.

【符号の説明】[Explanation of symbols]

101、401、601 ガラス基板 102、402、602 下部ゲート電極 103、403、603 下部ゲート電極に対応した絶
縁膜 104 チャンネル領域 105、405、605 上部ゲート電極に対応した絶
縁膜 106、107、406、606 上部ゲート電極 108、408、608 層間絶縁膜 109、110、409、609 ソース電極およびド
レイン電極 111、112 ソース領域およびドレイン領域 113、114 空乏層領域 404、604 半導体層 407、607 レジスト
101, 401, 601 Glass substrate 102, 402, 602 Lower gate electrode 103, 403, 603 Insulating film 104 corresponding to lower gate electrode 104 Channel regions 105, 405, 605 Insulating film 106, 107, 406 corresponding to upper gate electrode 606 upper gate electrode 108, 408, 608 interlayer insulating film 109, 110, 409, 609 source electrode and drain electrode 111, 112 source region and drain region 113, 114 depletion layer region 404, 604 semiconductor layer 407, 607 resist

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 チャンネル領域の両側にソース領域とド
レイン領域とを有する半導体薄膜の該チャンネル領域を
挟んで一方側に、絶縁膜を介して2以上の上部ゲート電
極が形成され、他方側に絶縁膜を介して1以上の下部ゲ
ート電極が、各下部ゲート電極の両端部を相互に隣接す
る上部ゲート電極の各々に対して重畳させて形成されて
いる薄膜トランジスタ。
1. A semiconductor thin film having a source region and a drain region on both sides of a channel region, two or more upper gate electrodes are formed on one side of the channel region with an insulating film interposed therebetween, and insulated on the other side. A thin film transistor in which one or more lower gate electrodes are formed through a film, with both ends of each lower gate electrode being overlapped on each of the adjacent upper gate electrodes.
【請求項2】 前記半導体薄膜の前記上部ゲート電極と
は重畳しない部分に、前記ソース領域およびドレイン領
域に導入されている不純物と同じ導電型の不純物が該ソ
ース領域およびドレイン領域よりも低濃度に導入されて
いる請求項1に記載の薄膜トランジスタ。
2. The impurity of the same conductivity type as the impurities introduced into the source region and the drain region is made to have a lower concentration than that of the source region and the drain region in a portion of the semiconductor thin film which does not overlap with the upper gate electrode. The thin film transistor according to claim 1, which is introduced.
【請求項3】 前記上部ゲート電極および下部ゲート電
極が同一の信号線に接続されている請求項1または2に
記載の薄膜トランジスタ。
3. The thin film transistor according to claim 1, wherein the upper gate electrode and the lower gate electrode are connected to the same signal line.
【請求項4】 前記下部ゲート電極に一定の電圧が印加
されている請求項1または2に記載の薄膜トランジス
タ。
4. The thin film transistor according to claim 1, wherein a constant voltage is applied to the lower gate electrode.
JP24347995A 1995-09-21 1995-09-21 Thin-film transistor Withdrawn JPH0990405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24347995A JPH0990405A (en) 1995-09-21 1995-09-21 Thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24347995A JPH0990405A (en) 1995-09-21 1995-09-21 Thin-film transistor

Publications (1)

Publication Number Publication Date
JPH0990405A true JPH0990405A (en) 1997-04-04

Family

ID=17104507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24347995A Withdrawn JPH0990405A (en) 1995-09-21 1995-09-21 Thin-film transistor

Country Status (1)

Country Link
JP (1) JPH0990405A (en)

