JPH0989557A - Floating structure body with wave direction follow-up ability - Google Patents

Floating structure body with wave direction follow-up ability

Info

Publication number
JPH0989557A
JPH0989557A JP27611495A JP27611495A JPH0989557A JP H0989557 A JPH0989557 A JP H0989557A JP 27611495 A JP27611495 A JP 27611495A JP 27611495 A JP27611495 A JP 27611495A JP H0989557 A JPH0989557 A JP H0989557A
Authority
JP
Japan
Prior art keywords
buoy
wave
support rod
vertical
wave direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27611495A
Other languages
Japanese (ja)
Inventor
Shunsuke Nokita
舜介 野北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP27611495A priority Critical patent/JPH0989557A/en
Publication of JPH0989557A publication Critical patent/JPH0989557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PROBLEM TO BE SOLVED: To remotely measure the direction of waves from the land by mounting an azimuth detecting circuit on a structure body that keeps its attitude automatically in the direction of waves on the sea level. SOLUTION: In a T-shape support means formed by fixing one end of one support bar vertically to a center point O of the other support bar, floats A, B are provided at both ends of the horizontal support bar, and a weight C is provided at the lower end of the vertical support bar. In such a structure body, buoyancy is adjusted so that floats partially come out to the water surface when this structure body is placed in the water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この考案は、海洋あるいは湖沼に
おいて波の方向を測定するための、浮体に関するもので
ある。
This invention relates to a floating body for measuring the direction of waves in the ocean or lakes.

【0002】[0002]

【従来の技術】これまでに知られている波向観測法は、
つぎのように大別することができる。 (1)海面の視認による方法 ・・・ 目視または海
象観測用レーダーなどによる。 (2)固定点における計器観測 ・・・ 定置式波向
計、ブイ式波向計、波高計群方式による。 (3)リモートセンシング法 ・・・ 人口衛星や航
空機からの画像情報の解析による。 このうち、本考案は(2)固定点における計器観測に係
わるもの、および移動点における計器観測に係わるもの
で、ブイ式波向計の新しい構成要素を提供する。
2. Description of the Related Art The wave direction observation method known so far is
It can be roughly divided as follows. (1) Method of visually observing the sea surface ・ ・ ・ Visually or by radar for ocean observation. (2) Instrument observation at a fixed point: Stationary wave direction meter, buoy type wave direction meter, wave height meter group method. (3) Remote sensing method: By analyzing image information from artificial satellites and aircraft. Among them, the present invention (2) relates to instrument observation at a fixed point and instrument observation at a moving point, and provides a new component of the buoy type wave direction meter.

【0003】従来のブイ式波向計測の原理は、水面の傾
斜の方向とその大きさを測定し波向を算出するものであ
る。水面傾斜は浮遊式ブイの傾きの直交2成分から計算
が可能であり、ブイ式波向計は1960年頃から使用さ
れていて、ピッチロールブイと呼ばれている。さらに、
水面傾斜だけでなく水面の曲率までも測定して観測精度
を高めたクローバーブイと呼ばれるものも使われてい
る。ブイ式波向計における一つの技術的問題は、傾斜角
を計る計器の大半が振子の原理を利用しているため、水
平加速度を受けたときには見かけ上、傾斜が生じたのと
同じ効果を記録してしまうことである。波による水平運
動では、水面傾斜と水平加速度の効果がちょうど相互に
打ち消すように働くため、通常の傾斜計をブイに搭載し
ただけでは波向を観測できない。海洋研究用のブイで
は、比較的短時間における観測を目的とするためジャイ
ロスコープを使用し、その回転軸(鉛直を保持)とブイ
との傾き角を測定することによってブイの傾斜角を求め
るようにしている。
The conventional principle of the buoy type wave direction measurement is to calculate the wave direction by measuring the direction and the magnitude of the inclination of the water surface. The water surface inclination can be calculated from two orthogonal components of the inclination of the floating type buoy, and the buoy type wave direction meter has been used since around 1960 and is called a pitch roll buoy. further,
A clover buoy is also used, which not only measures the inclination of the water surface but also measures the curvature of the water surface to improve the observation accuracy. One technical problem with buoy wave direction meters is that the majority of instruments that measure tilt angle use the principle of the pendulum, so when they are subjected to horizontal acceleration, they appear to record the same effect as tilt. Is to do. In horizontal motions caused by waves, the effects of water surface inclination and horizontal acceleration act so as to cancel each other out, so the wave direction cannot be observed simply by mounting an ordinary inclinometer on the buoy. For buoys for ocean research, a gyroscope is used for the purpose of observation in a relatively short time, and the tilt angle of the buoy is determined by measuring the tilt angle between its rotation axis (holding vertical) and the buoy. I have to.

