JPH098621A - Fet switch circuit - Google Patents

Fet switch circuit

Info

Publication number
JPH098621A
JPH098621A JP15026895A JP15026895A JPH098621A JP H098621 A JPH098621 A JP H098621A JP 15026895 A JP15026895 A JP 15026895A JP 15026895 A JP15026895 A JP 15026895A JP H098621 A JPH098621 A JP H098621A
Authority
JP
Japan
Prior art keywords
switch circuit
input
fet
fets
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15026895A
Other languages
Japanese (ja)
Other versions
JP2770846B2 (en
Inventor
Kazuhiro Tawara
和弘 田原
Tatsuya Miya
龍也 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15026895A priority Critical patent/JP2770846B2/en
Publication of JPH098621A publication Critical patent/JPH098621A/en
Application granted granted Critical
Publication of JP2770846B2 publication Critical patent/JP2770846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE: To improve an input resistance level without increasing the number of serially connected FETs and to provide a switch circuit with which a layout area is reduced and yield is improved. CONSTITUTION: This circuit is provided with plural FET 13a and 13b serially connected between an input terminal 11 and an output terminal 12 and plural FET 14a and 14b serially connected between the output terminal 12 and a ground, and capacitors are connected to the gates of FET positioned at both the terminals of these two pairs of serially connected FET. Capacitor 19a is connected to the input terminal, capacitors 19b and 19c are connected to the output terminal and a capacitor 19d is connected to the ground respectively as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、FETスイッチ回路に
関し、特に、高周波、大電力用のFETスイッチ回路に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an FET switch circuit, and more particularly to a high frequency and large power FET switch circuit.

【0002】[0002]

【従来の技術】従来のFETスイッチ回路は、図6に示
すように、入力端子61と出力端子62との間で直列接
続され信号経路を形成する複数(ここでは3個)のFE
T(電界効果トランジスタ)63a、63b、及び63
cと、出力端子62と接地との間に直列接続された複数
(ここでは3個)のFET64a、64b、及び64c
とを有している。各FETのゲートには、それぞれ保護
抵抗器65a、65b、65c、65d、65e、及び
65fが接続され、制御端子66及び67に接続されて
いる。なお、上記FETは全て同一特性で、また保護抵
抗器も同一抵抗値を有するものとする。
2. Description of the Related Art In a conventional FET switch circuit, as shown in FIG. 6, a plurality of (here, three) FEs are connected in series between an input terminal 61 and an output terminal 62 to form a signal path.
T (field effect transistor) 63a, 63b, and 63
c, and a plurality of (here, three) FETs 64a, 64b, and 64c connected in series between the output terminal 62 and the ground.
And Protective resistors 65a, 65b, 65c, 65d, 65e, and 65f are connected to the gates of the respective FETs, and are connected to control terminals 66 and 67. All the FETs have the same characteristics, and the protection resistors have the same resistance value.

【0003】このスイッチ回路では、制御端子66に印
加される制御電圧をVc1としたとき、制御端子67に
は、数式1で表わされる制御電圧Vc2が印加される。
In this switch circuit, when the control voltage applied to the control terminal 66 is Vc1, the control voltage Vc2 expressed by the equation 1 is applied to the control terminal 67.

【0004】[0004]

【数1】 これにより、このスイッチ回路がオンしたとき(FET
63a、63b、及び63cがオンしたとき)に、FE
T64a、64b、及び64cはオフし、逆にこのスイ
ッチ回路がオフしたときに、FET64a、64b、及
び64cはオンする。この結果、スイッチ回路がオン状
態にあるとき、入力端子に入力された高周波信号(例え
ば、1〜2GHz)は出力端子へ供給される。また、ス
イッチ回路がオフ状態にあるときは、入力端子に入力さ
れる高周波信号が、FET63a、63b、及び63c
を通り出力端子側にリークしても、その高周波成分はF
ET64a、64b、及び64cを介して接地される。
従って、スイッチ回路がオフ状態にあるとき、入力端子
に入力される高周波信号は出力端子に供給されることが
無い。このように、FET64a、64b、及び64c
を設けることにより、このスイッチ回路のアイソレーシ
ョン特性は改善される。
[Equation 1] As a result, when this switch circuit is turned on (FET
63a, 63b, and 63c are turned on), FE
T64a, 64b, and 64c turn off, and conversely, when this switch circuit turns off, the FETs 64a, 64b, and 64c turn on. As a result, when the switch circuit is in the ON state, the high frequency signal (for example, 1 to 2 GHz) input to the input terminal is supplied to the output terminal. Further, when the switch circuit is in the off state, the high frequency signal input to the input terminal is the FETs 63a, 63b and 63c.
Even if it leaks to the output terminal side through
Grounded through ETs 64a, 64b, and 64c.
Therefore, when the switch circuit is in the off state, the high frequency signal input to the input terminal is not supplied to the output terminal. Thus, FETs 64a, 64b, and 64c
By providing, the isolation characteristic of this switch circuit is improved.

【0005】このスイッチ回路のように、複数のFET
を直列に接続すると、その直列接続されたFETがオフ
状態のときのドレイン−ソース間の高周波信号に対する
耐圧を改善することができる。以下、詳述する。
Like this switch circuit, a plurality of FETs
Is connected in series, it is possible to improve the withstand voltage against a high-frequency signal between the drain and the source when the FETs connected in series are in the off state. The details will be described below.