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067328A3 (en) * 2001-02-16 2002-11-07 Ignis Innovation Inc Organic light emitting diode display having shield electrodes
WO2002067327A3 (en) * 2001-02-16 2004-05-21 Ignis Innovation Inc Pixel current driver for organic light emitting diode displays
US7535022B2 (en) 2001-05-24 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with plural channels and corresponding overlapping electrode
US7569849B2 (en) 2001-02-16 2009-08-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
JP2011018062A (en) * 2010-08-23 2011-01-27 Semiconductor Energy Lab Co Ltd Liquid crystal display device
US8044893B2 (en) 2005-01-28 2011-10-25 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
KR101107697B1 (en) * 2005-04-19 2012-01-25 엘지디스플레이 주식회사 Thin film transistor and liquid crystal display device having the same
US8334863B2 (en) 2007-12-24 2012-12-18 Ignis Innovation Inc. Display system with a solar cell and device having the same
US8378938B2 (en) 2004-12-07 2013-02-19 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US8502751B2 (en) 2003-09-23 2013-08-06 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US8860636B2 (en) 2005-06-08 2014-10-14 Ignis Innovation Inc. Method and system for driving a light emitting device display
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
USRE45291E1 (en) 2004-06-29 2014-12-16 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US8933455B2 (en) 1999-08-31 2015-01-13 Semiconductor Energy Laboratory Co., Ltd. Display device comprising pixel
US8994625B2 (en) 2004-12-15 2015-03-31 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US8994617B2 (en) 2010-03-17 2015-03-31 Ignis Innovation Inc. Lifetime uniformity parameter extraction methods
US9030506B2 (en) 2009-11-12 2015-05-12 Ignis Innovation Inc. Stable fast programming scheme for displays
US9058775B2 (en) 2006-01-09 2015-06-16 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9059117B2 (en) 2009-12-01 2015-06-16 Ignis Innovation Inc. High resolution pixel architecture
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US9093028B2 (en) 2009-12-06 2015-07-28 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9093029B2 (en) 2011-05-20 2015-07-28 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9111485B2 (en) 2009-06-16 2015-08-18 Ignis Innovation Inc. Compensation technique for color shift in displays
US9125278B2 (en) 2006-08-15 2015-09-01 Ignis Innovation Inc. OLED luminance degradation compensation
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US9171504B2 (en) 2013-01-14 2015-10-27 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US9269322B2 (en) 2006-01-09 2016-02-23 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9305488B2 (en) 2013-03-14 2016-04-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9343006B2 (en) 2012-02-03 2016-05-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9351368B2 (en) 2013-03-08 2016-05-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9370075B2 (en) 2008-12-09 2016-06-14 Ignis Innovation Inc. System and method for fast compensation programming of pixels in a display
US9373724B2 (en) 2010-01-15 2016-06-21 Canon Kabushiki Kaisha Method of driving transistor and device including transistor driven by the method
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9430958B2 (en) 2010-02-04 2016-08-30 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9437137B2 (en) 2013-08-12 2016-09-06 Ignis Innovation Inc. Compensation accuracy
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9489891B2 (en) 2006-01-09 2016-11-08 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
WO2017043572A1 (en) * 2015-09-11 2017-03-16 三菱電機株式会社 Thin film transistor substrate and method for producing same
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9697771B2 (en) 2013-03-08 2017-07-04 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
JP2017163139A (en) * 2016-03-08 2017-09-14 株式会社半導体エネルギー研究所 Imaging device, module, and electronic apparatus
USRE46561E1 (en) 2008-07-29 2017-09-26 Ignis Innovation Inc. Method and system for driving light emitting display
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9842889B2 (en) 2014-11-28 2017-12-12 Ignis Innovation Inc. High pixel density array architecture
US9867257B2 (en) 2008-04-18 2018-01-09 Ignis Innovation Inc. System and driving method for light emitting device display
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US9881587B2 (en) 2011-05-28 2018-01-30 Ignis Innovation Inc. Systems and methods for operating pixels in a display to mitigate image flicker
US9886899B2 (en) 2011-05-17 2018-02-06 Ignis Innovation Inc. Pixel Circuits for AMOLED displays
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US9952698B2 (en) 2013-03-15 2018-04-24 Ignis Innovation Inc. Dynamic adjustment of touch resolutions on an AMOLED display
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10102808B2 (en) 2015-10-14 2018-10-16 Ignis Innovation Inc. Systems and methods of multiple color driving
US10134325B2 (en) 2014-12-08 2018-11-20 Ignis Innovation Inc. Integrated display system
US10152915B2 (en) 2015-04-01 2018-12-11 Ignis Innovation Inc. Systems and methods of display brightness adjustment
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10163996B2 (en) 2003-02-24 2018-12-25 Ignis Innovation Inc. Pixel having an organic light emitting diode and method of fabricating the pixel
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
US10204540B2 (en) 2015-10-26 2019-02-12 Ignis Innovation Inc. High density pixel pattern
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US10242619B2 (en) 2013-03-08 2019-03-26 Ignis Innovation Inc. Pixel circuits for amoled displays
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
CN110212035A (en) * 2018-08-10 2019-09-06 友达光电股份有限公司 Transistor arrangement and its operating method
US10410579B2 (en) 2015-07-24 2019-09-10 Ignis Innovation Inc. Systems and methods of hybrid calibration of bias current
US10573231B2 (en) 2010-02-04 2020-02-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10586491B2 (en) 2016-12-06 2020-03-10 Ignis Innovation Inc. Pixel circuits for mitigation of hysteresis
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US10867536B2 (en) 2013-04-22 2020-12-15 Ignis Innovation Inc. Inspection system for OLED display panels
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices

Cited By (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466622B2 (en) 1999-08-31 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. Display device comprising a thin film transistor and a storage capacitor
US9250490B2 (en) 1999-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device including light shielding film
US8933455B2 (en) 1999-08-31 2015-01-13 Semiconductor Energy Laboratory Co., Ltd. Display device comprising pixel
US8890220B2 (en) 2001-02-16 2014-11-18 Ignis Innovation, Inc. Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage
WO2002067327A3 (en) * 2001-02-16 2004-05-21 Ignis Innovation Inc Pixel current driver for organic light emitting diode displays
US7414600B2 (en) 2001-02-16 2008-08-19 Ignis Innovation Inc. Pixel current driver for organic light emitting diode displays
US7569849B2 (en) 2001-02-16 2009-08-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
WO2002067328A3 (en) * 2001-02-16 2002-11-07 Ignis Innovation Inc Organic light emitting diode display having shield electrodes
US7535022B2 (en) 2001-05-24 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with plural channels and corresponding overlapping electrode
US10163996B2 (en) 2003-02-24 2018-12-25 Ignis Innovation Inc. Pixel having an organic light emitting diode and method of fabricating the pixel
US9472139B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US10089929B2 (en) 2003-09-23 2018-10-02 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US8502751B2 (en) 2003-09-23 2013-08-06 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US9472138B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US9852689B2 (en) 2003-09-23 2017-12-26 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US8941697B2 (en) 2003-09-23 2015-01-27 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
USRE45291E1 (en) 2004-06-29 2014-12-16 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
USRE47257E1 (en) 2004-06-29 2019-02-26 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US9153172B2 (en) 2004-12-07 2015-10-06 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US8405587B2 (en) 2004-12-07 2013-03-26 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US9741292B2 (en) 2004-12-07 2017-08-22 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US8378938B2 (en) 2004-12-07 2013-02-19 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9970964B2 (en) 2004-12-15 2018-05-15 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US8994625B2 (en) 2004-12-15 2015-03-31 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10699624B2 (en) 2004-12-15 2020-06-30 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US8497825B2 (en) 2005-01-28 2013-07-30 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US8044893B2 (en) 2005-01-28 2011-10-25 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US9728135B2 (en) 2005-01-28 2017-08-08 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US9373645B2 (en) 2005-01-28 2016-06-21 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
KR101107697B1 (en) * 2005-04-19 2012-01-25 엘지디스플레이 주식회사 Thin film transistor and liquid crystal display device having the same
US10388221B2 (en) 2005-06-08 2019-08-20 Ignis Innovation Inc. Method and system for driving a light emitting device display
US9330598B2 (en) 2005-06-08 2016-05-03 Ignis Innovation Inc. Method and system for driving a light emitting device display
US8860636B2 (en) 2005-06-08 2014-10-14 Ignis Innovation Inc. Method and system for driving a light emitting device display
US9805653B2 (en) 2005-06-08 2017-10-31 Ignis Innovation Inc. Method and system for driving a light emitting device display
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US9489891B2 (en) 2006-01-09 2016-11-08 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US10262587B2 (en) 2006-01-09 2019-04-16 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9269322B2 (en) 2006-01-09 2016-02-23 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9058775B2 (en) 2006-01-09 2015-06-16 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US10229647B2 (en) 2006-01-09 2019-03-12 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US10127860B2 (en) 2006-04-19 2018-11-13 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9842544B2 (en) 2006-04-19 2017-12-12 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10453397B2 (en) 2006-04-19 2019-10-22 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9125278B2 (en) 2006-08-15 2015-09-01 Ignis Innovation Inc. OLED luminance degradation compensation
US10325554B2 (en) 2006-08-15 2019-06-18 Ignis Innovation Inc. OLED luminance degradation compensation
US9530352B2 (en) 2006-08-15 2016-12-27 Ignis Innovations Inc. OLED luminance degradation compensation
US8334863B2 (en) 2007-12-24 2012-12-18 Ignis Innovation Inc. Display system with a solar cell and device having the same
US9877371B2 (en) 2008-04-18 2018-01-23 Ignis Innovations Inc. System and driving method for light emitting device display
US10555398B2 (en) 2008-04-18 2020-02-04 Ignis Innovation Inc. System and driving method for light emitting device display
US9867257B2 (en) 2008-04-18 2018-01-09 Ignis Innovation Inc. System and driving method for light emitting device display
USRE46561E1 (en) 2008-07-29 2017-09-26 Ignis Innovation Inc. Method and system for driving light emitting display
USRE49389E1 (en) 2008-07-29 2023-01-24 Ignis Innovation Inc. Method and system for driving light emitting display
US9370075B2 (en) 2008-12-09 2016-06-14 Ignis Innovation Inc. System and method for fast compensation programming of pixels in a display
US9824632B2 (en) 2008-12-09 2017-11-21 Ignis Innovation Inc. Systems and method for fast compensation programming of pixels in a display