【0004】一方、数カ月ないし1年以上の定常観測を
目的とした波向計では、電力消費量や軸受部の耐久性の
面でジャイロスコープの使用が困難であり、別な方式が
工夫されている。その一つは、電磁回路と機械的減衰機
構を組み合わせて固有周期を非常に長くした傾斜計を採
用し、それを大型あるいは中型のブイに搭載する方式で
ある。もう一つの方式は、棒状の鉛直ブイの中央付近に
係留支点をとり、ブイの下端に傾斜計を組み込んだもの
である。ブイは係留点を中心に振子運動するので、ブイ
下端の傾斜角と水平加速度とは傾斜計に対して同一方向
の効果を及ぼし、これによって水面傾斜の方向を知るこ
とができる。
On the other hand, in a wave direction meter for the purpose of steady observation for several months to one year or more, it is difficult to use the gyroscope in terms of power consumption and durability of the bearing portion, and another method has been devised. There is. One of them is a system that uses an inclinometer with a very long natural period by combining an electromagnetic circuit and a mechanical damping mechanism and mounts it on a large or medium buoy. The other method uses a mooring fulcrum near the center of a rod-shaped vertical buoy and incorporates an inclinometer at the lower end of the buoy. Since the buoy makes a pendulum motion around the mooring point, the tilt angle at the bottom of the buoy and the horizontal acceleration exert the same effect on the inclinometer, and the direction of the water surface tilt can be known.

【0005】[0005]

【考案が解決しようとする課題】従来のブイ式波向計に
は、つぎのような欠点があった。 (a)機構的に精密な傾斜計を用い、かつ、ジャイロス
コープ、あるいは、固有周期を長くするための電磁的・
機械的減衰機構など複雑な機構を併用するため、計測系
の価格が高い。 (b)精密で複雑な計測系であるため、故障の頻度が高
く、維持管理費用が高い。 本考案は、これらの欠点を除くためになされたものであ
る。
The conventional buoy type wave direction detector has the following drawbacks. (A) A mechanically precise inclinometer is used, and a gyroscope or an electromagnetic sensor for increasing the natural period is used.
Since a complicated mechanism such as a mechanical damping mechanism is used together, the cost of the measurement system is high. (B) Since it is a precise and complicated measurement system, the frequency of failure is high and maintenance costs are high. The present invention has been made to eliminate these drawbacks.

【0006】[0006]

【問題を解決するための手段】従来の波向測定では、波
によって生ずる浮き(ブイ)の傾きを計測する方法が採
用されている。これに対して、本考案は、浮きの方向が
波の方向と一致する特性をもつ浮き構造体を積極的に導
入することによって、精密で複雑な計測系を不要とす
る。これを実現する手段として、T形支持具の水平支持
棒の両端に浮きを設け、垂直支持棒の下端に錘を設けた
構成であって、これを水中に置いたとき浮きの一部分が
水面上に出るように浮力を調節した、波向き追従性をも
つ浮き構造体を用いる。この浮き構造体に方位角検知回
路を搭載することによって、波向きを計測することが可
能となる。
In the conventional wave direction measurement, a method of measuring the inclination of a buoy caused by a wave is adopted. On the other hand, the present invention eliminates the need for a precise and complicated measurement system by positively introducing the floating structure having the characteristic that the floating direction matches the wave direction. As a means for achieving this, a float is provided at both ends of the horizontal support rod of the T-shaped support, and a weight is provided at the lower end of the vertical support rod. When this is placed in water, a part of the float is above the water surface. A floating structure is used that has wave-following capability and buoyancy adjusted so that By mounting an azimuth angle detection circuit on this floating structure, it becomes possible to measure the wave direction.

【0007】すでに、方位角検知回路として、平板上に
配置した3個の地磁気検知コイルにより地磁気の方向
(北または南)に対する平板の方位角を検知する回路が
知られている。(高本幹雄、トランジスタ技術、Apr
il 1992, pp296−309)本考案の波向
き追従性をもつ浮き構造体に、水平維持機構を介して、
この方位角検知回路を取り付けることにより、浮き構造
体の地磁気方向に対する方位角、すなわち、波の地磁気
方向に対する方位角を求めることができる。
As an azimuth angle detection circuit, a circuit for detecting the azimuth angle of the flat plate with respect to the direction of the geomagnetism (north or south) by three geomagnetic detection coils arranged on the flat plate is already known. (Mikio Takamoto, Transistor Technology, Apr
il 1992, pp296-309) In the floating structure having the wave direction followability of the present invention, through the horizontal maintaining mechanism,
By attaching this azimuth detecting circuit, the azimuth of the floating structure with respect to the geomagnetic direction, that is, the azimuth of the wave with respect to the geomagnetic direction can be obtained.

