JPH0985010A - Apparatus for deaeration by heating, method for deaeration by heating, and vacuum distillation apparatus and vacuum distillation method - Google Patents

Apparatus for deaeration by heating, method for deaeration by heating, and vacuum distillation apparatus and vacuum distillation method

Info

Publication number
JPH0985010A
JPH0985010A JP25104395A JP25104395A JPH0985010A JP H0985010 A JPH0985010 A JP H0985010A JP 25104395 A JP25104395 A JP 25104395A JP 25104395 A JP25104395 A JP 25104395A JP H0985010 A JPH0985010 A JP H0985010A
Authority
JP
Japan
Prior art keywords
air
solution
heating
steam
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25104395A
Other languages
Japanese (ja)
Inventor
Akizo Chiba
彰三 千葉
Hideyuki Oshiro
英行 大城
Tatsuo Shinozaki
立男 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAGAWA PREF GOV
Kanagawa Prefecture
Shiroki Corp
Original Assignee
KANAGAWA PREF GOV
Kanagawa Prefecture
Shiroki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAGAWA PREF GOV, Kanagawa Prefecture, Shiroki Corp filed Critical KANAGAWA PREF GOV
Priority to JP25104395A priority Critical patent/JPH0985010A/en
Publication of JPH0985010A publication Critical patent/JPH0985010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily carry out deaeratian of a solution by providing a deaeration-by- heating mechanism to generate a vapor by heating a solution and deaerates dissolved air, a heat-exchange mechanism to condense the generated vapor by a heat-exchange apparatus, and a discharging mechanism only for the condensed water and evaporated air. SOLUTION: Air in an evaporator 11 is removed by replacing air with a vapor and, after that, the inside of the evaporator 11 is kept in air-free state by being shut from the outside. Then, sea water is led to a pipe 12 in the evaporator 11 to condense the vapor and decrease the pressure of the evaporator 11. The sea water which passes the evaporator 11 is indirectly heated by the vapor, further heated in 11 deaeration tank 13 until the sea water boils, and due to the boiling, dissolved air in the sea water is removed. The sea water from which dissolved air is removed is introduced into a vapor generating chamber 4 of the evaparator 11 through a pipe 15 and, since the inside of the evaporator 11 is at a lowered pressure, evaporation is accelerated. The generated vapor is transported to a cooling and condensing chamber 16 and cooled to become fresh water and separated from concentrated sea water and discharged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、溶液の加熱脱気
装置及び加熱脱気方法、並びに溶液の減圧蒸留装置及び
減圧蒸留方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating degassing apparatus and a heating degassing method for a solution, and a vacuum distillation apparatus and a vacuum distillation method for a solution.

【0002】[0002]

【従来の技術】従来のこの種の装置及び方法としては、
例えば、特開平5−253405号に開示されているも
のがある。ここに開示されている蒸留装置は、蒸留器内
を水蒸気または混合溶液蒸気を用いて良好な凝縮環境と
し、凝縮により減圧することにより、大気圧の沸点より
低い温度で蒸留を行えるようにしたものである。
2. Description of the Related Art As a conventional apparatus and method of this type,
For example, there is one disclosed in JP-A-5-253405. The distillation apparatus disclosed here is a distillation apparatus in which a good condensation environment is created by using steam or mixed solution vapor, and the pressure is reduced by condensation so that distillation can be performed at a temperature lower than the boiling point of atmospheric pressure. Is.

【0003】しかし、そこでは、蒸留器に導入する溶液
の溶存空気は、大気開放下で沸騰させて除去するという
方法を採っているに過ぎない。
[0003] However, there, only the method of removing the dissolved air of the solution to be introduced into the distiller by boiling under the open air is adopted.