US11030949B2 (en) 2008-12-09 2021-06-08 Ignis Innovation Inc. Systems and method for fast compensation programming of pixels in a display
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US9111485B2 (en) 2009-06-16 2015-08-18 Ignis Innovation Inc. Compensation technique for color shift in displays
US9418587B2 (en) 2009-06-16 2016-08-16 Ignis Innovation Inc. Compensation technique for color shift in displays
US10553141B2 (en) 2009-06-16 2020-02-04 Ignis Innovation Inc. Compensation technique for color shift in displays
US9117400B2 (en) 2009-06-16 2015-08-25 Ignis Innovation Inc. Compensation technique for color shift in displays
US9030506B2 (en) 2009-11-12 2015-05-12 Ignis Innovation Inc. Stable fast programming scheme for displays
US9818376B2 (en) 2009-11-12 2017-11-14 Ignis Innovation Inc. Stable fast programming scheme for displays
US10685627B2 (en) 2009-11-12 2020-06-16 Ignis Innovation Inc. Stable fast programming scheme for displays
US10679533B2 (en) 2009-11-30 2020-06-09 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US10304390B2 (en) 2009-11-30 2019-05-28 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US10699613B2 (en) 2009-11-30 2020-06-30 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
US9059117B2 (en) 2009-12-01 2015-06-16 Ignis Innovation Inc. High resolution pixel architecture
US9262965B2 (en) 2009-12-06 2016-02-16 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9093028B2 (en) 2009-12-06 2015-07-28 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9373724B2 (en) 2010-01-15 2016-06-21 Canon Kabushiki Kaisha Method of driving transistor and device including transistor driven by the method
US9430958B2 (en) 2010-02-04 2016-08-30 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10971043B2 (en) 2010-02-04 2021-04-06 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US10395574B2 (en) 2010-02-04 2019-08-27 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10032399B2 (en) 2010-02-04 2018-07-24 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9773441B2 (en) 2010-02-04 2017-09-26 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US11200839B2 (en) 2010-02-04 2021-12-14 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10573231B2 (en) 2010-02-04 2020-02-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US8994617B2 (en) 2010-03-17 2015-03-31 Ignis Innovation Inc. Lifetime uniformity parameter extraction methods
JP2011018062A (en) * 2010-08-23 2011-01-27 Semiconductor Energy Lab Co Ltd Liquid crystal display device
US9489897B2 (en) 2010-12-02 2016-11-08 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US9997110B2 (en) 2010-12-02 2018-06-12 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US10460669B2 (en) 2010-12-02 2019-10-29 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US10515585B2 (en) 2011-05-17 2019-12-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9886899B2 (en) 2011-05-17 2018-02-06 Ignis Innovation Inc. Pixel Circuits for AMOLED displays
US10249237B2 (en) 2011-05-17 2019-04-02 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US10475379B2 (en) 2011-05-20 2019-11-12 Ignis Innovation Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9093029B2 (en) 2011-05-20 2015-07-28 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US9589490B2 (en) 2011-05-20 2017-03-07 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US10580337B2 (en) 2011-05-20 2020-03-03 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9355584B2 (en) 2011-05-20 2016-05-31 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799248B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10032400B2 (en) 2011-05-20 2018-07-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10127846B2 (en) 2011-05-20 2018-11-13 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10325537B2 (en) 2011-05-20 2019-06-18 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US10706754B2 (en) 2011-05-26 2020-07-07 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9978297B2 (en) 2011-05-26 2018-05-22 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9640112B2 (en) 2011-05-26 2017-05-02 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US10417945B2 (en) 2011-05-27 2019-09-17 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US10290284B2 (en) 2011-05-28 2019-05-14 Ignis Innovation Inc. Systems and methods for operating pixels in a display to mitigate image flicker
US9881587B2 (en) 2011-05-28 2018-01-30 Ignis Innovation Inc. Systems and methods for operating pixels in a display to mitigate image flicker
US9224954B2 (en) 2011-08-03 2015-12-29 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US9818806B2 (en) 2011-11-29 2017-11-14 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10079269B2 (en) 2011-11-29 2018-09-18 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10453904B2 (en) 2011-11-29 2019-10-22 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10380944B2 (en) 2011-11-29 2019-08-13 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10043448B2 (en) 2012-02-03 2018-08-07 Ignis Innovation Inc. Driving system for active-matrix displays
US9343006B2 (en) 2012-02-03 2016-05-17 Ignis Innovation Inc. Driving system for active-matrix displays
US10453394B2 (en) 2012-02-03 2019-10-22 Ignis Innovation Inc. Driving system for active-matrix displays