【0008】[0008]

【作用】波向き追従性をもつ浮き構造体をここでは波向
きブイと略称する。波向きブイは図1に示すように、長
さ2aの水平支持棒(以下、横棒と略称する。)の両端
に等しい浮力をもつ浮子AとBをそれぞれ接合し、その
横棒の中央から直角に長さcの垂直支持棒(以下、縦棒
と略称する。)を伸ばし、縦棒の先端に錘Cを接合した
構成をもつもので、波向きブイを水中に置いたとき浮子
の一部が水面上に現われるように浮子の浮力と錘の重量
が調整されている。
The floating structure having the wave direction followability is abbreviated as a wave direction buoy here. As shown in FIG. 1, the wave-direction buoy joins floats A and B having equal buoyancy to both ends of a horizontal support rod (hereinafter abbreviated as horizontal rod) having a length of 2a, and from the center of the horizontal rod. It has a structure in which a vertical support rod (hereinafter referred to as a vertical rod) having a length of c is extended at a right angle and a weight C is joined to the tip of the vertical rod. The buoyancy of the float and the weight of the weight are adjusted so that the part appears above the water surface.

【0009】波向きブイは、それが傾いた水面、すなわ
ち波の面上に置かれたとき、縦棒の先端の錘の復元力に
よって2個の浮子が自動的に波面の等高線上に配置され
る性質をもっている。波向きブイの動作原理を図2と図
3を用いて以下に説明する。
In the wave direction buoy, when the buoy is placed on the inclined water surface, that is, the wave surface, the two floats are automatically arranged on the contour line of the wave surface by the restoring force of the weight at the tip of the vertical bar. Have a certain property. The operation principle of the wave direction buoy will be described below with reference to FIGS. 2 and 3.

【0010】図2に傾いた水面上にある波向きブイの状
況を示す。この図では簡略化のために、二つの浮子およ
び錘の記入を省略し、横棒と縦棒によってブイを表現し
ている。波面Wは水平面Hに対して角αだけ傾いてお
り、ブイの横棒は波面W上にある。また、簡単のため
に、横棒と縦棒は水平面Hに対して直交する垂直面Vの
上にあるものとする。この垂直面は傾いた波面上の等高
線s−tの水平面Hへの投影線u−vに対して角βの傾
きをもつものとして描かれている。
FIG. 2 shows the situation of a wave direction buoy on a tilted water surface. In this figure, for the sake of simplification, the two floats and the weights are omitted, and buoys are represented by horizontal and vertical bars. The wavefront W is inclined by an angle α with respect to the horizontal plane H, and the horizontal bar of the buoy lies on the wavefront W. Further, for simplification, the horizontal bar and the vertical bar are on the vertical plane V orthogonal to the horizontal plane H. This vertical plane is drawn as having an inclination of an angle β with respect to the projection line u-v of the contour line s-t on the inclined wave front onto the horizontal plane H.

【0011】このような位置関係にある波向きブイの横
棒が水平面Hとなす角γは、つぎのようになる。ブイの
横棒が任意の等高線上にあるとき、すなわち、βが0の
とき、γは0となり、ブイの横棒が等高線と直交してい
るとき、すなわち、βがπ/2のとき、γはαとなり、
一般にγとα、βの関係は下記の数式1によって表わす
ことができる。
The angle γ formed by the horizontal bar of the wave direction buoy having such a positional relationship with the horizontal plane H is as follows. When the horizontal bar of the buoy is on an arbitrary contour line, that is, when β is 0, γ becomes 0, and when the horizontal bar of the buoy is orthogonal to the contour line, that is, when β is π / 2, γ Becomes α,
In general, the relationship between γ, α, and β can be expressed by the following mathematical formula 1.