【0004】[0004]

【発明が解決しようとする課題】この発明は、このよう
な従来の事情に鑑みなされたもので、溶液の脱気を簡単
に行うことができる加熱脱気装置及び方法、並びに、減
圧装置を使用しないで効率よく溶液の減圧蒸留を行うこ
とができる減圧蒸留装置及び方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional circumstances, and uses a heating degassing apparatus and method and a depressurizing apparatus that can easily degas a solution. An object of the present invention is to provide a vacuum distillation apparatus and method that can efficiently perform vacuum distillation of a solution without doing so.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

(1)この発明が提供する加熱脱気装置は、導入される
溶液を加熱して蒸気を発生させることにより、溶液中の
溶存空気を脱気する加熱脱気機構と、発生した蒸気を熱
交換器で凝縮する熱交換機構と、上記の凝縮水と気化し
た空気だけを排出する排出機構を備えたものである。
(1) The heating degassing apparatus provided by the present invention heats the introduced solution to generate a steam, thereby degassing the dissolved air in the solution, and a heat degassing mechanism for exchanging the generated steam. It is provided with a heat exchange mechanism for condensing in the vessel and an exhaust mechanism for ejecting only the condensed water and the vaporized air.

【0006】(2)この発明が提供する加熱脱気方法
は、導入される溶液を加熱して加熱脱気槽内の気相部の
大部分を蒸気相にするとともに、溶存空気の大部分を気
化させ、上記の凝縮水と気化した空気だけを排出するこ
とを特徴とするものである。
(2) In the heating degassing method provided by the present invention, most of the gas phase portion in the heating degassing tank is changed to the vapor phase by heating the introduced solution, and most of the dissolved air is discharged. It is characterized in that it is vaporized and only the condensed water and the vaporized air are discharged.

【0007】(3)この発明が提供する減圧装置は、導
入される溶液を加熱して蒸気を発生させることにより、
溶液中の溶存空気を脱気する加熱脱気機構と、発生した
蒸気を熱交換器で凝縮する熱交換機構と、蒸気の凝縮水
と気化した空気だけを排出する排出機構を備えた加熱脱
気装置と、蒸留器内の空気を蒸気で置換して排出するた
めの空気排出機構及び蒸気発生機構と、蒸留器内の空気
を蒸気で置換して排出した後、外部空気が蒸留器内に侵
入しないように遮断する遮断機構と、蒸気を冷却凝縮し
て蒸留器内を減圧する冷却凝縮用熱交換機構を備え、蒸
留器内を空気の無い環境にして、真空装置を使用しない
で、温度差のみで減圧蒸留を可能にする溶液の蒸留装置
とからなるものである。
(3) The decompression device provided by the present invention heats the introduced solution to generate steam,
A heating degassing mechanism that degasses the dissolved air in the solution, a heat exchange mechanism that condenses the generated steam in a heat exchanger, and a discharging mechanism that discharges only the condensed water of the steam and the vaporized air. The device, an air discharge mechanism and a steam generation mechanism for replacing the air in the still by discharging it with steam, and the air in the still after replacing the air by steam and discharging it, and then external air enters the still. It is equipped with a shut-off mechanism that shuts off the heat and a heat exchange mechanism for cooling and condensation that cools and condenses the steam to reduce the pressure inside the distiller. And a device for distilling a solution that enables vacuum distillation by itself.

【0008】(4)この発明が提供する減圧蒸留方法
は、導入される溶液を加熱して脱気加熱槽内の気相部の
大部分を蒸気相にするとともに、溶存空気の大部分を気
化させ、気化した空気と蒸気の凝縮水だけを排出して溶
存空気の非常に少ない溶液とし、この溶液を蒸留するた
めに蒸留器内の空気を蒸気で置換して排出した後、蒸留
器内を外部と遮断して空気のない環境にし、蒸気を冷却
凝縮して蒸留器内を減圧することにより溶液を蒸留する
ことを特徴とするものである。
(4) In the vacuum distillation method provided by the present invention, most of the gas phase portion in the degassing heating tank is vaporized by heating the introduced solution, and most of the dissolved air is vaporized. Then, only the vaporized air and the condensed water of the steam are discharged to make a solution with very little dissolved air.To distill this solution, the air in the still is replaced with steam and then discharged. The present invention is characterized in that the solution is distilled by shutting off from the outside to create an air-free environment, cooling and condensing the vapor, and reducing the pressure in the distiller.