【0006】図7に示すように、2つのFET71及び
72が直列接続され、かつ入力端子73(出力端子7
4)と接地との間に接続されているものとする。また、
これらのFET71、72は、同一の特性を有し、ゲー
ト・ソース間容量とゲート・ドレイン間容量とが等しい
(=Cg )ものとする。更に、各ゲートは、高抵抗を介
してバイアスされており、バイアス回路は高周波に対し
て高インピーダンスと見なすことができるものとする。
As shown in FIG. 7, two FETs 71 and 72 are connected in series and an input terminal 73 (output terminal 7
It shall be connected between 4) and ground. Also,
These FETs 71 and 72 have the same characteristics, and the gate-source capacitance and the gate-drain capacitance are equal (= C g ). Further, each gate is biased through a high resistance, and the bias circuit can be regarded as a high impedance with respect to a high frequency.

【0007】このようなスイッチ回路に、各FETがオ
フとなる様なゲート電圧VG を印加し、入力端子に振幅
inの高周波信号入力すると、ゲート・ソース間容量及
びゲート・ドレイン間容量の働きにより、点A、B、
C、及びDにおける電位変動は図8(a)、(b)、
(c)、及び(d)に示すようになる。このとき、各F
ET71、72のゲート・ソース間電圧VGS(ゲート・
ドレイン間電圧VGD)の最大値は、直列接続されたFE
Tの数をnとすると、(VG +vin/2n)となる。こ
の最大値が各FETのしきい値電圧VP を越えると、F
ETはオン状態に変化し、点Aにおいて入力信号がクリ
ッピングされ、出力端子74の出力信号波形に歪みが発
生する。すなわち、出力信号の最大振幅vmax は、ゲー
ト・ソース間電圧VGSの最大値が、しきい値電圧VP
等しいときと同じで、vmax =2n(VP −VG )で表
わされる。このように最大振幅vmax は、FETの数n
に比例し、FETの数を増やせば最大振幅vmax は大き
くなる。すなわち、FETの数nを増やせば、耐圧(歪
みを発生させるなく信号を伝送できる入力信号電圧)を
高めることができる。
When a gate voltage V G for turning off each FET is applied to such a switch circuit and a high frequency signal of amplitude v in is input to the input terminal, the gate-source capacitance and the gate-drain capacitance are changed. Depending on the function, points A, B,
The potential fluctuations in C and D are shown in FIGS.
As shown in (c) and (d). At this time, each F
ET71, 72 gate-source voltage V GS (gate
The maximum value of the drain-to-drain voltage V GD ) is the FE connected in series.
If the number of T is n, then (V G + v in / 2n). When this maximum value exceeds the threshold voltage V P of each FET, F
ET changes to the ON state, the input signal is clipped at the point A, and the output signal waveform at the output terminal 74 is distorted. That is, the maximum amplitude v max of the output signal is the same as when the maximum value of the gate-source voltage V GS is equal to the threshold voltage V P , and is represented by v max = 2n (V P −V G ). . Thus, the maximum amplitude v max is the number of FETs n
The maximum amplitude v max increases as the number of FETs increases. That is, if the number n of FETs is increased, the breakdown voltage (input signal voltage capable of transmitting a signal without causing distortion) can be increased.

【0008】[0008]

【発明が解決しようとする課題】従来のスイッチ回路
は、上述したように、複数のFETを直列接続して耐圧
改善(耐入力レベルの向上)を行うが、このように複数
のFETを直列接続すると、FETの数に比例してオン
抵抗が大きくなるという問題点がある。この問題を解決
するには、各FETのゲート幅を大きくすればよいが
(直列接続されるFETがn個ならばn倍)、レイアウ
ト面積はn2 に比例して大きくなるという新たな問題を
引き起こす。
As described above, in the conventional switch circuit, a plurality of FETs are connected in series to improve the withstand voltage (improve the withstand input level). In this way, a plurality of FETs are connected in series. Then, there is a problem that the on-resistance increases in proportion to the number of FETs. To solve this problem, the gate width of each FET may be increased (n times the number of FETs connected in series is n times), but there is a new problem that the layout area increases in proportion to n 2. cause.

【0009】また、従来のスイッチ回路は、耐圧が、F
ETのしきい値電圧VP に依存するため、製造プロセス
において、Vp のばらつきを抑える必要がある。ところ
が、近年のゲート電圧VG の低電圧化(VG がVp に近
付く)に伴って、Vp に対する依存性が更に高まり(非
常に敏感となり)、プロセスにおける制御が困難で歩留
まりが低下するという問題点がある。
Further, the withstand voltage of the conventional switch circuit is F
Since it depends on the threshold voltage V P of ET, it is necessary to suppress the variation of V p in the manufacturing process. However, with the recent decrease in the gate voltage V G (V G approaches V p ), the dependency on V p further increases (becomes very sensitive), and it is difficult to control in the process and the yield decreases. There is a problem.