【数1】 [Equation 1]

【0012】つぎに、図3について、錘Cの付近および
ブイの中央点Oの付近の力の釣合を検討してみよう。比
重ρで容積vをもつ錘Cがあるとき、重力の加速度をg
で表わせば、水中で見かけの重力(ρ−1)vgが垂直
面Vにそって下方に働く。この重力の縦棒方向の分力は
(ρ−1)vg・cosγである。一方、縦棒に直交す
る方向の錘の分力(ρ−1)vg・sinγは垂直面V
上を、Oを通る垂線OZに向かって働く。図3の例で
は、この分力は垂直面V内でブイを時計方向に回転させ
るように作用し、高位置にある浮子Bを深く沈める。し
たがって、浮子Bの浮力は浮子Aの浮力より大きくな
る。そのため、浮子AとBの浮力の合力(合成浮力)の
作用点は中央点Oよりも浮子Bに近いM点に定まる。
Next, referring to FIG. 3, let us consider the balance of forces in the vicinity of the weight C and in the vicinity of the center point O of the buoy. When there is a weight C with a specific gravity ρ and a volume v, the acceleration of gravity is g
If it is expressed by, the apparent gravity (ρ−1) vg in water works downward along the vertical plane V. The component force of this gravity in the vertical bar direction is (ρ-1) vg · cosγ. On the other hand, the component force (ρ-1) vg · sinγ of the weight in the direction orthogonal to the vertical bar is the vertical plane V
Work above, towards a perpendicular OZ through O. In the example of FIG. 3, this component force acts to rotate the buoy clockwise in the vertical plane V and deeply sinks the float B in the high position. Therefore, the buoyancy of the float B is larger than that of the float A. Therefore, the point of action of the resultant force of the buoyancy of the floats A and B (composite buoyancy) is set to the point M closer to the float B than the center point O.

【0013】浮力は水面Wに直交する方向に働くので、
浮力の作用点Mを通り水面の等高線に沿った直交面Pを
想定し図中に表示してある。合成浮力−f(重力に逆
らう方向を−と表示する)は直交面P上にあり、M点に
作用する。いま、M点に働く合成浮力−fを、垂直面
Vに沿い縦棒に平行し上に向う分力−fと波面Wに沿
う分力fに分けて考えると、M点に働く縦棒方向上向
きの分力−fは錘Cによる縦棒方向下向きの分力(ρ
−1)vg・cosγと一組となって浮子を垂直面内で
反時計周りに回転させる作用をもつが、一方、錘Cの縦
棒に直交する方向への分力(ρ−1)vg・sinγは
浮子を時計周りに回転させる作用をもつ。結局、垂直面
V内でこれらの分力は釣り合うことになる。したがっ
て、M点には波面Wに沿うMd方向の分力fだけが残
る。
Since buoyancy acts in a direction orthogonal to the water surface W,
An orthogonal plane P passing through the point of buoyancy action M and along the contour line of the water surface is assumed and displayed in the figure. Synthesis buoyancy -f p (a direction against the force of gravity - the display) is on a perpendicular plane P, and acts on M points. Now, the combined buoyancy -f p acting on the M point, and be divided into a component force f w along the component force -f v and the wavefront W toward the on and parallel to the vertical bar along the vertical plane V, acting on the M point The upward component force −f v in the vertical direction is the downward component force (ρ in the vertical direction due to the weight C.
-1) It has a function of rotating the float counterclockwise in the vertical plane in combination with vg · cosγ, while the component force (ρ-1) vg of the weight C in the direction orthogonal to the vertical bar.・ Sine γ has the effect of rotating the float clockwise. After all, these component forces are balanced in the vertical plane V. Therefore, only the component force f w of Md direction along the wavefront W remains in the M point.

【0014】波面Wに沿う分力fは、図4に示すよう
に、波向きブイに流体抵抗を起こさせる。ブイの流体抵
抗力Rの作用点は縦棒軸上のO点に近く下方(図4では
s点)にあり、この流体抵抗力Rと波面Wに沿う分力f
による回転力がブイの横棒を波面の等高線の向きに動
かす推進力となる。したがって、傾いた水面(波面)に
置かれた波向きブイは等高線に対して平行な姿勢をとる
方向に動く。
The component force f w along the wave front W causes a fluid resistance in the wave direction buoy, as shown in FIG. The action point of the fluid resistance R of the buoy is near the point O on the vertical bar axis and is below (point s in FIG. 4), and the fluid resistance R and the component force f along the wave front W are
The rotational force due to w becomes the driving force that moves the horizontal bar of the buoy in the direction of the contour line of the wave front. Therefore, the wave buoy placed on the inclined water surface (wave surface) moves in a direction parallel to the contour line.