US9792857B2 (en) 2012-02-03 2017-10-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US10424245B2 (en) 2012-05-11 2019-09-24 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US9368063B2 (en) 2012-05-23 2016-06-14 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9536460B2 (en) 2012-05-23 2017-01-03 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9940861B2 (en) 2012-05-23 2018-04-10 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9741279B2 (en) 2012-05-23 2017-08-22 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US10176738B2 (en) 2012-05-23 2019-01-08 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9978310B2 (en) 2012-12-11 2018-05-22 Ignis Innovation Inc. Pixel circuits for amoled displays
US11030955B2 (en) 2012-12-11 2021-06-08 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9685114B2 (en) 2012-12-11 2017-06-20 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10311790B2 (en) 2012-12-11 2019-06-04 Ignis Innovation Inc. Pixel circuits for amoled displays
US9997106B2 (en) 2012-12-11 2018-06-12 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10140925B2 (en) 2012-12-11 2018-11-27 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US11875744B2 (en) 2013-01-14 2024-01-16 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US10847087B2 (en) 2013-01-14 2020-11-24 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9171504B2 (en) 2013-01-14 2015-10-27 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9697771B2 (en) 2013-03-08 2017-07-04 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10013915B2 (en) 2013-03-08 2018-07-03 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10242619B2 (en) 2013-03-08 2019-03-26 Ignis Innovation Inc. Pixel circuits for amoled displays
US9351368B2 (en) 2013-03-08 2016-05-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10593263B2 (en) 2013-03-08 2020-03-17 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9934725B2 (en) 2013-03-08 2018-04-03 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9922596B2 (en) 2013-03-08 2018-03-20 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9659527B2 (en) 2013-03-08 2017-05-23 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10198979B2 (en) 2013-03-14 2019-02-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9818323B2 (en) 2013-03-14 2017-11-14 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9305488B2 (en) 2013-03-14 2016-04-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9536465B2 (en) 2013-03-14 2017-01-03 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9952698B2 (en) 2013-03-15 2018-04-24 Ignis Innovation Inc. Dynamic adjustment of touch resolutions on an AMOLED display
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US9721512B2 (en) 2013-03-15 2017-08-01 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US9997107B2 (en) 2013-03-15 2018-06-12 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US10460660B2 (en) 2013-03-15 2019-10-29 Ingis Innovation Inc. AMOLED displays with multiple readout circuits
US10867536B2 (en) 2013-04-22 2020-12-15 Ignis Innovation Inc. Inspection system for OLED display panels
US9990882B2 (en) 2013-08-12 2018-06-05 Ignis Innovation Inc. Compensation accuracy
US9437137B2 (en) 2013-08-12 2016-09-06 Ignis Innovation Inc. Compensation accuracy
US10600362B2 (en) 2013-08-12 2020-03-24 Ignis Innovation Inc. Compensation accuracy
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US10186190B2 (en) 2013-12-06 2019-01-22 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US10395585B2 (en) 2013-12-06 2019-08-27 Ignis Innovation Inc. OLED display system and method
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US10439159B2 (en) 2013-12-25 2019-10-08 Ignis Innovation Inc. Electrode contacts
US9831462B2 (en) 2013-12-25 2017-11-28 Ignis Innovation Inc. Electrode contacts
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
US10170522B2 (en) 2014-11-28 2019-01-01 Ignis Innovations Inc. High pixel density array architecture
US9842889B2 (en) 2014-11-28 2017-12-12 Ignis Innovation Inc. High pixel density array architecture
US10134325B2 (en) 2014-12-08 2018-11-20 Ignis Innovation Inc. Integrated display system
US10726761B2 (en) 2014-12-08 2020-07-28 Ignis Innovation Inc. Integrated display system
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10152915B2 (en) 2015-04-01 2018-12-11 Ignis Innovation Inc. Systems and methods of display brightness adjustment
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US10403230B2 (en) 2015-05-27 2019-09-03 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10410579B2 (en) 2015-07-24 2019-09-10 Ignis Innovation Inc. Systems and methods of hybrid calibration of bias current
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values
WO2017043572A1 (en) * 2015-09-11 2017-03-16 三菱電機株式会社 Thin film transistor substrate and method for producing same
JPWO2017043572A1 (en) * 2015-09-11 2017-11-16 三菱電機株式会社 Thin film transistor substrate and manufacturing method thereof
US10102808B2 (en) 2015-10-14 2018-10-16 Ignis Innovation Inc. Systems and methods of multiple color driving
US10446086B2 (en) 2015-10-14 2019-10-15 Ignis Innovation Inc. Systems and methods of multiple color driving
US10204540B2 (en) 2015-10-26 2019-02-12 Ignis Innovation Inc. High density pixel pattern
JP2017163139A (en) * 2016-03-08 2017-09-14 株式会社半導体エネルギー研究所 Imaging device, module, and electronic apparatus
US10586491B2 (en) 2016-12-06 2020-03-10 Ignis Innovation Inc. Pixel circuits for mitigation of hysteresis
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US11792387B2 (en) 2017-08-11 2023-10-17 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
US11847976B2 (en) 2018-02-12 2023-12-19 Ignis Innovation Inc. Pixel measurement through data line
CN110212035B (en) * 2018-08-10 2023-12-19 友达光电股份有限公司 Transistor structure and method of operating the same
CN110212035A (en) * 2018-08-10 2019-09-06 友达光电股份有限公司 Transistor arrangement and its operating method