【0009】上記(1)〜(4)の発明における溶液の
加熱には、太陽温水器を使用することができる。
A solar water heater can be used to heat the solution in the above inventions (1) to (4).

【0010】ここで、この発明における加熱脱気と減圧
蒸留の原理を、図1に示す減圧蒸留の原理図に基づい
て、水を例にして説明する。
Here, the principle of the heat degassing and the vacuum distillation in the present invention will be described by taking water as an example based on the principle diagram of the vacuum distillation shown in FIG.

【0011】通常、水に溶けている空気量は、1気圧下
で10〜20ppm程度である。表1は「化学便覧」か
ら引用した空気の水に対する溶解度を示す。
Usually, the amount of air dissolved in water is about 10 to 20 ppm under one atmospheric pressure. Table 1 shows the solubility of air in water quoted from "Chemical Handbook" in water.

【0012】[0012]

【表1】 [Table 1]

【0013】上記原理の概略は、次の(1)〜(5)の
フローで説明できる。
The outline of the above principle can be explained by the following flows (1) to (5).

【0014】(1)円内の蒸留器11内の空気を蒸気で
置換除去し、その後外部と遮断することで器内を空気の
ない環境にする。
(1) The air in the distiller 11 in the circle is replaced with steam to remove the air, and then the air is shut off from the outside to create an air-free environment.

【0015】(2)蒸留器11内のパイプ12に海水を
通すことにより、蒸気が凝縮し、器内は減圧状態にな
る。
(2) By passing seawater through the pipe 12 in the distiller 11, steam is condensed and the inside of the distiller is depressurized.

【0016】(3)蒸留器11内を通った海水は蒸気で
間接加熱され、さらに脱気槽13で沸騰するまで加熱さ
れる。沸騰することにより海水中の溶存空気は除去され
る。
(3) The seawater passing through the distiller 11 is indirectly heated by steam and further heated in the degassing tank 13 until it boils. Dissolved air in seawater is removed by boiling.

【0017】(4)溶存空気を除去された海水は蒸留器
11の蒸気発生室14にパイプ15で導入される。導入
された海水は、器内が減圧状態であるために蒸発が進
む。発生した蒸気は、冷却凝縮室16に移動し冷却され
淡水となり、蒸発で濃縮された海水と分離して排出され
る。
(4) Seawater from which dissolved air has been removed is introduced into the steam generation chamber 14 of the distiller 11 by a pipe 15. The introduced seawater evaporates because the inside of the vessel is in a depressurized state. The generated steam moves to the cooling condensing chamber 16 and is cooled into fresh water, which is separated from the seawater concentrated by evaporation and discharged.

【0018】(5)図中の蒸気発生室14と冷却凝縮室
16との間に効用缶17を何段か入れ熱量の有効利用
と、冷却プロセスの低減を行う。
(5) A plurality of effect cans 17 are inserted between the steam generating chamber 14 and the cooling condensing chamber 16 in the figure to effectively use the heat quantity and reduce the cooling process.