【0010】本願発明は、直列接続されたFETの数を
増やすことなく耐入力レベルの向上を図り、以てレイア
ウト面積が小さく、歩留まりの良いスイッチ回路を提供
することを目的とする。
An object of the present invention is to provide a switch circuit which has a small layout area and a high yield by improving the input withstand level without increasing the number of FETs connected in series.

【0011】なお、構成が簡単な高耐圧スイッチ回路と
して図9に示す様な回路が特開昭57−75030号公
報に開示されているが、この回路では、寄生容量が無視
され、また、FET91がソース接地インバーターとし
て用いられているため、ドレイン・ソース間電圧が反転
する場合は考慮されていない。したがって、この回路
は、高周波信号用の切り替えスイッチとして使用するこ
とはできない。
A circuit as shown in FIG. 9 is disclosed as a high withstand voltage switch circuit having a simple structure in Japanese Patent Application Laid-Open No. 57-75030. However, in this circuit, the parasitic capacitance is ignored and the FET 91 is used. Since it is used as a source-grounded inverter, it is not considered when the drain-source voltage is inverted. Therefore, this circuit cannot be used as a changeover switch for high frequency signals.

【0012】[0012]

【課題を解決するための手段】本発明によれば、2つの
入出力端子の間に複数の第1の電界効果トランジスタを
直列に接続したFETスイッチ回路において、前記2つ
の入出力端子と該2つの入出力端子にそれぞれ接続され
た電界効果トランジスタのゲートとの間に、それぞれキ
ャパシタを接続したことを特徴とするFETスイッチ回
路が得られる。
According to the present invention, in an FET switch circuit in which a plurality of first field effect transistors are connected in series between two input / output terminals, the two input / output terminals and the two An FET switch circuit is obtained in which capacitors are respectively connected between the gates of field effect transistors connected to one input / output terminal.

【0013】[0013]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1に本発明の第1の実施例を示す。本実施例の
スイッチ回路は、入力端子11と出力端子12との間に
直列に接続された2つのFET13a、13bと、出力
端子12と接地との間に直列に接続された2つのFET
14a、14bと、FET13a、13bの各ゲートと
制御端子15との間にそれぞれ接続された高抵抗16
a、16bと、FET14a、14bの各ゲートと制御
端子17との間にそれぞれ接続された高抵抗18a、1
8bとを有している。また、直列接続された両端のFE
T(本実施例の場合、直列接続された2個のFETが2
組なので全てのFET)のゲートと入力端子、出力端
子、あるいは、接地との間にはキャパシタが接続されて
いる。具体的には、FET13aのゲートと入力端子1
1との間にキャパシタ19aが、FET13bのゲート
と出力端子12との間にキャパシタ19bが、FET1
4aのゲートと出力端子12との間にキャパシタ19c
が、FET14bのゲートと接地との間にキャパシタ1
9dが、それぞれ接続されている。なお、FET、高抵
抗、キャパシタは、それぞれ同一特性を有するものとす
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. The switch circuit of this embodiment includes two FETs 13a and 13b connected in series between the input terminal 11 and the output terminal 12, and two FETs connected in series between the output terminal 12 and the ground.
14a, 14b, a high resistance 16 connected between each gate of the FETs 13a, 13b and the control terminal 15, respectively.
a, 16b, high resistances 18a, 1 connected between the gates of the FETs 14a, 14b and the control terminal 17, respectively.
8b and. In addition, FEs at both ends connected in series
T (in the case of this embodiment, two FETs connected in series have two
Since it is a set, capacitors are connected between the gates of all the FETs) and the input terminals, output terminals, or ground. Specifically, the gate of the FET 13a and the input terminal 1
1 is connected to the capacitor 19a, and between the gate of the FET 13b and the output terminal 12, the capacitor 19b is connected to the FET1.
A capacitor 19c is provided between the gate of 4a and the output terminal 12.
However, there is a capacitor 1 between the gate of the FET 14b and the ground.
9d are respectively connected. The FET, the high resistance, and the capacitor have the same characteristics.

【0014】従来のスイッチ回路と同様に、本実施例の
スイッチ回路でも、制御端子15に印加される制御電圧
をVc1としたとき、制御端子17には、数式2で表わさ
れる制御電圧Vc2が印加される。
Similar to the conventional switch circuit, also in the switch circuit of this embodiment, when the control voltage applied to the control terminal 15 is Vc1, the control voltage Vc2 expressed by the equation 2 is applied to the control terminal 17. To be done.

【0015】[0015]

【数2】 これにより、FET13a、13bがオンのとき、FE
T14a、14bはオフとなり、入力端子11に入力さ
れた高周波信号は出力端子12へ供給される。また、F
ET13a、13bがオフのとき、FET14a、14
bはオンとなり、例え、入力端子に入力された高周波信
号が出力端子側へとリークしても、リークした高周波信
号は、FET14a、14bにより接地される。
[Equation 2] As a result, when the FETs 13a and 13b are turned on, the FE
T14a and T14b are turned off, and the high frequency signal input to the input terminal 11 is supplied to the output terminal 12. Also, F
When the ETs 13a and 13b are off, the FETs 14a and 14 are
Even when the high frequency signal input to the input terminal leaks to the output terminal side, the leaked high frequency signal is grounded by the FETs 14a and 14b.