【0015】これまでは、傾いた水面に対して特定の位
置関係にある波向きブイに働く力の関係を説明してきた
が、これを位置エネルギーの観点から考えてみると次の
ようになる。。いま、図2において、ブイの横棒の中央
点Oの垂直線OZ上に錘Cがある場合を、中央点Oを基
準点として、位置エネルギーがゼロであるとする。ブイ
の横棒が波面上の等高線と平行でない一般の場合には、
波向きブイの横棒は左右の浮子の浮力により水面近くに
位置するように調整されている関係から、図2と図3に
示すように、縦棒が垂直線に対して傾き角γをもつこと
になる。これは錘Cの位置エネルギーをc(1−cos
γ)(ρ−1)vgだけ増加させる。この位置エネルギ
ーはブイの姿勢を変えるための駆動エネルギーとなる。
すでに説明したように、ブイの縦棒が中央点Oを通る垂
直線に対して傾き角γをもつ限り、波面Wに沿いブイを
回転させようとする力fが発生するので、位置エネル
ギーは減少を続けることとなる。以上に詳述したよう
に、傾いた水面(波面)に置かれた波向きブイは波面上
の等高線に対して自動的に平行な姿勢を保つ特性をもつ
ものである。
Up to now, the relationship of the force acting on the wave direction buoy having a specific positional relationship with the inclined water surface has been described, but it is as follows from the viewpoint of potential energy. . Now, in FIG. 2, when the weight C is on the vertical line OZ of the center point O of the horizontal bar of the buoy, the potential energy is zero with the center point O as a reference point. In the general case where the horizontal bar of the buoy is not parallel to the contours on the wavefront,
Since the horizontal bar of the wave direction buoy is adjusted to be located near the water surface by the buoyancy of the left and right floats, the vertical bar has an inclination angle γ with respect to the vertical line as shown in FIGS. 2 and 3. It will be. This gives the potential energy of the weight C to c (1-cos
γ) (ρ-1) vg. This potential energy becomes drive energy for changing the posture of the buoy.
As already explained, as long as the vertical bar of the buoy has the inclination angle γ with respect to the vertical line passing through the center point O, the force f w that tries to rotate the buoy along the wavefront W is generated, so the potential energy is It will continue to decrease. As described in detail above, the wave direction buoy placed on the inclined water surface (wave surface) has a characteristic of automatically maintaining a posture parallel to the contour line on the wave surface.

【0016】波向きブイの寸法について、発明者は実験
によりつぎの条件を明らかにした。すなわち、寸法の異
なる数種類の波向きブイを試作し、波長の異なる波につ
いて波向きブイの挙動を観察した結果、ブイの水平支持
棒長さ2aは、波の波長λより小さくなければならず、
良好な波向き追従性をもたせるための水平支持棒長さは
波長の数分の1以下が望ましいことがわかつた。
With respect to the size of the wave direction buoy, the inventor clarified the following conditions by experiments. That is, as a result of prototyping several kinds of wave-direction buoys having different dimensions and observing the behavior of the wave-direction buoy for waves having different wavelengths, the horizontal support rod length 2a of the buoy must be smaller than the wavelength λ of the wave,
It has been found that the length of the horizontal support rod is preferably a fraction of the wavelength or less in order to have good wave direction followability.

【0017】[0017]

【実施例】第一の実施例を図5に示す。ブイの水平支持
棒の中央点に姿勢水平維持機構(ブイが傾いても方位角
検知回路を水平に維持する機構)lcを取りつけ、これ
に方位角検知回路ddおよび自動無線通信回路atを搭
載した波向きブイを水上に浮遊させる。この波向きブイ
は時々刻々のブイの方角、すなわち、波向きを自動的に
検知し無線通信により地上局に伝えることがでる。
EXAMPLE A first example is shown in FIG. An attitude level maintaining mechanism (a mechanism for maintaining the azimuth angle detection circuit horizontally even when the buoy is tilted) lc is attached to the center point of the horizontal support rod of the buoy, and an azimuth angle detection circuit dd and an automatic wireless communication circuit at are mounted on this. Float the wave buoy on the water. This wave direction buoy can automatically detect the direction of the buoy every moment, that is, the wave direction, and transmit it to the ground station by wireless communication.