【0019】蒸留器11に空気漏れがなければ、安定状
態では器内に導入する空気の量と排出する量が同じでな
ければならない、異なれば器内は減圧もしくは加圧にな
る。空気の蒸留器11内の出入りは液に溶解している空
気だけであるから、その溶解濃度をaと仮定する。い
ま、蒸気発生室14のaと平衡する空気圧をp1 とし
て、冷却凝縮室16のaと平衡する空気圧をpn とする
と、冷却凝縮室16は蒸気発生室14より温度が低いた
め、空気溶解能力が大きく、p1 >pn となる。すなわ
ち、p1 が熱伝達に影響のない圧力ならば、Pn も影響
ない。20℃の水に大気圧下で溶解する空気量は約10
〜20ppmであり、沸騰水の気液接触部近傍の蒸気圧
は1気圧で空気圧pn はほとんど0に近いと推定され
る。aはこの空気圧と平衡する溶解濃度であるため非常
に小さい。表1では0となっている。p1 はpn 程度な
ら十分低く、もしpn <p1 のとき、aに対してp1
十分加圧で、かつT0 >T1 であるため、空気が液に徐
々に溶け、いずれpn >p1 となるであろう。10〜2
0ppmの溶存空気の大部分は、蒸気排出管18より熱
交換器19を通り、凝縮水とともに排出される。T0
100℃以上で、熱交換器19で凝縮水を十分排出する
なら、脱気槽13内は蒸気で満たされ、p0 はほとんど
0となる。
If there is no air leakage in the distiller 11, the amount of air introduced into the distiller must be the same as the amount of air discharged in the distillate in a stable state. Otherwise, the inside of the distiller will be depressurized or pressurized. Since only air dissolved in the liquid enters and leaves the distiller 11, the dissolved concentration is assumed to be a. Now, assuming that the air pressure equilibrium with a of the steam generation chamber 14 is p 1 and the air pressure equilibrium with a of the cooling condensation chamber 16 is pn , the temperature of the cooling condensation chamber 16 is lower than that of the steam generation chamber 14 capacity is large, and p 1> p n. That is, if p 1 is a pressure that does not affect heat transfer, then P n also has no effect. The amount of air dissolved in water at 20 ° C under atmospheric pressure is about 10
It is estimated that the vapor pressure in the vicinity of the gas-liquid contact portion of boiling water is 1 atm and the air pressure pn is almost 0. a is very small because it is a dissolved concentration that equilibrates with this air pressure. It is 0 in Table 1. If p 1 is about pn, it is sufficiently low. If p n <p 1 , p 1 is sufficiently pressurized with respect to a and T 0 > T 1 , so that air gradually dissolves in the liquid. It will be p n > p 1 . 10-2
Most of the dissolved air of 0 ppm passes through the heat exchanger 19 from the steam discharge pipe 18 and is discharged together with the condensed water. If T 0 is 100 ° C. or higher and the condensed water is sufficiently discharged by the heat exchanger 19, the deaeration tank 13 is filled with steam and p 0 becomes almost 0.

【0020】また、図中の温度計20と圧力計21の時
間による変化を測定した。図2はその測定結果で、同一
温度での圧力の経時変化を示したものである。時間の経
過とともに減圧が少し強くなっている。これは蒸留器内
の空気を蒸気で置換除去するとき、微量の空気が器内に
残り、器内に導入される溶存空気のない液で空気を溶解
排除したためと思われる。
Further, changes with time of the thermometer 20 and the pressure gauge 21 in the figure were measured. FIG. 2 shows the measurement results and shows the change with time in pressure at the same temperature. The decompression has become a little stronger over time. This is considered to be because when the air in the distiller was replaced with steam, a small amount of air remained in the vessel, and the air was dissolved and eliminated by the liquid having no dissolved air introduced into the vessel.

【0021】短時間の実験結果であるが、蒸留器11に
残った微量の空気の排出で、減圧が強まったことは、本
プロセスで長時間稼働が可能なことの立証である。すな
わちaを十分低くすれば連続減圧蒸留が可能になる。
Although the result of the experiment for a short time, the fact that the decompression was intensified due to the discharge of a small amount of air remaining in the distiller 11 is proof that this process can be operated for a long time. That is, if a is made sufficiently low, continuous vacuum distillation becomes possible.