【0016】以下、本発明のスイッチ回路の動作を図2
を参照して詳述する。ここでは、FET13a、13b
がオン状態の場合(入力端子11と出力端子12とが直
接接続されていると想定した場合)に付いて説明する。
即ち、FET13a、13bのゲートに、これらFET
をオフさせるゲート電圧VG が与えられている場合に付
いて説明する。なお、各キャパシタ19c、19dの静
電容量C0 は、FET14a、14bのオフ時のゲート
・ソース(ドレイン)容量Cg よりも大きいものとす
る。
The operation of the switch circuit of the present invention will be described below with reference to FIG.
Will be described in detail. Here, FETs 13a and 13b
Will be described (when it is assumed that the input terminal 11 and the output terminal 12 are directly connected).
That is, the FETs 13a and 13b are connected to the gates of these FETs.
The case where the gate voltage V G for turning off is given will be described. The capacitance C 0 of each of the capacitors 19c and 19d is larger than the gate-source (drain) capacitance C g of the FETs 14a and 14b when the FETs 14a and 14b are off.

【0017】図2の入力端子11に振幅vinの入力信号
が入力されたとすると、点Aにおける電位変動は、従来
同様、図3(a)に示すようになる。このとき、点Bに
おける電位変動は、キャパシタ19cの働きにより、図
3(b)に示す通り、振幅vinで変動する。また、点D
における電位変動は、キャパシタ19dの働きによりほ
とんど無くなる。つまり、点Dの電位はVG で一定と考
えられる。
Assuming that an input signal having the amplitude v in is input to the input terminal 11 of FIG. 2, the potential fluctuation at the point A is as shown in FIG. At this time, the potential fluctuation at the point B varies with the amplitude v in as shown in FIG. 3B due to the function of the capacitor 19c. Also, point D
The potential fluctuation at is almost eliminated by the action of the capacitor 19d. That is, the potential at the point D is considered to be constant at V G.

【0018】点Aにおける電位が正に振れ、点BC間の
電位差がしきい値VP 以上になると、FET14aはオ
ン状態に変化する。このとき、FET14bはオフのま
まである。逆に点Aおける電位が負に振れ、点DC間の
電位差がしきい値VP 以上になると、FET14bはオ
ン状態に変化する。このとき、FET14aはオフのま
まである。このとき、C点の電位変動は、図3(c)に
示すように、点Aでの電位が正の時は、ほぼ点Aの電位
と等しく、点A出の電位が負の時は、ほぼ接地電位(0
V)になる。ここで、C0 =∞、と仮定すると、本実施
例のスイッチ回路では、入力振幅vinに無関係に、FE
T14a及び14bのうち少なくとも一方は常にオフ状
態にある。つまり、FET14a及び14bがオフ状態
にある場合、どの様な信号が入力されようとも、オン状
態に反転して信号をリークさせることがない。したがっ
て、本実施例のスイッチ回路では、理論上、最大入力振
幅vmax は無限大である。実際のスイッチ回路では、ゲ
ート耐圧BVGDが有限なので、vmax は、ほぼBVGD
等しい。
When the potential at the point A swings positively and the potential difference between the points BC exceeds the threshold value V P , the FET 14a changes to the ON state. At this time, the FET 14b remains off. Conversely, when the potential at the point A swings negatively and the potential difference between the points DC becomes equal to or greater than the threshold value VP, the FET 14b changes to the ON state. At this time, the FET 14a remains off. At this time, the potential fluctuation at the point C is substantially equal to the potential at the point A when the potential at the point A is positive, and when the potential at the point A is negative, as shown in FIG. Near ground potential (0
V). Here, assuming that C 0 = ∞, in the switch circuit of the present embodiment, the FE is irrespective of the input amplitude v in.
At least one of T14a and T14b is always in the off state. That is, when the FETs 14a and 14b are in the off state, no matter what signal is input, the signal is not inverted to the on state to leak the signal. Therefore, in the switch circuit of this embodiment, theoretically, the maximum input amplitude v max is infinite. In an actual switch circuit, since the gate breakdown voltage BV GD is finite, v max is almost equal to BV GD .

【0019】図4に、従来のスイッチ回路と本実施例に
よるスイッチ回路との特性を測定した結果を示す。ここ
で、使用したFETは、VP =−2.0V,BVGD=2
0Vである。また、図4において、◎は、従来のFET
を2段接続したスイッチ回路、□は従来のFETを3段
接続したスイッチ回路(図6参照)、△は、C0 =2p
Fとした図1のスイッチ回路、○は、C0 =10pFと
した図1のスイッチ回路の耐入力レベルの測定結果を表
わす。なお、ここでいう耐入力レベルとは、入力信号に
対する出力信号の歪みが−1dBの時の最大入力振幅を
表わします。
FIG. 4 shows the results of measuring the characteristics of the conventional switch circuit and the switch circuit according to this embodiment. The FET used here has V P = -2.0 V, BV GD = 2
0V. Further, in FIG. 4, ◎ indicates a conventional FET
Is a switch circuit in which two stages are connected, □ is a switch circuit in which a conventional FET is connected in three stages (see FIG. 6), and Δ is C 0 = 2p
The switch circuit of FIG. 1 set to F, and the open circles represent the measurement result of the withstand input level of the switch circuit of FIG. 1 set to C 0 = 10 pF. The withstand input level here refers to the maximum input amplitude when the distortion of the output signal with respect to the input signal is -1 dB.