【0018】第二の実施例を図6に示す。図6は定点観
測用の波向き追従性をもつ浮き構造体である。水平支持
棒の中央点をはさみ、かつ、垂直支持棒に接触しない二
つの位置eとfに可動輪を通し、これらの可動輪にユー
(英字U)形牽引具の両端を固定し、このユー形牽引具
の中央部分ucに係留索を結ぶ。この浮き構造体に、実
施例1と同様の方法で方位角検知装置および自動無線通
信装置を搭載し、ユー型牽引具の係留索を水底に固定す
れば、定点での波向きの自動観測が可能となる。
A second embodiment is shown in FIG. FIG. 6 shows a floating structure for fixed-point observation, which has wave direction followability. The movable wheel is passed through two positions e and f that sandwich the central point of the horizontal support rod and do not contact the vertical support rod, and both ends of the U (English U) type tractor are fixed to these movable wheels. The mooring line is tied to the central portion uc of the shaped tractor. By mounting an azimuth angle detecting device and an automatic wireless communication device on this floating structure in the same manner as in Example 1 and fixing the mooring line of the U-type towing device to the bottom of the water, automatic observation of the wave direction at a fixed point is possible. It will be possible.

【0019】なお、本特許で取り扱うテー形支持具の構
成要素である垂直支持棒は、錘の重量を水平支持棒を介
して左右の浮きに伝達する役割をもつものであり、必ず
しも直線的な棒である必要はなく、状況に応じて支持棒
の形状を選択することができる。
The vertical support rod, which is a component of the tee-shaped support device dealt with in this patent, has a role of transmitting the weight of the weight to the left and right floats via the horizontal support rod, and is not necessarily linear. It does not have to be a rod, and the shape of the supporting rod can be selected depending on the situation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の波向き追従性をもつ浮き構造体の側面
FIG. 1 is a side view of a floating structure having wave direction tracking ability according to the present invention.

【符号の説明】[Explanation of symbols]

AとB 浮子 C 錘 O 水平支持棒(横棒)の中央点 aとb 横棒の中央点からそれぞれの浮子までの長さ c 中央点から錘までの長さ A and B Float C Weight O Center point of horizontal support bar (horizontal bar) a and b Length from center point of horizontal bar to each float c Length from center point to weight

【図2】波向き追従性をもつ浮き構造体が傾いた水面に
置かれたときの位置関係
[Fig. 2] Positional relationship when a floating structure with wave direction tracking characteristics is placed on an inclined water surface

【符号の説明】[Explanation of symbols]

H 水平面 V 浮き構造体を面内に含む垂直面 W 波面 s−t 浮き構造体の中央点Oを通る、波面W上の等高
線 u−v 等高線s−tの水平面Hへの投影線 α 波面と水平面のなす角 β 等高線s−tの水平面への投影線u−vと浮き構造
体の横棒の水平面への投影線が互いになす角 γ 浮き構造体の垂直支持棒(縦棒)が中央点Oを通る
V面上の垂線となす角
H Horizontal plane V Vertical plane that includes the floating structure in the plane W Wavefront st Contour line uv on the wavefront W passing through the center point O of the floating structure uv Projection line to the horizontal plane H α wavefront and An angle formed by the horizontal plane β An angle between the projection line uv of the contour line st on the horizontal plane and the projection line of the horizontal bar of the floating structure on the horizontal plane γ The vertical support bar (vertical bar) of the floating structure is the central point Angle formed with the vertical line on the V plane passing through O

【図3】浮き構造体に作用する重力と浮力の関係をしめ
すベクトル図
[Fig. 3] Vector diagram showing the relationship between gravity and buoyancy acting on a floating structure.

【符号の説明】[Explanation of symbols]

M 合成浮力の作用点 Z 水平支持棒の中央点Oを通る垂直線上の一点 P 点Mを通り波面Wに直交し、かつ、等高線に平行す
る平面 −f 合成浮力(点Mを通りP面上を上方に向かうベ
クトル) −f 点Mを通り垂直面V上を縦棒に平行して上方に
働く力(M点を通る力のベクトル−fの垂直面に沿う
分力) f ベクトル−fの波面Wに沿う分力(点Mを通り
波面Wに沿いMd方向へ向かうベクトル) (ρ−1)vg 水中で錘が受ける見かけの重力(錘C
から垂直下方に向かう力) (ρ−1)vg・cosγ 錘の分力(錘Cから縦棒方
向下に向かう力) (ρ−1)vg・sinγ 錘の分力(錘Cから縦棒に
直角に垂線OZに向かう力)
Perpendicular a point P point M of the vertical line as the wavefront W passing through the center point O of the point Z horizontal support rods M synthesis buoyancy, and, through P faces the plane -f p synthesis buoyancy (point M parallel to the contour line toward the upper upward vector) component force along the vertical plane of the vector -f p force on -f v point M street vertical plane V parallel to the vertical bars through the force (M point acting upwards) f w vector -f (vector along toward Md direction the point M as the wavefront W) component force along the wavefront W of the p (ρ-1) vg apparent gravity water at weight is subjected (weight C
From the vertical direction) (ρ-1) vg · cosγ Weight component (force from weight C downward in the vertical direction) (ρ-1) vg · sinγ Weight component (weight C from vertical to vertical rod) The force to the perpendicular OZ at a right angle)

【図4】浮き構造体の横棒を波面の等高線上に導く力の
作用図。
FIG. 4 is an action diagram of a force that guides the horizontal bar of the floating structure onto the contour line of the wavefront.