【0022】この発明においては、予め蒸留器11内の
空気を排出し外部空気の蒸留器11内への進入を遮断
し、凝縮により減圧状態を維持して蒸留効率を高めると
ともに、溶液中に溶解する空気を除去する脱気加熱装置
からの発生蒸気を凝縮水排出手段付きの熱交換器に導
き、発生蒸気が熱を放出し、凝縮した凝縮液だけを排出
することで、発生蒸気の有効利用をはかれる。また凝縮
液の排出とともに気化した溶存空気の大部分を排出でき
る。凝縮水排出手段の一つにスチームトラップがある。
In the present invention, the air in the distiller 11 is discharged in advance to block the entry of external air into the distiller 11, and the pressure reduction state is maintained by condensation to enhance the distillation efficiency and to dissolve in the solution. The generated steam from the degassing heating device that removes the generated air is guided to a heat exchanger equipped with a means for discharging condensed water, and the generated steam releases heat and discharges only the condensed condensate, thereby effectively using the generated steam. Be stripped. Further, most of the dissolved air vaporized can be discharged together with the discharge of the condensate. A steam trap is one of the means for discharging condensed water.

【0023】[0023]

【発明の実施の形態】以下に、この発明の実施例の形態
を図に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0024】図3はこの発明の実施の形態を示す減圧蒸
留装置の構成図である。
FIG. 3 is a block diagram of a vacuum distillation apparatus showing an embodiment of the present invention.

【0025】図において、1は脱気槽、2は脱空気用蒸
気排出管、3は熱交換器、4は凝縮液排出手段(スチー
ムトラップなど)である。加熱脱気装置は、上記要素1
〜4で構成されている。脱気槽1は加熱され、水では1
00℃以上で760mmHgの圧力を持つ。熱交換器3
で凝縮した凝縮液は、気化した溶存空気を溶解し凝縮液
排出手段4から排出される。脱気槽1に導入される空気
は、溶液の溶存空気だけであるから安定状態では脱気槽
1の気相部の空気は溶存空気の気化した分であり、気化
した空気は脱気槽1の溶液よりも、温度の低い熱交換器
3の凝縮水に溶け、外部に排出される。
In the figure, 1 is a deaeration tank, 2 is a deaeration steam discharge pipe, 3 is a heat exchanger, and 4 is a condensate discharging means (steam trap or the like). The heating and deaerating device has the above-mentioned element
It is composed of ~ 4. The degassing tank 1 is heated, and water is 1
It has a pressure of 760 mmHg above 00 ° C. Heat exchanger 3
The condensate condensed in (1) dissolves vaporized dissolved air and is discharged from the condensate discharging means 4. Since the air introduced into the degassing tank 1 is only the dissolved air of the solution, the air in the vapor phase portion of the degassing tank 1 is the vaporized portion of the dissolved air in the stable state, and the vaporized air is the degassing tank 1 The solution is dissolved in the condensed water of the heat exchanger 3 having a lower temperature than the solution, and is discharged to the outside.

【0026】5は減圧蒸留器を示す。この減圧蒸留器5
は加熱室7と冷却室6に仕切板8で仕切られている。減
圧蒸留器5は、空気排出管14と外部遮断弁15から空
気を追い出し、器内は蒸気で満たされ、外部と遮断され
る。熱交換器3で加熱され、発生した蒸気は、熱交換器
10で冷却され、凝縮液は凝縮液排出管13より排出さ
れる。蒸気を発生した濃縮液は、濃縮液排出管12より
排出される。
Reference numeral 5 represents a vacuum distiller. This vacuum distiller 5
Is divided into a heating chamber 7 and a cooling chamber 6 by a partition plate 8. The vacuum distiller 5 expels air from the air discharge pipe 14 and the external shutoff valve 15, and the inside of the vacuum distiller 5 is filled with steam and shut off from the outside. The steam that is heated in the heat exchanger 3 and generated is cooled in the heat exchanger 10, and the condensate is discharged from the condensate discharge pipe 13. The concentrated liquid that has generated steam is discharged from the concentrated liquid discharge pipe 12.

【0027】脱気槽1に導入される溶液は、液導入管9
を通り、熱交換器(冷却器)10に導入される。そし
て、脱気槽1で溶液の沸点以上に加熱,脱気されて、蒸
留する液導入管11より加熱室7に入り、熱交換器(加
熱器)3で加熱される。
The solution introduced into the degassing tank 1 is a liquid introducing pipe 9
And is introduced into the heat exchanger (cooler) 10. Then, it is heated to a temperature above the boiling point of the solution in the degassing tank 1 and degassed, enters the heating chamber 7 through the liquid introducing pipe 11 for distillation, and is heated by the heat exchanger (heater) 3.

【0028】図4に示す実施の形態は脱気をより確実に
した脱気槽である。
The embodiment shown in FIG. 4 is a deaeration tank that ensures deaeration.

【0029】脱気槽1は2つにして、第1の脱気槽1か
らでる溶液を、更に第2の脱気槽1で脱気している。第
2の脱気槽の熱源は第1の脱気槽の脱気蒸気である。そ
の他の機構は、図3と同様である。
There are two degassing tanks 1, and the solution discharged from the first degassing tank 1 is further degassed in the second degassing tank 1. The heat source of the second degassing tank is the degassing steam of the first degassing tank. Other mechanisms are the same as in FIG.

【0030】図5は図4と同様に脱気をより確実にした
脱気槽である。
FIG. 5 shows a degassing tank in which degassing is made more reliable as in FIG.

【0031】脱気槽1は2つにして、第1の脱気槽1か
らでる溶液を、更に第2の脱気槽1で脱気している。第
2の脱気槽の熱源は第1の脱気槽の脱気蒸気である。そ
の他の機構は、第3と同様である。
There are two degassing tanks 1, and the solution discharged from the first degassing tank 1 is further degassed in the second degassing tank 1. The heat source of the second degassing tank is the degassing steam of the first degassing tank. The other mechanism is the same as the third mechanism.

【0032】図6はこの発明を多重効用缶に応用した例
である。
FIG. 6 shows an example in which the present invention is applied to a multi-effect can.

【0033】多重効用缶の減圧装置を省き、最終の冷却
凝縮室の温度で減圧度を決定し、脱気槽を溶液の沸点以
上の温度とする。脱気槽として真空ガラス管型集熱器を
使用し、太陽熱で加熱してもよい。効用缶の各槽に空気
排除口と外部と遮断する遮断弁を設けた。空気を置換排
除するための蒸気は加熱のために使用され、熱回収され
る。効用缶1〜(n+1)は図3〜5の減圧蒸留器と同
じ働きをする。効用缶(n−1)で発生した蒸気は効用
缶nの熱源となり、効用缶nで発生した蒸気は効用缶
(n+1)の熱源となる。
The depressurizing device for the multi-effect can is omitted, the degree of depressurization is determined by the temperature of the final cooling condensing chamber, and the temperature of the degassing tank is set to a temperature equal to or higher than the boiling point of the solution. A vacuum glass tube type collector may be used as the degassing tank and heated by solar heat. Each tank of the effect can was equipped with an air outlet and a shutoff valve for shutting off from the outside. The steam for displacing air is used for heating and heat recovery. The effect cans 1 to (n + 1) have the same function as the vacuum still of FIGS. The steam generated in the effect can (n-1) becomes the heat source of the effect can n, and the steam generated in the effect can n becomes the heat source of the effect can (n + 1).

【0034】[0034]

【発明の効果】以上説明したように、この発明によれ
ば、次の効果を奏する。
As described above, the present invention has the following effects.

【0035】(1)溶液の脱気を簡単に行うことができ
る。
(1) The solution can be easily degassed.

【0036】(2)減圧装置を使用しないで効率よく溶
液の減圧蒸留を行うことができる。
(2) Vacuum distillation of the solution can be efficiently performed without using a vacuum device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の原理を説明する原理図である。FIG. 1 is a principle diagram illustrating the principle of the present invention.

【図2】 この発明の技術を使用して、減圧維持が連続
的に可能なことを証明する実験結果である。
FIG. 2 is an experimental result demonstrating that depressurization can be continuously maintained using the technique of the present invention.

【図3】 この発明の実施の形態を示す減圧蒸留装置の
構成図である。
FIG. 3 is a configuration diagram of a vacuum distillation apparatus showing an embodiment of the present invention.

【図4】 この発明の実施の形態を示す減圧蒸留装置の
構成図である。
FIG. 4 is a configuration diagram of a vacuum distillation apparatus showing an embodiment of the present invention.

【図5】 この発明の実施の形態を示す減圧蒸留装置の
構成図である。
FIG. 5 is a configuration diagram of a vacuum distillation apparatus showing an embodiment of the present invention.

【図6】 この発明の実施の形態を示す減圧蒸留装置の
構成図である。
FIG. 6 is a configuration diagram of a vacuum distillation apparatus showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 脱気槽 2 脱空気用蒸気排出管 3 熱交換器 4 凝縮液排出手段 5 減圧蒸留器 6 冷却室 7 加熱室 8 仕切板 9,11 液導入管 10 熱交換器 12 濃縮液排出管 13 凝縮液排出管 14 空気排出管 15 外部遮断弁 1 Deaeration Tank 2 Degassing Steam Discharge Pipe 3 Heat Exchanger 4 Condensate Discharge Means 5 Vacuum Distiller 6 Cooling Chamber 7 Heating Chamber 8 Partition Plate 9, 11 Liquid Inlet Pipe 10 Heat Exchanger 12 Concentrated Liquid Discharge Pipe 13 Condensation Liquid discharge pipe 14 Air discharge pipe 15 External shutoff valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導入される溶液を加熱して蒸気を発生さ
せることにより、溶液中の溶存空気を脱気する加熱脱気
機構と、発生した蒸気を熱交換器で凝縮する熱交換機構
と、上記の凝縮水と気化した空気だけを排出する排出機
構を備えた加熱脱気装置。
1. A heating degassing mechanism for degassing dissolved air in the solution by heating the introduced solution to generate steam, and a heat exchange mechanism for condensing the generated steam in a heat exchanger. A thermal deaerator equipped with a discharge mechanism for discharging only the condensed water and the vaporized air.
【請求項2】 導入される溶液を加熱して加熱脱気槽内
の気相部の大部分を蒸気相にするとともに、溶存空気の
大部分を気化させ、上記の凝縮水と気化した空気だけを
排出することを特徴とする加熱脱気方法。
2. The introduced solution is heated to make most of the vapor phase portion in the heating degassing tank into a vapor phase, and most of the dissolved air is vaporized, so that only the condensed water and the vaporized air are produced. A method for degassing by heating, which comprises discharging
【請求項3】 導入される溶液を加熱して蒸気を発生さ
せることにより、溶液中の溶存空気を脱気する加熱脱気
機構と、発生した蒸気を熱交換器で凝縮する熱交換機構
と、蒸気の凝縮水と気化した空気だけを排出する排出機
構を備えた加熱脱気装置と、蒸留器内の空気を蒸気で置
換して排出するための空気排出機構及び蒸気発生機構
と、蒸留器内の空気を蒸気で置換して排出した後、外部
空気が蒸留器内に侵入しないように遮断する遮断機構
と、蒸気を冷却凝縮して蒸留器内を減圧する冷却凝縮用
熱交換機構を備え、蒸留器内を空気の無い環境にして、
真空装置を使用しないで、温度差のみで減圧蒸留を可能
にする溶液の蒸留装置とからなる減圧蒸留装置。
3. A heating degassing mechanism for degassing the dissolved air in the solution by heating the introduced solution to generate steam, and a heat exchange mechanism for condensing the generated steam in a heat exchanger. A heating deaerator equipped with a discharge mechanism that discharges only condensed water of vapor and vaporized air, an air discharge mechanism and a steam generation mechanism for replacing the air in the distiller with steam, and discharging the distiller. After the air is replaced with steam and discharged, a shut-off mechanism that shuts off the outside air from entering the still and a heat exchange mechanism for cooling and condensation that cools and condenses the steam to reduce the pressure inside the still, Make the inside of the still without air,
A vacuum distillation apparatus consisting of a distillation apparatus for a solution that enables vacuum distillation only with a temperature difference without using a vacuum apparatus.
【請求項4】 導入される溶液を加熱して脱気加熱槽内
の気相部の大部分を蒸気相にするとともに、溶存空気の
大部分を気化させ、気化した空気と蒸気の凝縮水だけを
排出して溶存空気の非常に少ない溶液とし、この溶液を
蒸留するために蒸留器内の空気を蒸気で置換して排出し
た後、蒸留器内を外部と遮断して空気のない環境にし、
蒸気を冷却凝縮して蒸留器内を減圧することにより溶液
を蒸留することを特徴とする減圧蒸留方法。
4. The solution introduced is heated to turn most of the gas phase in the degassing heating tank into a vapor phase, and most of the dissolved air is vaporized, so that only vaporized air and condensed water of vapor are condensed. Is discharged to form a solution with a very small amount of dissolved air, and in order to distill this solution, the air in the still is replaced with steam and discharged, and then the inside of the still is shut off from the outside to create an air-free environment,
A vacuum distillation method, characterized in that the solution is distilled by cooling and condensing the vapor and reducing the pressure in the still.
JP25104395A 1995-09-28 1995-09-28 Apparatus for deaeration by heating, method for deaeration by heating, and vacuum distillation apparatus and vacuum distillation method Pending JPH0985010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25104395A JPH0985010A (en) 1995-09-28 1995-09-28 Apparatus for deaeration by heating, method for deaeration by heating, and vacuum distillation apparatus and vacuum distillation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25104395A JPH0985010A (en) 1995-09-28 1995-09-28 Apparatus for deaeration by heating, method for deaeration by heating, and vacuum distillation apparatus and vacuum distillation method

Publications (1)

Publication Number Publication Date
JPH0985010A true JPH0985010A (en) 1997-03-31

Family

ID=17216769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25104395A Pending JPH0985010A (en) 1995-09-28 1995-09-28 Apparatus for deaeration by heating, method for deaeration by heating, and vacuum distillation apparatus and vacuum distillation method

Country Status (1)

Country Link
JP (1) JPH0985010A (en)

Similar Documents

Publication Publication Date Title
CN108141991B (en) Immersion cooling
JP4870165B2 (en) Membrane distillation process and membrane distillation apparatus
KR950702508A (en) A water distillation system
JP2004136273A (en) Method for solution separation by multiple heat exchange vacuum distillation, cooling and freezing, and method of desalting seawater
KR860001490B1 (en) A system and method for distilling brine to obtain fresh water
US3527676A (en) Multistage distillation for desalinizing saline water
JPH0952082A (en) Apparatus for desalinating seawater
US3300392A (en) Vacuum distillation including predegasification of distilland
CN101028918B (en) Recovery of hydrofluoric acid
JPH09108653A (en) Seawater desalination device
US3803001A (en) Combination condenser-degasser-deaerator for a desalination plant
US11465068B2 (en) Multi-stage flash (MSF) reversal system and method
JPH0985010A (en) Apparatus for deaeration by heating, method for deaeration by heating, and vacuum distillation apparatus and vacuum distillation method
JP4261438B2 (en) Power generation and seawater desalination system
JP2537729B2 (en) Distillation apparatus and distillation method
JPS5895501A (en) Method and device for deaeration of treating liquid in multiple effect evaporating device
JPH0263592A (en) Distillation device
JPS5888002A (en) Distillation apparatus
RU2102104C1 (en) Method of separating multicomponent mixtures of closely boiling and mutually soluble liquids
JP4688062B2 (en) Clean steam generation system
JPH11244843A (en) Steam compression type pure water producing device
JP2005334747A (en) Steam recompression type concentration equipment
JP2000325948A (en) Apparatus for salt-to-fresh water distillation
JP2005313117A (en) Method and apparatus for evaporation concentration
JPS589740Y2 (en) Circulating water cooling system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030311