【0020】図4から明らかな通り、本実施例によるス
イッチ回路(C0 =10pF)では、従来のFET3段
の回路をVG =−5Vで使用したときと同程度の耐入力
レベルを得ることができる。また、本実施例によるスイ
ッチ回路(C0 =10pF)では、VG =−2.5〜−
5Vの広範囲に渡り、BVGDできまる一定の耐入力レベ
ルが得られる。これは、VP のばらつきに影響されず、
ほぼ一定の耐入力レベルが得られることを意味する。
As is apparent from FIG. 4, in the switch circuit (C 0 = 10 pF) according to this embodiment, an input withstand level similar to that when a conventional 3-stage FET circuit is used at V G = -5V is obtained. You can In addition, in the switch circuit (C 0 = 10 pF) according to this embodiment, V G = −2.5 to −
Over a wide range of 5V, a constant input withstand level that can be achieved by BV GD can be obtained. This is not affected by the variation of V P ,
This means that a nearly constant input withstand level can be obtained.

【0021】このように本実施例によれば、FETの段
数を増やすことなく、つまり、レイアウト面積を拡大す
ることなく、耐入力レベルの改善を実現できる。また、
各FETのVP のばらつきによる影響を抑制することが
できる。
As described above, according to this embodiment, it is possible to improve the input withstand level without increasing the number of FET stages, that is, without increasing the layout area. Also,
It is possible to suppress the influence of variations in V P of each FET.

【0022】図5に、本発明の第2の実施例を示す。本
実施例では、FET51a、51b、及び51cと、F
ET52a、52b、及び52cとがそれぞれ直列接続
されており、両端のFETのゲート51a、51c、5
2a、及び52cにはキャパシタ53a、53b、53
c、及び53dが接続されている。本実施例のスイッチ
回路の動作も、ほぼ第1の実施例と同じであるが、FE
Tの接続段数を増やしたことにより、第1の実施例より
も、BVGDへの依存性が若干抑えられるため、耐入力レ
ベルは、第1の実施例よりも更に改善される。また、V
P のばらつきによる影響についても同様に第1の実施例
よりも改善される。
FIG. 5 shows a second embodiment of the present invention. In this embodiment, the FETs 51a, 51b and 51c, and F
ETs 52a, 52b, and 52c are respectively connected in series, and gates 51a, 51c, and 5 of the FETs at both ends are connected.
2a and 52c have capacitors 53a, 53b, 53
c and 53d are connected. The operation of the switch circuit of this embodiment is almost the same as that of the first embodiment, but the FE
By increasing the number of connection stages of T, the dependence on BV GD is slightly suppressed as compared with the first embodiment, so the input withstand level is further improved as compared with the first embodiment. Also, V
The influence of the variation of P is similarly improved as compared with the first embodiment.

【0023】[0023]

【発明の効果】本発明によれば、複数のFETを直列接
続し、その両端の端子とその端子に接続されているFE
Tのゲートとの間にキャパシタを接続したことで、FE
Tの段数を増やすことなく、耐入力レベルを改善するこ
とができる。また、FETの段数を増やす必要がないの
で、レイアウト面積を小さくすることもできる。
According to the present invention, a plurality of FETs are connected in series and terminals at both ends thereof and FEs connected to the terminals are connected.
By connecting a capacitor between the gate of T and FE,
The input withstand level can be improved without increasing the number of T stages. Further, since it is not necessary to increase the number of FET stages, the layout area can be reduced.

【0024】また、キャパシタを設けたことにより、耐
入力レベルが、ゲート耐圧BVGDによって決まり、制御
電圧VG やしきい値電圧VP に依存しなくなるため、使
用可能な制御電圧の範囲が広がると共に、製造プロセス
において、しきい値電圧VPのばらつきの許容範囲が広
がり、歩留まりが向上するという効果もある。
Further, by providing the capacitor, the withstand input level is determined by the gate breakdown voltage BV GD and does not depend on the control voltage V G or the threshold voltage V P , so that the usable control voltage range is expanded. At the same time, in the manufacturing process, the allowable range of variations in the threshold voltage V P is widened, and the yield is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の回路図である。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

【図2】図1のスイッチ回路の動作を説明するための回
路図である。
FIG. 2 is a circuit diagram for explaining the operation of the switch circuit of FIG.

【図3】(a)、(b)、(c)、及び(d)は、それ
ぞれ図2の回路の点A、B、C、及びDにおける電位変
動を示すグラフである。
3 (a), (b), (c), and (d) are graphs showing potential fluctuations at points A, B, C, and D of the circuit of FIG. 2, respectively.

【図4】第1の実施例によるスイッチ回路と従来のスイ
ッチ回路の、ゲート電圧に対すする耐入力レベルを示す
グラフである。
FIG. 4 is a graph showing the withstand input level with respect to the gate voltage of the switch circuit according to the first embodiment and the conventional switch circuit.