【符号の説明】[Explanation of symbols]

M 合成浮力の作用点 O 横棒の中央点 f 波面Wに沿う力(Mから出るベクトル) R ブイの流体抵抗力 s 抗力Rの作用点(平面P上で点Oのやや下方にあ
る)
M Synthesis force along the center point f w wavefront W of the point O bars buoyancy (vector exiting M) the point of the fluid resistance s drag R of R buoy (located slightly below the point O on the plane P)

【図5】方位角検知装置と通信装置を搭載した浮き構造
体の図。
FIG. 5 is a diagram of a floating structure equipped with an azimuth angle detection device and a communication device.

【符号の説明】[Explanation of symbols]

lc 姿勢水平維持機構 dd 方位角検知装置 at 自動通信装置 lc posture horizontal maintenance mechanism dd azimuth angle detection device at automatic communication device

【図6】定点観測用浮き構造体の側面図。FIG. 6 is a side view of a floating structure for fixed point observation.

【符号の説明】[Explanation of symbols]

eとf 縦棒の前後方向の動きを妨げないように働く可
動輪 uc ユー字形牽引具の係留索留め部
e and f Movable wheels that work so as not to hinder the longitudinal movement of the vertical rods uc Mooring line fastening portion of a U-shaped tractor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一本の支持棒の中点に他の一本の支持棒の
一端を前者に垂直に固定した、いわゆる、テー(英字
T)形支持具において、水平支持棒の両端に浮きを設
け、垂直支持棒の下端に錘を設けた構造体であって、こ
れを水中に置いたとき浮きの一部分が水面上に出るよう
に浮力を調節した、波向き追従性をもつ浮き構造体。
1. In a so-called "T" (alphabet T) type support in which one end of another support rod is vertically fixed to the former at the midpoint of one support rod, it floats at both ends of a horizontal support rod. And a structure in which a weight is provided at the lower end of a vertical support rod, and the buoyancy is adjusted so that a part of the float appears above the water surface when it is placed in water. .
【請求項2】前項に述べた構造体において、水平支持棒
の中点をはさみ、かつ、垂直支持棒に接触しない二つの
位置に可動環を通し、これらの可動環に係留用のユー
(英字U)形牽引具の両端を固定し、このユー形牽引具
の中央部分に係留索を結んだ、定点係留が可能な波向き
追従性をもつ浮き構造体。
2. In the structure described in the preceding paragraph, the movable ring is passed through two positions which sandwich the midpoint of the horizontal support rod and which do not contact the vertical support rod, and these movable rings are used for mooring. (U) A floating structure having wave-following capability capable of fixed point mooring, in which both ends of the U-shaped tractor are fixed and mooring lines are connected to the central portion of the U-shaped tractor.
【請求項3】請求項1または2に述べた構造体におい
て、方位角検知回路を搭載することによって波向きの計
測を可能とした、波向き計測装置。
3. A wave direction measuring device capable of measuring a wave direction by mounting an azimuth angle detection circuit on the structure according to claim 1 or 2.
JP27611495A 1995-09-19 1995-09-19 Floating structure body with wave direction follow-up ability Pending JPH0989557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27611495A JPH0989557A (en) 1995-09-19 1995-09-19 Floating structure body with wave direction follow-up ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27611495A JPH0989557A (en) 1995-09-19 1995-09-19 Floating structure body with wave direction follow-up ability

Publications (1)

Publication Number Publication Date
JPH0989557A true JPH0989557A (en) 1997-04-04

Family

ID=17564995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27611495A Pending JPH0989557A (en) 1995-09-19 1995-09-19 Floating structure body with wave direction follow-up ability

Country Status (1)