Similar Documents

Publication Publication Date Title
JPH0990405A (en) Thin-film transistor
KR100277617B1 (en) Display
US5712495A (en) Semiconductor device including active matrix circuit
US5712494A (en) Thin film field effect transistor having an extension portion acting as a light shield and back gate
US5877514A (en) Liquid crystal display device integrated with driving circuit and method for fabricating the same
US5940151A (en) Liquid crystal display and method for fabricating the same
US6828585B2 (en) Thin-film transistor, method for fabricating the same, and liquid crystal display device
US6310670B1 (en) Thin-film transistor (TFT) liquid crystal display (LCD) devices having field-induced LDD regions
JPH02168630A (en) Thin film transistor, its
JPH10163498A (en) Thin film transistor, fabrication thereof and liquid crystal display
US6713825B2 (en) Poly-crystalline thin film transistor and fabrication method thereof
JPH09107102A (en) Thin-film transistor and preparation thereof
US5767531A (en) Thin-film transistor, method of fabricating the same, and liquid-crystal display apparatus
US6124153A (en) Method for manufacturing a polysilicon TFT with a variable thickness gate oxide
JPH0982969A (en) Thin-film transistor and liquid-crystal display
JP2001085695A (en) Method for manufacturing semiconductor device, manufacture of active matrix substrate and electro- optical device
JPH08250742A (en) Semiconductor device
JPH04360583A (en) Thin film transistor
JP3643025B2 (en) Active matrix display device and manufacturing method thereof
JPH08116067A (en) Semiconductor device, display device and manufacture of display device
JPH08148694A (en) Thin-film transistor
JPH05275701A (en) Thin-film transistor
JPH06169086A (en) Polycrystalline silicon thin film transistor
JP3603968B2 (en) Thin film transistor and method for manufacturing the same
JPH0682834A (en) Active matrix panel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203