【図5】本発明の第2の実施例のスイッチ回路の回路図
である。
FIG. 5 is a circuit diagram of a switch circuit according to a second embodiment of the present invention.

【図6】従来のスイッチ回路の回路図である。FIG. 6 is a circuit diagram of a conventional switch circuit.

【図7】従来のスイッチ回路の動作を説明するための図
である。
FIG. 7 is a diagram for explaining the operation of a conventional switch circuit.

【図8】(a)、(b)、(c)、及び(d)は、それ
ぞれ図7の回路の点A、B、C、及びDにおける電位変
動を示すグラフである。
8A, 8B, 8C, and 8D are graphs showing potential fluctuations at points A, B, C, and D in the circuit of FIG. 7, respectively.

【図9】他の従来のスイッチ回路の回路図である。FIG. 9 is a circuit diagram of another conventional switch circuit.

【符号の説明】[Explanation of symbols]

11 入力端子 12 出力端子 13a,13b FET 14a,14b FET 16a,16b 高抵抗 17 制御端子 18a,18b 高抵抗 19a,19b,19c,19d キャパシタ 51a,51b,51c FET 52a,52b,52c FET 53a,53b,53c,53d キャパシタ 61 入力端子 62 出力端子 63a,63b,63c FET 64a,64b,64c FET 65a,65b,65c,65d,65e,65f
保護抵抗器 66,67 制御端子 71,72 FET 73 入力端子 74 出力端子
11 Input terminal 12 Output terminal 13a, 13b FET 14a, 14b FET 16a, 16b High resistance 17 Control terminal 18a, 18b High resistance 19a, 19b, 19c, 19d Capacitor 51a, 51b, 51c FET 52a, 52b, 52c FET 53a, 53b , 53c, 53d Capacitor 61 Input terminal 62 Output terminal 63a, 63b, 63c FET 64a, 64b, 64c FET 65a, 65b, 65c, 65d, 65e, 65f
Protection resistor 66,67 Control terminal 71,72 FET 73 Input terminal 74 Output terminal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2つの入出力端子の間に複数の第1の電
界効果トランジスタを直列に接続したFETスイッチ回
路において、前記2つの入出力端子と該2つの入出力端
子にそれぞれ接続された電界効果トランジスタのゲート
との間に、それぞれキャパシタを接続したことを特徴と
するFETスイッチ回路。
1. In an FET switch circuit in which a plurality of first field effect transistors are connected in series between two input / output terminals, the two input / output terminals and the electric fields connected to the two input / output terminals, respectively. A FET switch circuit characterized in that a capacitor is connected between the gate of the effect transistor and the gate of the effect transistor.
【請求項2】 前記2つの入出力端子の一方と接地との
間に、前記第1の電界効果トランジスタと同数の第2の
電界効果トランジスタを直列接続し、前記2つの入出力
端子の一方と該2つの入出力端子の一方に接続された前
記第2の電界効果トランジスタのゲートとの間と、前記
接地と該接地に接続された前記第2の電界効果トランジ
スタのゲートとの間とに、それぞれキャパシタを接続し
たことを特徴とする請求項1のFETスイッチ回路。
2. The same number of second field effect transistors as the first field effect transistors are connected in series between one of the two input / output terminals and the ground, and one of the two input / output terminals is connected to one of the two input / output terminals. Between the gate of the second field effect transistor connected to one of the two input / output terminals and between the ground and the gate of the second field effect transistor connected to the ground, 2. The FET switch circuit according to claim 1, wherein capacitors are connected to each other.
【請求項3】 前記キャパシタが、当該キャパシタが接
続された電界効果トランジスタのオフ状態における端子
・ゲート間の寄生容量よりも、大きい容量を有すること
を特徴とする請求項1または2のFETスイッチ回路。
3. The FET switch circuit according to claim 1, wherein the capacitor has a capacitance larger than a parasitic capacitance between a terminal and a gate in a turned-off state of a field effect transistor to which the capacitor is connected. .
JP15026895A 1995-06-16 1995-06-16 FET switch circuit Expired - Fee Related JP2770846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15026895A JP2770846B2 (en) 1995-06-16 1995-06-16 FET switch circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15026895A JP2770846B2 (en) 1995-06-16 1995-06-16 FET switch circuit

Publications (2)

Publication Number Publication Date
JPH098621A true JPH098621A (en) 1997-01-10
JP2770846B2 JP2770846B2 (en) 1998-07-02

Family

ID=15493236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15026895A Expired - Fee Related JP2770846B2 (en) 1995-06-16 1995-06-16 FET switch circuit

Country Status (1)

