JPH0982912A - Semiconductor storage device and its manufacture - Google Patents

Semiconductor storage device and its manufacture

Info

Publication number
JPH0982912A
JPH0982912A JP7235365A JP23536595A JPH0982912A JP H0982912 A JPH0982912 A JP H0982912A JP 7235365 A JP7235365 A JP 7235365A JP 23536595 A JP23536595 A JP 23536595A JP H0982912 A JPH0982912 A JP H0982912A
Authority
JP
Japan
Prior art keywords
capacitor
trench
insulating film
substrate
supporting substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7235365A
Other languages
Japanese (ja)
Inventor
Masami Aoki
正身 青木
Yutaka Ishibashi
裕 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7235365A priority Critical patent/JPH0982912A/en
Publication of JPH0982912A publication Critical patent/JPH0982912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor storage device which facilitates the flattening of the surface of a cell and simplifies the manufacturing process, in a DRAM using an SOI substrate. SOLUTION: In a semiconductor storage device wherein a dynamic type memory cell constituted of an MOS transistor and a capacitor is formed on an SOI substrate wherein an Si layer 3 is formed on an Si substrate 1 via an SiO2 buried oxide film 2, a side wall insulating films 6 is formed on the gate side surface of the MOS transistor, a trench 10 reaching the Si substrate 1 is formed in the self-alignment manner with the side wall insulating films 6, and a storage electrode 13 of the capacitor is buried in the trench 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、支持基板上に絶縁
層を介して半導体層を形成してなるSOI基板を用いた
半導体記憶装置に係わり、特にキャパシタ構成の改良を
はかった半導体記憶装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device using an SOI substrate in which a semiconductor layer is formed on a supporting substrate with an insulating layer interposed therebetween, and more particularly to a semiconductor memory device with an improved capacitor structure and The manufacturing method is related.

【0002】[0002]

【従来の技術】近年、1Gビット以降の高集積DRAM
実現のための有力な候補として、SOI基板を用いたダ
イナミック型RAM(DRAM)が注目されている。こ
のSOI−DRAMでは、次のような特徴があるため、
より一層の微細化ができると期待されている。 (1) トランジスタ及びキャパシタが絶縁膜上に形成され
るため、キャパシタに蓄えた電荷が基板に漏れる経路が
完全に遮断されている。このため、キャパシタの蓄積容
量が小さくても、データ保持特性が良いばかりでなく、
ソフトエラー耐性が強い。 (2) トランジスタのチャネルが薄膜であるため、ショー
トチャネル効果を抑制することができる。
2. Description of the Related Art Recently, highly integrated DRAM of 1 Gbit or more
As a strong candidate for realization, a dynamic RAM (DRAM) using an SOI substrate is drawing attention. Since this SOI-DRAM has the following features,
It is expected that further miniaturization will be possible. (1) Since the transistor and the capacitor are formed on the insulating film, the path through which the charge stored in the capacitor leaks to the substrate is completely cut off. Therefore, even if the storage capacity of the capacitor is small, not only is the data retention characteristic good,
Strong resistance to soft errors. (2) Since the channel of the transistor is a thin film, the short channel effect can be suppressed.

【0003】しかしながら、従来のSOI−DRAMに
おいては、一般にバルクSiのセルと同じキャパシタ構
造を採用していた(T.Eimori他、"ULSI DRAM/SIMOX wit
h Stacked Capacitor Cells for Low-Voltage Operatio
n", International ElectronDevices Meeting ,Technic
al Digest,p.45-48,1993 )。従って、SOI基板を用
いた場合にも、ウェハ表面の段差は依然として厳しく、
フォトリソグラフィ工程や配線の加工が難しいという問
題は改善されないまま存在している。
However, the conventional SOI-DRAM generally adopts the same capacitor structure as that of the bulk Si cell (T. Eimori et al., "ULSI DRAM / SIMOX wit").
h Stacked Capacitor Cells for Low-Voltage Operatio
n ", International ElectronDevices Meeting, Technic
al Digest, p.45-48,1993). Therefore, even when the SOI substrate is used, the step on the wafer surface is still severe,
The problem that the photolithography process and the wiring are difficult to process still exists.

【0004】[0004]

【発明が解決しようとする課題】このように従来、SO
I基板を用いたDRAMにおいても、ウェハ表面の段差
は依然として厳しく、フォトリソグラフィ工程や配線の
加工が難しいという問題があった。
As described above, the conventional SO
Even in the DRAM using the I substrate, the step on the wafer surface is still severe, and there is a problem that the photolithography process and the wiring process are difficult.

【0005】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、SOI基板を用いたD
RAMにおいて、セル表面の平坦化が容易で、かつ製造
工程が簡単な半導体記憶装置及びその製造方法を提供す
ることにある。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to use an SOI substrate for D
It is an object of the present invention to provide a semiconductor memory device in which the cell surface is easily flattened in a RAM and the manufacturing process is simple, and a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

(概要)上記課題を解決するために本発明は、次のよう
な構成を採用している。即ち、本発明(請求項1)は、
支持基板上に絶縁層を介して半導体層が形成されたSO
I基板にダイナミック型のメモリセルを形成した半導体
記憶装置において、前記支持基板と絶縁層との境界部
に、前記メモリセルのキャパシタを形成してなることを
特徴とする。
(Summary) In order to solve the above problems, the present invention employs the following configuration. That is, the present invention (claim 1)
SO in which a semiconductor layer is formed on a supporting substrate via an insulating layer
A semiconductor memory device in which a dynamic memory cell is formed on an I substrate is characterized in that a capacitor of the memory cell is formed at a boundary portion between the supporting substrate and an insulating layer.