Country Link
JP (1) JPH0989557A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186028A (en) * 2006-01-12 2007-07-26 Zeni Lite Buoy Co Ltd Wave surface following type elevation/floating structure
JP2008157642A (en) * 2006-12-21 2008-07-10 Hitachi Zosen Corp Buoy for observing tsunami and ocean wave
US10368941B2 (en) 2007-07-12 2019-08-06 Boston Scientific Scimed, Inc. Systems and methods for delivering energy to passageways in a patient
US10398502B2 (en) 2004-11-05 2019-09-03 Boston Scientific Scimed, Inc. Energy delivery devices and methods
US10478247B2 (en) 2013-08-09 2019-11-19 Boston Scientific Scimed, Inc. Expandable catheter and related methods of manufacture and use
US10492859B2 (en) 2012-11-05 2019-12-03 Boston Scientific Scimed, Inc. Devices and methods for delivering energy to body lumens
CN113267169A (en) * 2021-06-28 2021-08-17 中铁二院工程集团有限责任公司 Wave action kinetic energy measuring device and method and application thereof
CN114034358A (en) * 2022-01-10 2022-02-11 江苏中唱特种设备有限公司 Water level monitoring device for water entertainment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10398502B2 (en) 2004-11-05 2019-09-03 Boston Scientific Scimed, Inc. Energy delivery devices and methods
JP2007186028A (en) * 2006-01-12 2007-07-26 Zeni Lite Buoy Co Ltd Wave surface following type elevation/floating structure
JP4566916B2 (en) * 2006-01-12 2010-10-20 株式会社ゼニライトブイ Wavefront tracking levitation / floating structure
JP2008157642A (en) * 2006-12-21 2008-07-10 Hitachi Zosen Corp Buoy for observing tsunami and ocean wave
US10368941B2 (en) 2007-07-12 2019-08-06 Boston Scientific Scimed, Inc. Systems and methods for delivering energy to passageways in a patient
US11478299B2 (en) 2007-07-12 2022-10-25 Boston Scientific Scimed, Inc. Systems and methods for delivering energy to passageways in a patient
US10492859B2 (en) 2012-11-05 2019-12-03 Boston Scientific Scimed, Inc. Devices and methods for delivering energy to body lumens
US10478247B2 (en) 2013-08-09 2019-11-19 Boston Scientific Scimed, Inc. Expandable catheter and related methods of manufacture and use
CN113267169A (en) * 2021-06-28 2021-08-17 中铁二院工程集团有限责任公司 Wave action kinetic energy measuring device and method and application thereof
CN114034358A (en) * 2022-01-10 2022-02-11 江苏中唱特种设备有限公司 Water level monitoring device for water entertainment
CN114034358B (en) * 2022-01-10 2022-03-22 江苏中唱特种设备有限公司 Water level monitoring device for water entertainment

Similar Documents

Publication Publication Date Title
EP2786175B1 (en) Motion-stabilised lidar and method for wind speed measurement
KR101523017B1 (en) Apparatus offering aviation image reference point on the sea
KR20100058054A (en) Submarine surface mooring apparatus for oceancurrent observation
JP2007327853A (en) Marine phenomenon measuring method by spar buoy, and device therefor
WO2024007365A1 (en) Beidou/gnss-based real-time high-precision sea surface measurement method and buoy
CN109878638A (en) A kind of buoyage applied to ocean eddy D profile structure field observation
JPH0989557A (en) Floating structure body with wave direction follow-up ability
Kaneko et al. Cross-stream survey of the upper 400 m of the Kuroshio by an ADCP on a towed fish
CN106123917A (en) Consider the SINS compass alignment methods of outer lever arm effect
CN103192958A (en) Ship attitude display device and control method
JP2004191268A (en) Buoy, buoy system, and billow information measuring device
US3367181A (en) Directional wave spectra measuring devices
JP4271481B2 (en) Wave measuring device and wave measuring method
CN205594181U (en) Marine gravimeter stabilized platform's frame set spare
CN203199163U (en) Ship gesture display device
McCullough Problems in measuring currents near the ocean surface
JPS60252213A (en) Inclined angle measuring instrument
JP6725812B2 (en) Buoy type wave height measuring device
JPH05213266A (en) Device and method for controlling attitude of floating body type ocean structure
JP7251875B2 (en) SONAR SYSTEM, POSITION DIFFERENCE DETECTION METHOD AND PROGRAM
Lueck et al. Hub-height time series measurements of velocity and dissipation of turbulence kinetic energy in a tidal channel
Vachon Instrumented full scale tests of a drifting buoy and drogue
JP2005075009A (en) Simple type automatic lake bottom investigation device
JP7279898B2 (en) SONAR SYSTEM, POSITION DIFFERENCE DETECTION METHOD AND PROGRAM
RU2126570C1 (en) Stabilized antenna post of ship navigational radar