Country Link
JP (1) JP2770846B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913939A2 (en) * 1997-10-30 1999-05-06 Sony Corporation High-frequency circuit
WO2001067602A3 (en) * 2000-03-03 2002-03-07 Alpha Ind Inc Electronic switch
JP2008011320A (en) * 2006-06-30 2008-01-17 Sony Corp Semiconductor switch circuit and communication device
JP2008035153A (en) * 2006-07-28 2008-02-14 Mitsubishi Electric Corp Analog switching circuit
WO2009022654A1 (en) * 2007-08-16 2009-02-19 Nec Corporation Switch circuit and semiconductor device
US7561853B2 (en) 2004-01-16 2009-07-14 Eudyna Devices Inc. Radio frequency switch
JP2010178026A (en) * 2009-01-29 2010-08-12 Renesas Electronics Corp Semiconductor device
US8638159B2 (en) 2008-02-28 2014-01-28 Peregrine Semiconductor Corporation Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals
US8954902B2 (en) 2005-07-11 2015-02-10 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US9087899B2 (en) 2005-07-11 2015-07-21 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US9177737B2 (en) 2007-04-26 2015-11-03 Peregrine Semiconductor Corporation Tuning capacitance to enhance FET stack voltage withstand
US9225378B2 (en) 2001-10-10 2015-12-29 Peregrine Semiconductor Corpopration Switch circuit and method of switching radio frequency signals
US9406695B2 (en) 2013-11-20 2016-08-02 Peregrine Semiconductor Corporation Circuit and method for improving ESD tolerance and switching speed
US9419565B2 (en) 2013-03-14 2016-08-16 Peregrine Semiconductor Corporation Hot carrier injection compensation
US9590674B2 (en) 2012-12-14 2017-03-07 Peregrine Semiconductor Corporation Semiconductor devices with switchable ground-body connection
CN106571798A (en) * 2015-10-08 2017-04-19 微芯片科技公司 Optimized CMOS analog switch
US9831857B2 (en) 2015-03-11 2017-11-28 Peregrine Semiconductor Corporation Power splitter with programmable output phase shift
US9948281B2 (en) 2016-09-02 2018-04-17 Peregrine Semiconductor Corporation Positive logic digitally tunable capacitor
WO2019013015A1 (en) * 2017-07-10 2019-01-17 株式会社村田製作所 High-frequency filter, multiplexer, high-frequency front end circuit, and communication device
US10236872B1 (en) 2018-03-28 2019-03-19 Psemi Corporation AC coupling modules for bias ladders
US10505530B2 (en) 2018-03-28 2019-12-10 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US10622990B2 (en) 2005-07-11 2020-04-14 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US10790390B2 (en) 2005-07-11 2020-09-29 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US10804892B2 (en) 2005-07-11 2020-10-13 Psemi Corporation Circuit and method for controlling charge injection in radio frequency switches
US10886911B2 (en) 2018-03-28 2021-01-05 Psemi Corporation Stacked FET switch bias ladders
USRE48965E1 (en) 2005-07-11 2022-03-08 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US11476849B2 (en) 2020-01-06 2022-10-18 Psemi Corporation High power positive logic switch