【0007】また、本発明(請求項2)は、支持基板上
に絶縁層を介して半導体層を形成してなるSOI基板
に、MOSトランジスタ及びキャパシタからなるダイナ
ミック型のメモリセルを形成した半導体記憶装置におい
て、前記MOSトランジスタのゲート側面に側壁絶縁膜
が形成され、この側壁絶縁膜と自己整合的に前記支持基
板に達するトレンチが形成され、このトレンチ内に前記
キャパシタの蓄積電極が埋め込まれてなることを特徴と
する。
Further, the present invention (claim 2) is a semiconductor memory in which a dynamic memory cell including a MOS transistor and a capacitor is formed on an SOI substrate formed by forming a semiconductor layer on a supporting substrate with an insulating layer interposed therebetween. In the device, a sidewall insulating film is formed on a side surface of the gate of the MOS transistor, a trench reaching the supporting substrate in a self-alignment manner with the sidewall insulating film is formed, and a storage electrode of the capacitor is embedded in the trench. It is characterized by

【0008】また、本発明(請求項3)は、支持基板上
に絶縁層を介して半導体層を形成してなるSOI基板に
ダイナミック型のメモリセルを形成した半導体記憶装置
の製造方法において、前記SOI基板の半導体層に素子
分離領域を形成する工程と、前記SOI基板の素子分離
領域で囲まれた素子形成領域にMOSトランジスタを形
成する工程と、前記MOSトランジスタのゲート側面に
側壁絶縁膜を形成する工程と、前記壁絶縁膜をマスクに
前記支持基板に達するトレンチを形成する工程と、前記
トレンチの底部にキャパシタ用の絶縁膜を形成する工程
と、前記トレンチ内にキャパシタ用の蓄積電極を埋め込
む工程とを含むことを特徴とする。
According to the present invention (claim 3), there is provided a method for manufacturing a semiconductor memory device, wherein a dynamic memory cell is formed on an SOI substrate formed by forming a semiconductor layer on a supporting substrate with an insulating layer interposed therebetween. Forming an element isolation region in a semiconductor layer of an SOI substrate, forming a MOS transistor in an element formation region surrounded by the element isolation region of the SOI substrate, and forming a sidewall insulating film on a gate side surface of the MOS transistor. And forming a trench reaching the support substrate using the wall insulating film as a mask, forming an insulating film for a capacitor at the bottom of the trench, and embedding a storage electrode for the capacitor in the trench. And a process.

【0009】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) キャパシタの蓄積電極は、MOSトランジスタのソ
ース・ドレインの一方に接続されていること。 (2) 支持基板は半導体基板であり、トレンチに露出する
半導体基板表面に拡散層が形成され、その上にキャパシ
タ絶縁膜を介して蓄積電極が埋込み形成されているこ
と。また、キャパシタ絶縁膜がSOIを構成する絶縁層
の側面にも形成されていること。 (3) トレンチの底部から順に、第1の金属層,キャパシ
タ絶縁膜,第2の金属層が積層され、その上に蓄積電極
が埋込み形成されていること。 (4) 支持基板と絶縁層の境界部に半球状のキャパシタを
有すること。より具体的には、支持基板としての半導体
基板はトレンチ部分下で半球状にエッチングされ、エッ
チングされた表面に拡散層が形成され、さらに表面上に
キャパシタ絶縁膜を介して蓄積電極が埋め込まれてい
る。また、半導体基板のエッチング表面は粗面化されて
いること。 (5) SOI基板の絶縁層の途中までトレンチが形成さ
れ、トレンチの内面に筒状の蓄積電極が形成され、その
内面にキャパシタ絶縁膜を介して導電層が埋め込まれ、
この導電層は支持基板としての半導体基板に導通してい
ること。 (作用)本発明によれば、SOI基板の支持基板と絶縁
層の境界部にキャパシタを形成しているため、キャパシ
タ形成に起因する凹凸を小さくすることができ、メモリ
セルの表面段差を最小限に抑えることが可能になる。そ
の結果、フォトリソグラフィ工程や配線の加工を容易に
行うことが可能となる。
The following are preferred embodiments of the present invention. (1) The storage electrode of the capacitor must be connected to one of the source and drain of the MOS transistor. (2) The support substrate is a semiconductor substrate, and a diffusion layer is formed on the surface of the semiconductor substrate exposed in the trench, and a storage electrode is embedded and formed on the diffusion layer via a capacitor insulating film. In addition, the capacitor insulating film is also formed on the side surface of the insulating layer forming the SOI. (3) The first metal layer, the capacitor insulating film, and the second metal layer are stacked in this order from the bottom of the trench, and the storage electrode is embedded and formed thereon. (4) A hemispherical capacitor should be provided at the boundary between the supporting substrate and the insulating layer. More specifically, a semiconductor substrate as a supporting substrate is hemispherically etched under a trench portion, a diffusion layer is formed on the etched surface, and a storage electrode is embedded on the surface via a capacitor insulating film. There is. The etching surface of the semiconductor substrate should be roughened. (5) A trench is formed up to the middle of the insulating layer of the SOI substrate, a cylindrical storage electrode is formed on the inner surface of the trench, and a conductive layer is embedded on the inner surface of the storage electrode via a capacitor insulating film.
This conductive layer is electrically connected to the semiconductor substrate as a supporting substrate. (Operation) According to the present invention, since the capacitor is formed at the boundary between the supporting substrate of the SOI substrate and the insulating layer, the unevenness due to the capacitor formation can be reduced, and the surface step of the memory cell can be minimized. It becomes possible to suppress it. As a result, it becomes possible to easily perform the photolithography process and the wiring process.

【0010】[0010]

【発明の実施の形態】以下、本発明の詳細を図示の実施
形態によって説明する。 (実施形態1)図1は、本発明の第1の実施形態に係わ
るSOI−DRAMのセル構成を示す断面図である。
DETAILED DESCRIPTION OF THE INVENTION The details of the present invention will be described below with reference to the illustrated embodiments. (Embodiment 1) FIG. 1 is a sectional view showing a cell structure of an SOI-DRAM according to a first embodiment of the present invention.

【0011】n型Si基板からなる支持基板1上にSi
2 等の埋込み酸化膜(絶縁層)2を介してSi層(半
導体層)3が形成され、これによりSOI基板が構成さ
れている。SOI基板の半導体層3には、素子分離のた
めの素子分離層4が形成されている。そして、素子分離
された各々の素子形成領域では、半導体層3上にゲート
酸化膜5を介してゲート電極(ワード線WL)6が形成
され、ゲート電極6の両側にソース・ドレインとなるn
型拡散層7が形成されている。これにより、スイッチン
グ素子として機能するMOSトランジスタが構成されて
いる。ゲート電極6の上部及び側部には保護絶縁膜8,
9がそれぞれ形成されている。
Si is formed on a support substrate 1 made of an n-type Si substrate.
A Si layer (semiconductor layer) 3 is formed via a buried oxide film (insulating layer) 2 of O 2 or the like, thereby forming an SOI substrate. An element isolation layer 4 for element isolation is formed on the semiconductor layer 3 of the SOI substrate. In each of the element formation regions separated from each other, a gate electrode (word line WL) 6 is formed on the semiconductor layer 3 via the gate oxide film 5, and n serving as a source / drain is formed on both sides of the gate electrode 6.
The mold diffusion layer 7 is formed. This constitutes a MOS transistor that functions as a switching element. A protective insulating film 8 is formed on the upper and side portions of the gate electrode 6,
9 are formed.

【0012】SOI基板の半導体層3及び絶縁層2を貫
通して、支持基板1の表面に至る浅いトレンチ10が設
けられている。トレンチ10に露出した支持基板1の表
面にはn型拡散層11が形成され、この拡散層11はプ
レート電極として作用する。支持基板1の露出部には、
キャパシタ絶縁膜12を介して蓄積電極(ストレージノ
ード)となる導電材13が充填され、導電材13の上部
側面がトランジスタのn型拡散層7の一方に接してい
る。そして、蓄積電極13の絶縁はゲート側面の絶縁膜
9により保たれている。
A shallow trench 10 penetrating the semiconductor layer 3 and the insulating layer 2 of the SOI substrate and reaching the surface of the supporting substrate 1 is provided. An n-type diffusion layer 11 is formed on the surface of the support substrate 1 exposed in the trench 10, and the diffusion layer 11 acts as a plate electrode. In the exposed part of the support substrate 1,
A conductive material 13 serving as a storage electrode (storage node) is filled through the capacitor insulating film 12, and an upper side surface of the conductive material 13 is in contact with one of the n-type diffusion layers 7 of the transistor. The insulation of the storage electrode 13 is maintained by the insulating film 9 on the side surface of the gate.

【0013】また、上記のように構成された基板上に層
間絶縁膜14が形成され、その上にビット線(BL)1
5が形成されている。ビット線15は、ビット線コンタ
クト16によりトランジスタのn型拡散層7の他方に接
続されている。
An interlayer insulating film 14 is formed on the substrate having the above structure, and the bit line (BL) 1 is formed thereon.
5 are formed. The bit line 15 is connected to the other of the n-type diffusion layers 7 of the transistor by a bit line contact 16.

【0014】図2は、図1に示すトレンチパターンを上
から見た平面図である。本実施形態では、トレンチパタ
ーンはゲート電極6に対して自己整合的に形成されるの
で、結果的に図の斜線(一部のみを示してある)で示す
ようなパターンのトレンチ10となる。
FIG. 2 is a plan view of the trench pattern shown in FIG. 1 seen from above. In the present embodiment, the trench pattern is formed in a self-aligned manner with respect to the gate electrode 6, and as a result, the trench 10 has a pattern as shown by the diagonal lines (only part of which is shown) in the figure.

【0015】本実施形態の構造によれば、SOI基板を
用いていることから、ソフトエラー耐性に強く、ショー
トチャネル効果を抑制できるのは勿論のこと、次のよう
な効果が得られる。即ち、SOI基板の支持基板1と絶
縁層2の境界部にキャパシタを形成しているため、メモ
リセルの表面段差を最小限に抑えることができる。この
ため、セル表面の平坦化が容易で、かつ製造工程が簡単
となる。また、ゲート電極6の形成後にキャパシタを形
成するために、ゲート電極形成に係わる熱負荷により、
キャパシタ絶縁膜12の特性が劣化することがない。
According to the structure of the present embodiment, since the SOI substrate is used, the resistance to soft error is strong, the short channel effect can be suppressed, and the following effects can be obtained. That is, since the capacitor is formed at the boundary between the supporting substrate 1 and the insulating layer 2 of the SOI substrate, the surface step of the memory cell can be minimized. Therefore, the cell surface is easily flattened and the manufacturing process is simplified. Further, in order to form the capacitor after the gate electrode 6 is formed, the heat load related to the formation of the gate electrode causes
The characteristics of the capacitor insulating film 12 do not deteriorate.

【0016】また、プレート電極がゲート電極6上に延
在していないため、ビット線−プレート間のショートの
危険がない。さらに、ビット線−プレート間の対向面積
が小さいため、ビット線容量を低減することができる。
Further, since the plate electrode does not extend above the gate electrode 6, there is no risk of short circuit between the bit line and the plate. Further, since the facing area between the bit line and the plate is small, the bit line capacitance can be reduced.

【0017】次に、本実施形態の製造工程を簡単に説明
する。まず、SOI基板のSi層3に素子分離層4を形
成する。次いで、ゲート酸化膜5,ゲート電極6,上部
絶縁膜8,側壁絶縁膜9を形成し、ゲート電極6及び絶
縁膜8,9をマスクにn型拡散層7を形成する。層間絶
縁膜14を形成後、トレンチのパターニングを行い、ゲ
ート部分に接して、支持基板部表面に達する浅いトレン
チ10を形成する。
Next, the manufacturing process of this embodiment will be briefly described. First, the element isolation layer 4 is formed on the Si layer 3 of the SOI substrate. Next, the gate oxide film 5, the gate electrode 6, the upper insulating film 8 and the sidewall insulating film 9 are formed, and the n-type diffusion layer 7 is formed using the gate electrode 6 and the insulating films 8 and 9 as a mask. After the interlayer insulating film 14 is formed, the trench is patterned to form the shallow trench 10 that contacts the gate portion and reaches the surface of the supporting substrate portion.

【0018】次いで、支持基板1の露出部に支持基板1
と同型の不純物を注入した後、キャパシタ絶縁膜12を
堆積する。キャパシタ絶縁膜12としては各種の絶縁体
を選択できるが、例えばTa23 等の高誘電体膜が望
ましい。さらに、蓄積電極となる導電材13を堆積し、
エッチバックによりトレンチ10内に充填し、拡散層7
との接点を形成する。この後は、層間絶縁膜14を再び
堆積した後、ビット線15を形成する。
Next, the supporting substrate 1 is formed on the exposed portion of the supporting substrate 1.
After implanting the same type of impurities, a capacitor insulating film 12 is deposited. Various insulators can be selected as the capacitor insulating film 12, but a high dielectric film such as Ta 2 O 3 is desirable. Further, a conductive material 13 to be a storage electrode is deposited,
The trench 10 is filled by etching back, and the diffusion layer 7 is formed.
Form a contact point with. After that, after the interlayer insulating film 14 is deposited again, the bit line 15 is formed.

【0019】本工程によれば、浅いトレンチ10はゲー
ト電極6に対して、自己整合的に形成されるため、より
微細なメモリセルを実現することが可能になる。 (実施形態2)図3は、本発明の第2の実施形態に係わ
るSOI−DRAMのセル構成を示す断面図である。な
お、図1と同一部分には同一符号を付して、その詳しい
説明は省略する。
According to this step, since the shallow trench 10 is formed in self-alignment with the gate electrode 6, it becomes possible to realize a finer memory cell. (Embodiment 2) FIG. 3 is a sectional view showing a cell structure of an SOI-DRAM according to a second embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0020】本実施形態は、第1の実施形態のバリエー
ションであり、キャパシタ絶縁膜12を、トレンチ10
の底面だけではなく、トレンチ10の側面を覆うように
形成したものである。これにより、キャパシタを成す蓄
積電極とプレートとの間の絶縁をより確実にしている。 (実施形態3)図4は、本発明の第3の実施形態に係わ
るSOI−DRAMのセル構成を示す断面図である。な
お、図1と同一部分には同一符号を付して、その詳しい
説明は省略する。
This embodiment is a variation of the first embodiment, in which the capacitor insulating film 12 is formed in the trench 10.
Not only the bottom surface of the trench 10 but also the side surface of the trench 10. This further ensures the insulation between the storage electrode forming the capacitor and the plate. (Embodiment 3) FIG. 4 is a sectional view showing a cell structure of an SOI-DRAM according to a third embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0021】本実施形態は、第1の実施形態1のバリエ
ーションであり、絶縁膜を挟んで金属膜を形成してキャ
パシタを構成している。即ち、トレンチ10の底部に第
1の金属膜21を形成し、その上にキャパシタ絶縁膜2
2を介して第2の金属膜23を形成し、さらにその上蓄
積電極13を埋込み形成している。
This embodiment is a variation of the first embodiment, and a capacitor is formed by forming a metal film with an insulating film sandwiched therebetween. That is, the first metal film 21 is formed on the bottom of the trench 10, and the capacitor insulating film 2 is formed on the first metal film 21.
The second metal film 23 is formed via the via 2, and the storage electrode 13 is buried and formed on the second metal film 23.

【0022】このような構成であっても第1の実施形態
と同様の効果が得られる。なお、キャパシタを構成する
金属膜21,23にはW,Mo,Ti等を用いればよ
い。また、金属膜の代わりに、蓄積電極13や支持基板
1と同じSiを用いることも可能である。 (実施形態4)図5は、本発明の第4の実施形態に係わ
るSOI−DRAMのセル構成を示す断面図である。な
お、図1と同一部分には同一符号を付して、その詳しい
説明は省略する。
Even with this structure, the same effect as that of the first embodiment can be obtained. Note that W, Mo, Ti or the like may be used for the metal films 21 and 23 forming the capacitors. Further, instead of the metal film, it is possible to use the same Si as that of the storage electrode 13 and the support substrate 1. (Embodiment 4) FIG. 5 is a sectional view showing a cell structure of an SOI-DRAM according to a fourth embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0023】本実施形態は、キャパシタとなる支持基板
表面を半球状に形成し、キャパシタの表面積を拡大した
例である。即ち、支持基板1に半球状のドームが形成さ
れ、ドームに露出する支持基板1の表面には拡散層31
が形成され、その上にキャパシタ絶縁膜32を介して蓄
積電極33が埋込み形成され、さらにその上に蓄積電極
13が埋込み形成されている。
The present embodiment is an example in which the surface of a supporting substrate to be a capacitor is formed in a hemispherical shape to increase the surface area of the capacitor. That is, a hemispherical dome is formed on the supporting substrate 1, and the diffusion layer 31 is formed on the surface of the supporting substrate 1 exposed on the dome.
Is formed, the storage electrode 33 is buried and formed on the capacitor insulation film 32, and the storage electrode 13 is further buried and formed thereon.

【0024】このような構成であれば、先の第1の実施
形態と同様の効果が得られるのは勿論のこと、トレンチ
10の開口面積の数倍のキャパシタ面積を実現すること
ができる。
With such a structure, the same effect as in the first embodiment can be obtained, and a capacitor area several times as large as the opening area of the trench 10 can be realized.

【0025】図6を用いて、簡単に工程を説明する。ま
ず、図6(a)に示すように、ゲート電極部に接して、
支持基板1の表面に達する浅いトレンチ10を形成した
後、トレンチ10の側面に酸化膜等の絶縁膜35を形成
する。
The steps will be briefly described with reference to FIG. First, as shown in FIG. 6 (a), contacting the gate electrode portion,
After forming the shallow trench 10 reaching the surface of the support substrate 1, an insulating film 35 such as an oxide film is formed on the side surface of the trench 10.

【0026】次いで、図6(b)に示すように、ケミカ
ルドライエッチング等を用いて、支持基板1の露出部の
Siを選択的に除去し、トレンチ10に露出した支持基
板表面部をドーム状にエッチングする。
Next, as shown in FIG. 6B, Si of the exposed portion of the supporting substrate 1 is selectively removed by chemical dry etching or the like, and the supporting substrate surface exposed in the trench 10 is dome-shaped. To etch.

【0027】次いで、図6(c)に示すように、露出部
に支持基板1と同型の不純物の拡散源となる薄膜(PS
G,AsSG等)36を形成し、固相拡散により支持基
板1に拡散層31を形成する。
Next, as shown in FIG. 6 (c), a thin film (PS) is formed on the exposed portion as a diffusion source of impurities of the same type as the supporting substrate 1.
G, AsSG, etc.) 36, and the diffusion layer 31 is formed on the support substrate 1 by solid phase diffusion.

【0028】次いで、図6(d)に示すように、キャパ
シタ絶縁膜32を形成した後、蓄積電極となる導電材3
3を堆積し、エッチバックによりドーム内に充填する。
続いて、導電材33をマスクとしてキャパシタ絶縁膜3
2を除去した後、トレンチ10内に導電材13を埋込み
形成し、拡散層7との接点を形成する。
Next, as shown in FIG. 6 (d), after forming the capacitor insulating film 32, the conductive material 3 to be the storage electrode is formed.
3 is deposited and filled in the dome by etch back.
Then, the capacitor insulating film 3 is formed using the conductive material 33 as a mask.
After removing 2, the conductive material 13 is embedded in the trench 10 to form a contact with the diffusion layer 7.

【0029】このような工程によれば、基板に対するダ
メージを最小限に抑えたまま、キャパシタ面積を拡大す
ることができる。 (実施形態5)図7は、本発明の第5の実施形態に係わ
るSOI−DRAMのセル構成を示す断面図である。な
お、図5と同一部分には同一符号を付して、その詳しい
説明は省略する。
According to such a process, the capacitor area can be expanded while the damage to the substrate is minimized. (Embodiment 5) FIG. 7 is a sectional view showing a cell structure of an SOI-DRAM according to a fifth embodiment of the present invention. The same parts as those in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0030】本実施形態は、第4の実施形態のバリエー
ションであり、セル構造をNAND型レイアウトに配置
したものである。即ち、MOSトランジスタが複数個直
列接続され、各々の接続部に第4の実施形態で説明した
ようなトレンチ10と半球状のドームを形成し、その部
分にキャパシタを形成している。 (実施形態6)図8は、本発明の第6の実施形態に係わ
るSOI−DRAMのセル構成を示す断面図である。な
お、図5と同一部分には同一符号を付して、その詳しい
説明は省略する。
This embodiment is a variation of the fourth embodiment, and has a cell structure arranged in a NAND layout. That is, a plurality of MOS transistors are connected in series, the trench 10 and the hemispherical dome as described in the fourth embodiment are formed in each connection portion, and the capacitor is formed in that portion. (Sixth Embodiment) FIG. 8 is a sectional view showing a cell structure of an SOI-DRAM according to a sixth embodiment of the present invention. The same parts as those in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0031】本実施形態は、第4の実施形態のバリエー
ションであり、支持基板1の露出部をドーム状にエッチ
ングした後、ウェットエッチング等により、表面を粗面
化したものである。これにより、キャパシタの表面積を
更に拡大することが可能となる。 (実施形態7)図9は、本発明の第7の実施形態に係わ
るSOI−DRAMのセル構成を示す断面図である。な
お、図1と同一部分には同一符号を付して、その詳しい
説明は省略する。
This embodiment is a variation of the fourth embodiment, in which the exposed portion of the support substrate 1 is etched into a dome shape and then the surface is roughened by wet etching or the like. This makes it possible to further increase the surface area of the capacitor. (Embodiment 7) FIG. 9 is a sectional view showing a cell structure of an SOI-DRAM according to a seventh embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0032】本実施形態は、円筒型電極の内壁をキャパ
シタにした例である。即ち、トレンチ10はSOI基板
の絶縁層2の途中まで形成され、このトレンチ10の内
面に円筒型蓄積電極41が形成されている。そして、蓄
積電極41の内壁にキャパシタ絶縁膜42が形成され、
キャパシタ絶縁膜42を介して円筒内部に導電材43が
充填されている。この導電材43はコンタクト44によ
り支持基板1に導通しており、プレート電極となる。
The present embodiment is an example in which the inner wall of the cylindrical electrode is a capacitor. That is, the trench 10 is formed up to the middle of the insulating layer 2 of the SOI substrate, and the cylindrical storage electrode 41 is formed on the inner surface of the trench 10. Then, the capacitor insulating film 42 is formed on the inner wall of the storage electrode 41,
A conductive material 43 is filled in the cylinder through the capacitor insulating film 42. The conductive material 43 is electrically connected to the support substrate 1 through the contact 44 and serves as a plate electrode.

【0033】本実施形態によれば、スタック型キャパシ
タと同様にキャパシタ面積の拡大をはかることができ、
しかもキャパシタ形成による表面の凹凸を小さくするこ
とができ、メモリセルの表面段差を最小限に抑えること
が可能になる。また、ビット線−プレート間の対向面積
が第1の実施形態よりも小さいため、ビット線容量を更
に低減することができる。
According to this embodiment, the area of the capacitor can be expanded similarly to the stack type capacitor,
Moreover, the surface irregularities due to the formation of the capacitor can be reduced, and the surface step of the memory cell can be minimized. Further, since the facing area between the bit line and the plate is smaller than that in the first embodiment, the bit line capacitance can be further reduced.

【0034】図10を用いて、簡単に工程を説明する。
まず、図10(a)に示すように、ゲート電極部に接し
て、SOI基板の絶縁層2に達する浅いトレンチ10を
形成する。
The process will be briefly described with reference to FIG.
First, as shown in FIG. 10A, a shallow trench 10 that contacts the gate electrode portion and reaches the insulating layer 2 of the SOI substrate is formed.

【0035】次いで、図10(b)に示すように、トレ
ンチ10の側面に蓄積電極となる第1の導電材41を形
成する。次いで、図10(c)に示すように、キャパシ
タ絶縁膜42を堆積し、プレート電極となる第2の導電
材43を堆積する。
Next, as shown in FIG. 10B, a first conductive material 41 to be a storage electrode is formed on the side surface of the trench 10. Next, as shown in FIG. 10C, a capacitor insulating film 42 is deposited, and a second conductive material 43 which will be a plate electrode is deposited.

【0036】次いで、図10(d)に示すように、トレ
ンチ10の底面を貫通し、支持基板1に達するコンタク
ト44を形成する。この後は、第3の導電材45をトレ
ンチ10に充填後、エッチバックすることで、キャパシ
タ構造を完成する。 (実施形態8)図11及び図12は、本発明の第8の実
施形態に係わるSOI−DRAMの製造工程を示すセル
部分の断面図である。なお、図1と同一部分には同一符
号を付して、その詳しい説明は省略する。
Next, as shown in FIG. 10D, a contact 44 penetrating the bottom surface of the trench 10 and reaching the support substrate 1 is formed. After that, the trench 10 is filled with the third conductive material 45 and then etched back to complete the capacitor structure. (Embodiment 8) FIGS. 11 and 12 are sectional views of a cell portion showing a manufacturing process of an SOI-DRAM according to an eighth embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0037】図11(a)に示すように、層間絶縁膜1
4にゲート部分に対して自己整合的にトレンチ10を設
けた後に、側壁残しの要領で、スペーサ52を形成す
る。このスペーサ52としては、例えばBPSG膜やC
VD膜等を用いる。なお、スペーサ52を形成すること
から、側壁絶縁膜51は図1に示した側壁絶縁膜9より
も十分に薄くしてよい。
As shown in FIG. 11A, the interlayer insulating film 1
After forming the trench 10 in 4 in a self-aligned manner with respect to the gate portion, a spacer 52 is formed in a manner to leave the side wall. As the spacer 52, for example, a BPSG film or C
A VD film or the like is used. Since the spacer 52 is formed, the sidewall insulating film 51 may be made sufficiently thinner than the sidewall insulating film 9 shown in FIG.

【0038】次いで、図11(b)に示すように、トレ
ンチ10内にキャパシタ絶縁膜12と蓄積電極13を埋
込み、エッチバックの要領でトレンチ内部に残置する。
蓄積電極13としては、ドープドポリSiやW等を用い
ればよい。
Next, as shown in FIG. 11B, the capacitor insulating film 12 and the storage electrode 13 are buried in the trench 10 and left inside the trench by etching back.
The storage electrode 13 may be made of doped poly Si, W or the like.

【0039】次いで、図12(c)に示すように、スペ
ーサ52を除去した後、ポリSiやW等からなるストラ
ップ55を、エッチバックの要領で埋込み、蓄積電極と
トランジスタのドレインとの接続部を形成する。このと
き、ストラップ55はトレンチ側面だけではなく、Si
層3の上面でもドレインと接することになる。
Next, as shown in FIG. 12C, after removing the spacer 52, a strap 55 made of poly-Si, W or the like is buried by an etch-back method to connect the storage electrode to the drain of the transistor. To form. At this time, the strap 55 is formed not only on the side surface of the trench but also on the Si
The upper surface of the layer 3 is also in contact with the drain.

【0040】次いで、図12(d)に示すように、層間
絶縁膜14を再度形成した後に、ビット線15及びビッ
ト線コンタクト16形成する。このようにして作成され
たSOI−DRAMでは、第1の実施形態と同様の効果
が得られるのは勿論のこと、Si層3の上面でも蓄積電
極とドレインとのコンタクトをとっているので、トレン
チ10の側面でストラップをとる構造よりもコンタクト
抵抗を下げることが可能になる。
Next, as shown in FIG. 12D, after the interlayer insulating film 14 is formed again, the bit line 15 and the bit line contact 16 are formed. In the SOI-DRAM thus manufactured, the same effect as that of the first embodiment can be obtained, and since the storage electrode and the drain are in contact with each other even on the upper surface of the Si layer 3, the trench is formed. It becomes possible to lower the contact resistance as compared with the structure in which the strap is provided on the side surface of 10.

【0041】なお、本発明は上述した各実施形態に限定
されるものではない。キャパシタ絶縁膜としては、Ta
23 を始め、STO,BSTO,PZT等でも良い。
また、蓄積電極となる導電材は、W,Ti,Pt,Ru
などの金属、或いはTiN,WN,RuO2 などの金属
化合物、或いはポリシリコン若しくはWSiなどのシリ
コン化合物でもよい。その他、本発明の要旨を逸脱しな
い範囲で、種々変形して実施することができる。
The present invention is not limited to the above embodiments. As the capacitor insulating film, Ta
In addition to 2 O 3 , STO, BSTO, PZT, etc. may be used.
Further, the conductive material to be the storage electrode is W, Ti, Pt, Ru.
Or a metal compound such as TiN, WN or RuO 2 , or a silicon compound such as polysilicon or WSi. In addition, various modifications can be made without departing from the scope of the present invention.

【0042】[0042]

【発明の効果】以上詳述したように本発明によれば、S
OI基板の支持基板と絶縁層の境界部にキャパシタを形
成しているので、メモリセルの表面段差を最小限に抑え
ることが可能になる。その結果、フォトリソグラフィ工
程や配線の加工を容易に行うことが可能となる。従っ
て、高密度なメモリ装置を安価に提供することが可能と
なる。
As described in detail above, according to the present invention, S
Since the capacitor is formed at the boundary between the supporting substrate of the OI substrate and the insulating layer, the surface step of the memory cell can be minimized. As a result, it becomes possible to easily perform the photolithography process and the wiring process. Therefore, it is possible to provide a high-density memory device at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施形態に係わるDRAMのメモリセル
構成を示す断面図。
FIG. 1 is a sectional view showing a memory cell configuration of a DRAM according to a first embodiment.

【図2】図1のDRAMのレイアウトを示す平面図。FIG. 2 is a plan view showing a layout of the DRAM of FIG.

【図3】第2の実施形態に係わるDRAMのメモリセル
構成を示す断面図。
FIG. 3 is a sectional view showing a memory cell configuration of a DRAM according to a second embodiment.

【図4】第3の実施形態に係わるDRAMのメモリセル
構成を示す断面図。
FIG. 4 is a sectional view showing a memory cell configuration of a DRAM according to a third embodiment.

【図5】第4の実施形態に係わるDRAMのメモリセル
構成を示す断面図。
FIG. 5 is a sectional view showing a memory cell configuration of a DRAM according to a fourth embodiment.

【図6】第4の実施形態のDRAMの製造工程を示す断
面図。
FIG. 6 is a cross-sectional view showing the manufacturing process of the DRAM of the fourth embodiment.

【図7】第5の実施形態に係わるDRAMのメモリセル
構成を示す断面図。
FIG. 7 is a sectional view showing a memory cell configuration of a DRAM according to a fifth embodiment.

【図8】第6の実施形態に係わるDRAMのメモリセル
構成を示す断面図。
FIG. 8 is a sectional view showing a memory cell configuration of a DRAM according to a sixth embodiment.

【図9】第7の実施形態に係わるDRAMのメモリセル
構成を示す断面図。
FIG. 9 is a sectional view showing a memory cell configuration of a DRAM according to a seventh embodiment.

【図10】第7の実施形態に係わるDRAMの製造工程
を示す断面図。
FIG. 10 is a cross-sectional view showing the manufacturing process of the DRAM according to the seventh embodiment.

【図11】第8の実施形態に係わるDRAMの製造工程
の前半を示す断面図。
FIG. 11 is a cross-sectional view showing the first half of the manufacturing process of the DRAM according to the eighth embodiment.

【図12】第8の実施形態に係わるDRAMの製造工程
の後半を示す断面図。
FIG. 12 is a cross-sectional view showing the latter half of the manufacturing process of the DRAM according to the eighth embodiment.

【符号の説明】[Explanation of symbols]

1…支持基板 2…SiO2 埋込み酸化膜(絶縁層) 3…Si層(半導体層) 4…素子分離層 5…ゲート酸化膜 6…ゲート電極(ワード線) 7…n型拡散層 8…上部絶縁膜 9,51…側壁絶縁膜 10…トレンチ 11,31…n型拡散層 12,32,42…キャパシタ絶縁膜 13,33,41…導電材(蓄積電極) 14…層間絶縁膜 15…ビット線 16…ビット線コンタクト 21…第1の金属膜 22…キャパシタ絶縁膜 23…第2の金属膜 52…スペーサ 55…ストラップ1 ... Support substrate 2 ... SiO 2 buried oxide film (insulating layer) 3 ... Si layer (semiconductor layer) 4 ... Element isolation layer 5 ... Gate oxide film 6 ... Gate electrode (word line) 7 ... N-type diffusion layer 8 ... Upper part Insulating film 9,51 ... Side wall insulating film 10 ... Trench 11, 31 ... N-type diffusion layer 12, 32, 42 ... Capacitor insulating film 13, 33, 41 ... Conductive material (storage electrode) 14 ... Interlayer insulating film 15 ... Bit line 16 ... Bit line contact 21 ... First metal film 22 ... Capacitor insulating film 23 ... Second metal film 52 ... Spacer 55 ... Strap

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】支持基板上に絶縁層を介して半導体層が形
成されたSOI基板にダイナミック型のメモリセルを形
成した半導体記憶装置において、 前記支持基板と絶縁層との境界部に、前記メモリセルの
キャパシタを形成してなることを特徴とする半導体記憶
装置。
1. A semiconductor memory device in which a dynamic memory cell is formed on an SOI substrate in which a semiconductor layer is formed on a supporting substrate via an insulating layer, wherein the memory is provided at a boundary between the supporting substrate and the insulating layer. A semiconductor memory device comprising a cell capacitor formed therein.
【請求項2】支持基板上に絶縁層を介して半導体層を形
成してなるSOI基板に、MOSトランジスタ及びキャ
パシタからなるダイナミック型のメモリセルを形成した
半導体記憶装置において、 前記MOSトランジスタのゲート側面に側壁絶縁膜が形
成され、この側壁絶縁膜と自己整合的に前記支持基板に
達するトレンチが形成され、このトレンチ内に前記キャ
パシタの蓄積電極が埋め込まれてなることを特徴とする
半導体記憶装置。
2. A semiconductor memory device in which a dynamic memory cell including a MOS transistor and a capacitor is formed on an SOI substrate in which a semiconductor layer is formed on a supporting substrate with an insulating layer interposed therebetween, and a gate side surface of the MOS transistor is provided. A side wall insulating film is formed on the side wall, a trench reaching the supporting substrate in a self-aligned manner with the side wall insulating film is formed, and a storage electrode of the capacitor is embedded in the trench.
【請求項3】支持基板上に絶縁層を介して半導体層を形
成してなるSOI基板にダイナミック型のメモリセルを
形成した半導体記憶装置の製造方法において、 前記SOI基板の半導体層に素子分離領域を形成する工
程と、前記SOI基板の素子分離領域で囲まれた素子形
成領域にMOSトランジスタを形成する工程と、前記M
OSトランジスタのゲート側面に側壁絶縁膜を形成する
工程と、前記壁絶縁膜をマスクに前記支持基板に達する
トレンチを形成する工程と、前記トレンチの底部にキャ
パシタ用の絶縁膜を形成する工程と、前記トレンチ内に
キャパシタ用の蓄積電極を埋め込む工程とを含むことを
特徴とする半導体記憶装置の製造方法。
3. A method of manufacturing a semiconductor memory device, wherein a dynamic memory cell is formed on an SOI substrate formed by forming a semiconductor layer on a supporting substrate with an insulating layer interposed therebetween, in a semiconductor layer of the SOI substrate. Forming a MOS transistor in a device formation region surrounded by a device isolation region of the SOI substrate;
Forming a sidewall insulating film on the gate side surface of the OS transistor, forming a trench that reaches the supporting substrate using the wall insulating film as a mask, and forming an insulating film for a capacitor at the bottom of the trench. And a step of burying a storage electrode for a capacitor in the trench.
JP7235365A 1995-09-13 1995-09-13 Semiconductor storage device and its manufacture Pending JPH0982912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7235365A JPH0982912A (en) 1995-09-13 1995-09-13 Semiconductor storage device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7235365A JPH0982912A (en) 1995-09-13 1995-09-13 Semiconductor storage device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0982912A true JPH0982912A (en) 1997-03-28

Family

ID=16985013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7235365A Pending JPH0982912A (en) 1995-09-13 1995-09-13 Semiconductor storage device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0982912A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218232B1 (en) 1997-12-30 2001-04-17 Hyundai Electronics Industries Co., Ltd. Method for fabricating DRAM device
KR100371655B1 (en) * 1999-08-30 2003-02-11 미쓰비시덴키 가부시키가이샤 Semiconductor device and method for manufacturing the same
KR100649813B1 (en) * 1997-12-31 2007-11-12 주식회사 하이닉스반도체 Manufacturing method of semiconductor device
JP2008521251A (en) * 2004-11-17 2008-06-19 インターナショナル・ビジネス・マシーンズ・コーポレーション Trench capacitors with composite surface-oriented substrates
JP2009267354A (en) * 2008-04-24 2009-11-12 Hynix Semiconductor Inc Method for fabricating semiconductor device and semiconductor storage device
US8861247B2 (en) 2009-04-27 2014-10-14 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8873283B2 (en) 2005-09-07 2014-10-28 Micron Technology, Inc. Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
US8947965B2 (en) 2009-07-27 2015-02-03 Micron Technology Inc. Techniques for providing a direct injection semiconductor memory device
US8964479B2 (en) 2010-03-04 2015-02-24 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US8982633B2 (en) 2009-05-22 2015-03-17 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US9019788B2 (en) 2008-01-24 2015-04-28 Micron Technology, Inc. Techniques for accessing memory cells
US9019759B2 (en) 2010-03-15 2015-04-28 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9064730B2 (en) 2009-03-04 2015-06-23 Micron Technology, Inc. Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device
US9093311B2 (en) 2009-03-31 2015-07-28 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9142264B2 (en) 2010-05-06 2015-09-22 Micron Technology, Inc. Techniques for refreshing a semiconductor memory device
US9240496B2 (en) 2009-04-30 2016-01-19 Micron Technology, Inc. Semiconductor device with floating gate and electrically floating body
US9257155B2 (en) 2007-05-30 2016-02-09 Micron Technology, Inc. Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same
US9263133B2 (en) 2011-05-17 2016-02-16 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9276000B2 (en) 2007-03-29 2016-03-01 Micron Technology, Inc. Manufacturing process for zero-capacitor random access memory circuits
US9331083B2 (en) 2009-07-10 2016-05-03 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9553186B2 (en) 2008-09-25 2017-01-24 Micron Technology, Inc. Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation
US9559216B2 (en) 2011-06-06 2017-01-31 Micron Technology, Inc. Semiconductor memory device and method for biasing same
US9735353B2 (en) 2015-06-23 2017-08-15 Stmicroelectronics (Rousset) Sas Phase-change memory cell having a compact structure
US9793321B2 (en) * 2015-06-23 2017-10-17 Stmicroelectronics (Crolles 2) Sas Resistive memory cell having a compact structure
US9812179B2 (en) 2009-11-24 2017-11-07 Ovonyx Memory Technology, Llc Techniques for reducing disturbance in a semiconductor memory device
US10304837B2 (en) 2007-11-29 2019-05-28 Ovonyx Memory Technology, Llc Integrated circuit having memory cell array including barriers, and method of manufacturing same
US10482957B2 (en) 2017-05-12 2019-11-19 Stmicroelectronics (Rousset) Sas Resistive RAM memory cell

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218232B1 (en) 1997-12-30 2001-04-17 Hyundai Electronics Industries Co., Ltd. Method for fabricating DRAM device
KR100649813B1 (en) * 1997-12-31 2007-11-12 주식회사 하이닉스반도체 Manufacturing method of semiconductor device
KR100371655B1 (en) * 1999-08-30 2003-02-11 미쓰비시덴키 가부시키가이샤 Semiconductor device and method for manufacturing the same
JP2008521251A (en) * 2004-11-17 2008-06-19 インターナショナル・ビジネス・マシーンズ・コーポレーション Trench capacitors with composite surface-oriented substrates
US10418091B2 (en) 2005-09-07 2019-09-17 Ovonyx Memory Technology, Llc Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
US8873283B2 (en) 2005-09-07 2014-10-28 Micron Technology, Inc. Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
US11031069B2 (en) 2005-09-07 2021-06-08 Ovonyx Memory Technology, Llc Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
US9276000B2 (en) 2007-03-29 2016-03-01 Micron Technology, Inc. Manufacturing process for zero-capacitor random access memory circuits
US9257155B2 (en) 2007-05-30 2016-02-09 Micron Technology, Inc. Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same
US10304837B2 (en) 2007-11-29 2019-05-28 Ovonyx Memory Technology, Llc Integrated circuit having memory cell array including barriers, and method of manufacturing same
US11081486B2 (en) 2007-11-29 2021-08-03 Ovonyx Memory Technology, Llc Integrated circuit having memory cell array including barriers, and method of manufacturing same
US9019788B2 (en) 2008-01-24 2015-04-28 Micron Technology, Inc. Techniques for accessing memory cells
JP2009267354A (en) * 2008-04-24 2009-11-12 Hynix Semiconductor Inc Method for fabricating semiconductor device and semiconductor storage device
US9553186B2 (en) 2008-09-25 2017-01-24 Micron Technology, Inc. Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation
US9064730B2 (en) 2009-03-04 2015-06-23 Micron Technology, Inc. Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device
US9093311B2 (en) 2009-03-31 2015-07-28 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8861247B2 (en) 2009-04-27 2014-10-14 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US9425190B2 (en) 2009-04-27 2016-08-23 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US9240496B2 (en) 2009-04-30 2016-01-19 Micron Technology, Inc. Semiconductor device with floating gate and electrically floating body
US8982633B2 (en) 2009-05-22 2015-03-17 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US9331083B2 (en) 2009-07-10 2016-05-03 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9076543B2 (en) 2009-07-27 2015-07-07 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US9679612B2 (en) 2009-07-27 2017-06-13 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8947965B2 (en) 2009-07-27 2015-02-03 Micron Technology Inc. Techniques for providing a direct injection semiconductor memory device
US8964461B2 (en) 2009-07-27 2015-02-24 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US9812179B2 (en) 2009-11-24 2017-11-07 Ovonyx Memory Technology, Llc Techniques for reducing disturbance in a semiconductor memory device
US8964479B2 (en) 2010-03-04 2015-02-24 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US9019759B2 (en) 2010-03-15 2015-04-28 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9524971B2 (en) 2010-03-15 2016-12-20 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9142264B2 (en) 2010-05-06 2015-09-22 Micron Technology, Inc. Techniques for refreshing a semiconductor memory device
US9263133B2 (en) 2011-05-17 2016-02-16 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9559216B2 (en) 2011-06-06 2017-01-31 Micron Technology, Inc. Semiconductor memory device and method for biasing same
US20180012935A1 (en) * 2015-06-23 2018-01-11 Stmicroelectronics (Crolles 2) Sas Resistive memory cell having a compact structure
US10283563B2 (en) 2015-06-23 2019-05-07 Stmicroelectronics (Crolles 2) Sas Resistive memory cell having a compact structure
US10707270B2 (en) 2015-06-23 2020-07-07 Stmicroelectronics (Crolles 2) Sas Resistive memory cell having a compact structure
US11031550B2 (en) 2015-06-23 2021-06-08 Stmicroelectronics (Crolles 2) Sas Phase-change memory cell having a compact structure
US9793321B2 (en) * 2015-06-23 2017-10-17 Stmicroelectronics (Crolles 2) Sas Resistive memory cell having a compact structure
US9735353B2 (en) 2015-06-23 2017-08-15 Stmicroelectronics (Rousset) Sas Phase-change memory cell having a compact structure
US11957067B2 (en) 2015-06-23 2024-04-09 Stmicroelectronics (Crolles 2) Sas Phase-change memory cell having a compact structure
US10482957B2 (en) 2017-05-12 2019-11-19 Stmicroelectronics (Rousset) Sas Resistive RAM memory cell

Similar Documents

Publication Publication Date Title
JPH0982912A (en) Semiconductor storage device and its manufacture
US6297090B1 (en) Method for fabricating a high-density semiconductor memory device
US5497017A (en) Dynamic random access memory array having a cross-point layout, tungsten digit lines buried in the substrate, and vertical access transistors
JP2826036B2 (en) Method of manufacturing a uniform and repeatable conductive container structure or DRAM container storage capacitor
US5065273A (en) High capacity DRAM trench capacitor and methods of fabricating same
US5940702A (en) Method for forming a cylindrical stacked capacitor in a semiconductor device
US6815752B2 (en) Semiconductor memory device for increasing access speed thereof
JP2682455B2 (en) Semiconductor memory device and method of manufacturing the same
US6573545B2 (en) Semiconductor memory device for eliminating floating body effect and method of fabricating the same
JPH10321814A (en) Planarization technique for dram cell capacitor electrode
JP2000299448A (en) Manufacture of dram cell capacitor
KR100562235B1 (en) Trench capacitor dram cell using buried oxide as array top oxide
US6969882B2 (en) Interconnect line selectively isolated from an underlying contact plug
US5748521A (en) Metal plug capacitor structures for integrated circuit devices and related methods
US6184079B1 (en) Method for fabricating a semiconductor device
US5930623A (en) Method of forming a data storage capacitor with a wide electrode area for dynamic random access memory using double spacers
US20040077143A1 (en) Semiconductor device and method for fabricating the same using damascene process
JPH1050962A (en) Manufacture of semiconductor device
US5854106A (en) Method of forming a data storage capacitor with a wide electrode area for dynamic random access memory
US7122855B2 (en) Semiconductor memory device and method of manufacturing the same
US5989954A (en) Method for forming a cylinder capacitor in the dram process
US6080622A (en) Method for fabricating a DRAM cell capacitor including forming a conductive storage node by depositing and etching an insulative layer, filling with conductive material, and removing the insulative layer
JP3120462B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP4328396B2 (en) Manufacturing method of memory cell in DRAM
US6162670A (en) Method of fabricating a data-storage capacitor for a dynamic random-access memory device