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913939A3 (en) * 1997-10-30 2000-12-20 Sony Corporation High-frequency circuit
US6563366B1 (en) 1997-10-30 2003-05-13 Sony Corporation High-frequency Circuit
KR100713722B1 (en) * 1997-10-30 2008-01-22 소니 가부시끼 가이샤 High frequency circuit
EP0913939A2 (en) * 1997-10-30 1999-05-06 Sony Corporation High-frequency circuit
WO2001067602A3 (en) * 2000-03-03 2002-03-07 Alpha Ind Inc Electronic switch
US9225378B2 (en) 2001-10-10 2015-12-29 Peregrine Semiconductor Corpopration Switch circuit and method of switching radio frequency signals
US10812068B2 (en) 2001-10-10 2020-10-20 Psemi Corporation Switch circuit and method of switching radio frequency signals
US10797694B2 (en) 2001-10-10 2020-10-06 Psemi Corporation Switch circuit and method of switching radio frequency signals
US10790820B2 (en) 2001-10-10 2020-09-29 Psemi Corporation Switch circuit and method of switching radio frequency signals
US10622993B2 (en) 2001-10-10 2020-04-14 Psemi Corporation Switch circuit and method of switching radio frequency signals
US7561853B2 (en) 2004-01-16 2009-07-14 Eudyna Devices Inc. Radio frequency switch
US10797172B2 (en) 2005-07-11 2020-10-06 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US10818796B2 (en) 2005-07-11 2020-10-27 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
USRE48965E1 (en) 2005-07-11 2022-03-08 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US9087899B2 (en) 2005-07-11 2015-07-21 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
USRE48944E1 (en) 2005-07-11 2022-02-22 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETS using an accumulated charge sink
US10622990B2 (en) 2005-07-11 2020-04-14 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US10680600B2 (en) 2005-07-11 2020-06-09 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US8954902B2 (en) 2005-07-11 2015-02-10 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US10790390B2 (en) 2005-07-11 2020-09-29 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US10804892B2 (en) 2005-07-11 2020-10-13 Psemi Corporation Circuit and method for controlling charge injection in radio frequency switches
US9608619B2 (en) 2005-07-11 2017-03-28 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US10797691B1 (en) 2005-07-11 2020-10-06 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
JP2008011320A (en) * 2006-06-30 2008-01-17 Sony Corp Semiconductor switch circuit and communication device
JP2008035153A (en) * 2006-07-28 2008-02-14 Mitsubishi Electric Corp Analog switching circuit
US10951210B2 (en) 2007-04-26 2021-03-16 Psemi Corporation Tuning capacitance to enhance FET stack voltage withstand
US9177737B2 (en) 2007-04-26 2015-11-03 Peregrine Semiconductor Corporation Tuning capacitance to enhance FET stack voltage withstand
US8054143B2 (en) 2007-08-16 2011-11-08 Nec Corporation Switch circuit and semiconductor device
WO2009022654A1 (en) * 2007-08-16 2009-02-19 Nec Corporation Switch circuit and semiconductor device
US9024700B2 (en) 2008-02-28 2015-05-05 Peregrine Semiconductor Corporation Method and apparatus for use in digitally tuning a capacitor in an integrated circuit device
US9106227B2 (en) 2008-02-28 2015-08-11 Peregrine Semiconductor Corporation Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals
US11258440B2 (en) 2008-02-28 2022-02-22 Psemi Corporation Method and apparatus for use in digitally tuning a capacitor in an integrated circuit device
US9197194B2 (en) 2008-02-28 2015-11-24 Peregrine Semiconductor Corporation Methods and apparatuses for use in tuning reactance in a circuit device
US8638159B2 (en) 2008-02-28 2014-01-28 Peregrine Semiconductor Corporation Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals
US9293262B2 (en) 2008-02-28 2016-03-22 Peregrine Semiconductor Corporation Digitally tuned capacitors with tapered and reconfigurable quality factors
JP2010178026A (en) * 2009-01-29 2010-08-12 Renesas Electronics Corp Semiconductor device
US9590674B2 (en) 2012-12-14 2017-03-07 Peregrine Semiconductor Corporation Semiconductor devices with switchable ground-body connection
US9419565B2 (en) 2013-03-14 2016-08-16 Peregrine Semiconductor Corporation Hot carrier injection compensation
US9406695B2 (en) 2013-11-20 2016-08-02 Peregrine Semiconductor Corporation Circuit and method for improving ESD tolerance and switching speed
US9831857B2 (en) 2015-03-11 2017-11-28 Peregrine Semiconductor Corporation Power splitter with programmable output phase shift
CN106571798A (en) * 2015-10-08 2017-04-19 微芯片科技公司 Optimized CMOS analog switch
EP3360252A4 (en) * 2015-10-08 2019-05-15 Microchip Technology Incorporated An optimized cmos analog switch
JP2018535592A (en) * 2015-10-08 2018-11-29 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated Optimized CMOS analog switch
US9948281B2 (en) 2016-09-02 2018-04-17 Peregrine Semiconductor Corporation Positive logic digitally tunable capacitor
WO2019013015A1 (en) * 2017-07-10 2019-01-17 株式会社村田製作所 High-frequency filter, multiplexer, high-frequency front end circuit, and communication device
US11489514B2 (en) 2017-07-10 2022-11-01 Murata Manufacturing Co., Ltd. Radio-frequency filter, multiplexer, radio-frequency front-end circuit, and communication device
US11018662B2 (en) 2018-03-28 2021-05-25 Psemi Corporation AC coupling modules for bias ladders
US10505530B2 (en) 2018-03-28 2019-12-10 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US10886911B2 (en) 2018-03-28 2021-01-05 Psemi Corporation Stacked FET switch bias ladders
US10236872B1 (en) 2018-03-28 2019-03-19 Psemi Corporation AC coupling modules for bias ladders
US10862473B2 (en) 2018-03-28 2020-12-08 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US11870431B2 (en) 2018-03-28 2024-01-09 Psemi Corporation AC coupling modules for bias ladders
US11476849B2 (en) 2020-01-06 2022-10-18 Psemi Corporation High power positive logic switch

Also Published As

Publication number Publication date
JP2770846B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
JP2770846B2 (en) FET switch circuit
US6522187B1 (en) CMOS switch with linearized gate capacitance
US3942039A (en) Distortionless FET switching circuit
EP0454135B1 (en) MOS type input circuit
JP3251019B2 (en) Low impedance CMOS output stage and method
KR930000970B1 (en) Output circuit of integrated circuit
US6172535B1 (en) High-speed analog comparator structures and methods
US20080180175A1 (en) Variable gain amplifier and control method thereof
EP0497319A1 (en) Semiconductor integrated circuit device having substrate potential detection circuit
KR960003068A (en) Morse-Operated Transconductance Amplifier with Adaptive Bias Differential Pair
JP3573849B2 (en) Amplifier circuit
JPH0951238A (en) Microwave amplifier circuit
JPH04313907A (en) Signal processing unit
US5986463A (en) Differential signal generating circuit having current spike suppressing circuit
US20070177323A1 (en) High voltage switch using low voltage cmos transistors
US20190294295A1 (en) Apparatus and method for reducing amplifier feedback capacitor with bypass amplification stage
US6624697B2 (en) High frequency differential amplifier
EP0481093A1 (en) Delay circuit
EP0722221A2 (en) Current switching circuit operable at high speed without externally supplied reference bias
US4639617A (en) Variable-bias circuit with HF transmission path
JP2747335B2 (en) Amplifier device for amplifying digital signals
EP0757439A2 (en) A variable resistor circuit, a variable attenuator circuit and a variable gain amplifier
JP2003037478A (en) Band variable rc filter
JP2001068950A (en) Gate bias circuit
US6774726B2 (en) Amplifier with a MOS output stage

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980318

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110417

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110417

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees