JPH0971857A - Transparent conductive film and its production - Google Patents

Transparent conductive film and its production

Info

Publication number
JPH0971857A
JPH0971857A JP25024795A JP25024795A JPH0971857A JP H0971857 A JPH0971857 A JP H0971857A JP 25024795 A JP25024795 A JP 25024795A JP 25024795 A JP25024795 A JP 25024795A JP H0971857 A JPH0971857 A JP H0971857A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
plasma
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25024795A
Other languages
Japanese (ja)
Other versions
JP3831433B2 (en
Inventor
Masaaki Asano
雅朗 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP25024795A priority Critical patent/JP3831433B2/en
Publication of JPH0971857A publication Critical patent/JPH0971857A/en
Application granted granted Critical
Publication of JP3831433B2 publication Critical patent/JP3831433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a transparent conductive film having low resistance, high transparency and excellent patterning characteristics formed on such a base body that has low heat resistance and low durability against plasma and that easily causes degeneration, deterioration, thermal decomposition or release of gases due to influences of heating or plasma, and to obtain a method for easily producing the object transparent conductive film. SOLUTION: This transparent conductive film has grains which show >=5 of intensities I1 /I2 , wherein I1 is the peak intensity of the (222) plane and I2 is the peak intensity of (400) plane in a X-ray diffraction method, and has 0.8×10<-4> to 3.5×10<-4> Ω.cm specific resistance. This transparent conductive film is formed on a base body 12 by using a hollow cathode ion plating method to form plasma between the vapor source 11 and the base body 12 under such conditions that the base body is not badly influenced by the plasma.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は透明導電膜、特に耐
熱性および耐プラズマ性の低い基材上に成膜される低抵
抗の透明導電膜と、このような透明導電膜の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film, particularly a low resistance transparent conductive film formed on a substrate having low heat resistance and plasma resistance, and a method for producing such a transparent conductive film.

【0002】[0002]

【従来の技術】従来より、種々の電子部品、画像表示装
置等に透明導電膜が使用されており、この透明導電膜は
酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)、
酸化スズ(SnO)等、およびその合金等を用いて、ス
パッタリング法、真空蒸着法、CVD法等の成膜方法に
より形成されていた。
2. Description of the Related Art Conventionally, a transparent conductive film has been used for various electronic components, image display devices, and the like. The transparent conductive film is made of indium tin oxide (ITO), zinc oxide (ZnO),
It is formed by using tin oxide (SnO) or the like and its alloy or the like by a film forming method such as a sputtering method, a vacuum deposition method, a CVD method or the like.

【0003】上記の成膜方法のうち、スパッタリング法
では、例えば、ITO酸化物ターゲット材をArイオン
でスパッタして基材上にITO膜を形成するものであ
る。このようなITO膜は、成膜時の基材温度および成
膜後のアニール温度を200〜300℃として結晶化さ
せることにより低抵抗化がなされ、パターニング特性が
付与されていた。
Among the above film forming methods, the sputtering method is, for example, a method in which an ITO oxide target material is sputtered with Ar ions to form an ITO film on a base material. Such an ITO film has a low resistance by being crystallized by setting the base material temperature during film formation and the annealing temperature after film formation at 200 to 300 ° C., and has been given patterning characteristics.

【0004】しかし、透明導電膜の成膜対象である基材
のなかには、成膜時の加熱やプラズマの影響等が原因で
水分や有機成分等のガスを発生する脱ガス現象を生じる
もの、あるいは、変質や劣化、熱分解等を生じるものが
ある。基材からの脱ガスがある場合、発生するガスによ
って透明導電膜中に結晶粒塊が生じて粗密な膜となり、
透明導電膜の低抵抗化が阻害される。また、例えば、透
明導電膜の成膜対象が液晶ディスプレイ用のカラーフィ
ルタを備えた基板の場合、透明導電膜に生じた上記の結
晶粒塊が原因で、透明導電膜の表面と接する液晶の配向
状態に悪影響が生じるという問題がある。このため、上
述のような脱ガスを生じる基材に対しては、予めガスバ
リアー性の薄膜を形成し、この薄膜上に透明導電膜を形
成することが行われている。
However, some of the substrates on which the transparent conductive film is formed have a degassing phenomenon in which gases such as water and organic components are generated due to the influence of heating during formation of film and plasma, or , Some may cause alteration, deterioration, and thermal decomposition. When there is degassing from the base material, the generated gas causes crystal grain agglomerates in the transparent conductive film to form a coarse and dense film,
The resistance reduction of the transparent conductive film is hindered. Further, for example, in the case where the transparent conductive film is formed on a substrate having a color filter for a liquid crystal display, the alignment of the liquid crystal in contact with the surface of the transparent conductive film is caused by the above-mentioned crystal grain agglomerates generated in the transparent conductive film. There is a problem that the condition is adversely affected. For this reason, a thin film having a gas barrier property is previously formed on a substrate that causes degassing as described above, and a transparent conductive film is formed on this thin film.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ガスバリアー性の薄膜は、珪素酸化物等の無機薄膜や合
成樹脂等の有機薄膜のような電気絶縁性の薄膜であり、
このようなガスバリアー性薄膜を形成することにより、
透明導電膜の製造工程が複雑になり、製造コストの上昇
を来たしていた。さらに、ガスバリアー性の薄膜を設け
る場合あっても、高温で透明導電膜を形成することによ
って耐熱性の低い基材に変質、劣化等(例えば、カラー
フィルタの色差変化)が生じることは避けられない。
However, the above gas barrier thin film is an electrically insulating thin film such as an inorganic thin film such as silicon oxide or an organic thin film such as synthetic resin.
By forming such a gas barrier thin film,
The manufacturing process of the transparent conductive film is complicated, resulting in an increase in manufacturing cost. Further, even when a gas barrier thin film is provided, it is possible to avoid deterioration or deterioration of the substrate having low heat resistance (for example, change in color difference of color filter) by forming the transparent conductive film at high temperature. Absent.

【0006】これに対応するために、基材を150℃以
下の温度としてスパッタリング法による透明導電膜の形
成を行い、その後、熱処理(160〜250℃)を施し
て結晶化する方法が提案されている(特開平1−259
320号)。しかし、このような透明導電膜は、工程が
煩雑であり、また、プラズマの影響等による基材からの
脱ガス、すなわち、質量分析計で測定するとマスナンバ
ー68以上のガス発生が生じ、形成された膜は粒塊構造
を有した膜になっており、比抵抗の低い透明導電膜は得
られないという問題があった。
In order to deal with this, a method has been proposed in which a transparent conductive film is formed by a sputtering method at a substrate temperature of 150 ° C. or lower, and then heat treatment (160 to 250 ° C.) is performed to crystallize. (Japanese Patent Application Laid-Open No. 1-259
320). However, such a transparent conductive film has a complicated process, and is degassed from the base material due to the influence of plasma or the like, that is, gas generation with a mass number of 68 or more occurs when measured with a mass spectrometer, and is formed. The film has a grain structure, and there is a problem that a transparent conductive film having a low specific resistance cannot be obtained.

【0007】本発明は、上記のような事情に鑑みてなさ
れたものであり、加熱やプラズマにより変質、劣化、熱
分解を生じたり脱ガスを生じるような耐熱性および耐プ
ラズマ性の低い基材上に成膜される低抵抗で透明性が高
くパターニング特性に優れる透明導電膜と、このような
透明導電膜を簡便に形成することができる製造方法を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and is a substrate having low heat resistance and plasma resistance that causes deterioration, deterioration, thermal decomposition or degassing due to heating or plasma. It is an object of the present invention to provide a transparent conductive film having a low resistance, a high transparency and an excellent patterning property, and a manufacturing method capable of easily forming such a transparent conductive film.

【0008】[0008]

【課題を解決するための手段】このような目的を達成す
るために、本発明の透明導電膜は、結晶粒を有し、X線
回折法における(222)面のピーク強度I1 と(40
0)面のピーク強度I2 との比I1 /I2 が5以上であ
るとともに、比抵抗が0.8×10-4〜3.5×10-4
Ω・cmの範囲であるような構成とした。
In order to achieve such an object, the transparent conductive film of the present invention has crystal grains, and the peak intensity I 1 and (40) of the (222) plane in the X-ray diffraction method.
The ratio I 1 / I 2 to the peak intensity I 2 of the 0) plane is 5 or more, and the specific resistance is 0.8 × 10 −4 to 3.5 × 10 −4.
The configuration is such that the range is Ω · cm.

【0009】また、本発明の透明導電膜は、移動度が3
0〜50cm2 /Vsecの範囲であるような構成、波
長550nmの光に対する透過率が80〜100%であ
るような構成、透明導電膜の表面における100Å以上
の大きさの溝の面積占有率が15%以下であるような構
成とした。
Further, the transparent conductive film of the present invention has a mobility of 3
The structure having a range of 0 to 50 cm 2 / Vsec, the structure having a transmittance of 80 to 100% with respect to light having a wavelength of 550 nm, and the area occupancy of a groove having a size of 100 Å or more on the surface of the transparent conductive film. The composition is set to 15% or less.

【0010】本発明の透明導電膜の製造方法は、反応性
蒸着法を用い、蒸着源と基材との間にプラズマを形成
し、かつ、該プラズマに曝される前記基材に悪影響が生
じないような条件で前記基材上に透明導電膜を成膜する
ような構成とした。
The method for producing a transparent conductive film of the present invention uses a reactive vapor deposition method to form plasma between a vapor deposition source and a substrate, and the substrate exposed to the plasma is adversely affected. The transparent conductive film was formed on the base material under such conditions.

【0011】また、本発明の透明導電膜の製造方法は、
前記条件を、前記基材をプラズマ雰囲気中あるいは加熱
雰囲気中に曝したとき、質量分析計でマスナンバー68
以上に該当する出力の分圧比が1×10-11 Torr未満を
呈するような条件であるような構成とした。
The method for producing a transparent conductive film of the present invention is
When the above-mentioned conditions were exposed to the plasma atmosphere or the heating atmosphere, the mass number 68 was measured by a mass spectrometer.
The configuration is such that the partial pressure ratio of the output corresponding to the above is such that it is less than 1 × 10 −11 Torr.

【0012】このような本発明では、基材がプラズマに
曝されて悪影響を受けることなく透明導電膜が反応性蒸
着法によって成膜されるので、基材が加熱により変質、
劣化、熱分解を生じたり脱ガスを生じるような耐熱性お
よび耐プラズマ性の低い基材であっても、成膜された透
明導電膜は結晶粒を有する緻密で表面平坦性に優れたも
のであり、これにより、膜構造中に空孔が生じないた
め、比抵抗が0.8×10-4〜3.5×10-4Ω・cm
と極めて低いものとなる。
In the present invention as described above, since the transparent conductive film is formed by the reactive vapor deposition method without the substrate being exposed to plasma and being adversely affected, the substrate is deteriorated by heating,
Even if it is a substrate with low heat resistance and plasma resistance that causes deterioration, thermal decomposition, or degassing, the formed transparent conductive film has fine grains and excellent surface flatness. There is no vacancy in the film structure, so that the specific resistance is 0.8 × 10 −4 to 3.5 × 10 −4 Ω · cm.
And it will be extremely low.

【0013】[0013]

【発明の実施の形態】以下、本発明について図面を参照
して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0014】本発明の透明導電膜は結晶粒を有するもの
であり、この透明導電膜のX線回折法における(22
2)面のピーク強度I1 と(400)面のピーク強度I
2 との比I1 /I2 は5以上、好ましくは6〜100で
あり、非結晶性ではなく明確な結晶構造をなすものであ
る。上記の結晶粒は、平均粒子径が300〜1000Å
程度の結晶性の粒子であるが、結晶粒塊は存在せず、透
明導電膜の表面は平坦である。また、上記のピーク強度
比I1 /I2 が5未満であると、透明導電膜の結晶性が
不十分となり、下記のような良好な比抵抗および移動度
が得られない。ここで、本発明では、X線回折のピーク
強度比I1 /I2 は、バックグランドを削除したX線回
折曲線の(222)面のピーク高さと(400)面のピ
ーク高さの比より算出するものである。
The transparent conductive film of the present invention has crystal grains, and the transparent conductive film (22) in the X-ray diffraction method is used.
2) Peak intensity I 1 of the plane and peak intensity I of the (400) plane
2 ratio I 1 / I 2 of 5 or more, preferably a 6-100, forming a well-defined crystalline structure rather than amorphous. The above crystal grains have an average particle size of 300 to 1000Å
Although the particles are crystalline to some extent, no crystal grain agglomerates are present and the surface of the transparent conductive film is flat. When the peak intensity ratio I 1 / I 2 is less than 5, the crystallinity of the transparent conductive film is insufficient and the following favorable specific resistance and mobility cannot be obtained. Here, in the present invention, the peak intensity ratio I 1 / I 2 of the X-ray diffraction is calculated from the ratio of the peak height of the (222) plane to the peak height of the (400) plane of the X-ray diffraction curve with the background removed. It is to be calculated.

【0015】本発明の透明導電膜には、上記の結晶粒に
伴う粒界、および結晶粒の配向方向がある領域ごとに異
なるようなドメインが存在しない。そして、結晶粒は隙
間なく密に詰まった状態であるため、膜構造中には空孔
が生じておらず、これによって、比抵抗が0.8×10
-4〜3.5×10-4Ω・cmと極めて低いものとなって
いる。また、本発明の透明導電膜は、その移動度が30
〜50cm2 /Vsecの範囲であり、かつ、波長55
0nmの光に対する透過率が80〜100%である。し
たがって、本発明の透明導電膜は、低抵抗で透明性の高
い透明導電膜である。
In the transparent conductive film of the present invention, there are no domains that are different depending on the grain boundaries associated with the crystal grains and the orientation direction of the crystal grains. Since the crystal grains are densely packed without any gaps, no voids are formed in the film structure, which results in a resistivity of 0.8 × 10 5.
-4 to 3.5 × 10 -4 Ω · cm, which is extremely low. In addition, the transparent conductive film of the present invention has a mobility of 30.
˜50 cm 2 / Vsec and a wavelength of 55
The transmittance for 0 nm light is 80 to 100%. Therefore, the transparent conductive film of the present invention is a transparent conductive film having low resistance and high transparency.

【0016】さらに、本発明の透明導電膜の表面は、大
きさが100Å以上の溝の面積占有率が15%以下であ
り、極めて平坦な表面状態を有している。尚、透明導電
膜の表面における100Å以上の溝の面積占有率は、走
査型電子顕微鏡(SEM)による表面観察(倍率10万
倍)で、7cm×7cmの面積内で1mm以上の溝が占
める面積の総和を求めて算出する。
Further, on the surface of the transparent conductive film of the present invention, the area occupancy of the grooves having a size of 100 Å or more is 15% or less, and the surface is extremely flat. The area occupancy of the groove of 100 Å or more on the surface of the transparent conductive film is the area occupied by the groove of 1 mm or more in the area of 7 cm × 7 cm in the surface observation with a scanning electron microscope (SEM) (magnification: 100,000 times). Is calculated by calculating the total sum of.

【0017】このような本発明の透明導電膜は、酸化イ
ンジウムスズ(ITO)、酸化亜鉛(ZnO)、およ
び、その合金(AZO(AlドープのZnO膜))、N
ESA膜(SnO2 )等で形成された薄膜であり、厚み
は50〜10000Å、好ましくは500〜3000Å
程度とすることができる。
Such a transparent conductive film of the present invention includes indium tin oxide (ITO), zinc oxide (ZnO), its alloy (AZO (Al-doped ZnO film)), N.
It is a thin film formed of an ESA film (SnO 2 ) or the like and has a thickness of 50 to 10000Å, preferably 500 to 3000Å
It can be a degree.

【0018】次に、本発明の透明導電膜の製造方法を説
明する。
Next, a method of manufacturing the transparent conductive film of the present invention will be described.

【0019】本発明の透明導電膜の製造方法は、上述の
ような本発明の透明導電膜を、加熱やプラズマの影響に
より変質、劣化、熱分解を生じたり脱ガスを生じるよう
な耐熱性および耐プラズマ性の低い基材上に簡便に成膜
できるものであり、反応性蒸着法を用い、蒸着源と基材
との間にプラズマを形成し、かつ、このプラズマに曝さ
れる基材に悪影響が生じないような条件で基材上に透明
導電膜を成膜するものである。
The method for producing a transparent conductive film of the present invention has a heat resistance such that the transparent conductive film of the present invention as described above is deteriorated, deteriorated, thermally decomposed or degassed by the influence of heating or plasma. It is a film that can be easily formed on a substrate with low plasma resistance. A reactive vapor deposition method is used to form plasma between the vapor deposition source and the substrate, and the substrate exposed to this plasma is used. The transparent conductive film is formed on the base material under the condition that no adverse effect occurs.

【0020】ここで、本発明における耐熱性および耐プ
ラズマ性の低い基材とは、真空中200℃加熱あるいは
Arプラズマ雰囲気中に基材を曝したとき、質量分析計
でマスナンバー68以上に該当する出力の分圧比が1×
10-11 Torr以上を呈するような基材を意味する。ま
た、基材がプラズマに曝されて悪影響が生じないような
条件とは、基材をプラズマ雰囲気中に曝したとき、質量
分析計でマスナンバー68以上に該当する出力の分圧比
が1×10-11 Torr未満を呈するような条件を意味す
る。
Here, the base material having low heat resistance and low plasma resistance in the present invention corresponds to a mass number of 68 or more in a mass spectrometer when the base material is heated in vacuum at 200 ° C. or exposed to an Ar plasma atmosphere. The output voltage division ratio is 1 ×
It means a substrate exhibiting 10 -11 Torr or more. Further, the condition that the base material is not exposed to plasma and adversely affected is that when the base material is exposed to the plasma atmosphere, the partial pressure ratio of the output corresponding to the mass number 68 or more in the mass spectrometer is 1 × 10. It means that the condition is less than -11 Torr.

【0021】本発明の透明導電膜の製造方法に使用する
反応性蒸着法としては、フォロカソード型イオンプレー
ティング法、DC型イオンプレーティング法、RF型イ
オンプレーティング法等が挙げられる。
Examples of the reactive vapor deposition method used in the method for producing the transparent conductive film of the present invention include a forocathode type ion plating method, a DC type ion plating method, an RF type ion plating method and the like.

【0022】ここで、フォロカソード型イオンプレーテ
ィング法について、図1を参照して説明する。図1は横
形フォロカソード型イオンプレーティング装置の一例を
示す構成図である。図1において、フォロカソード型イ
オンプレーティング装置1は、排気口2aと反応ガス供
給口2bを設けた真空チャンバー2と、この真空チャン
バー2内の下部に配設された陽極(ハース)3、真空チ
ャンバー2内の上部に配設された基材ホルダー4、真空
チャンバー2の所定位置(図示例では真空チャンバー左
側壁)に配設されたプラズマガン5、陰極6、中間電極
7および補助コイル8を備えている。また、陽極3の下
方には永久磁石9が配設されている。
Here, the follow cathode type ion plating method will be described with reference to FIG. FIG. 1 is a block diagram showing an example of a horizontal foro-cathode type ion plating apparatus. In FIG. 1, a follow cathode type ion plating apparatus 1 includes a vacuum chamber 2 provided with an exhaust port 2a and a reaction gas supply port 2b, an anode (hearth) 3 disposed under the vacuum chamber 2 and a vacuum chamber 2. A substrate holder 4 arranged in the upper part of the chamber 2, a plasma gun 5, a cathode 6, an intermediate electrode 7 and an auxiliary coil 8 arranged at a predetermined position of the vacuum chamber 2 (the left wall of the vacuum chamber in the illustrated example). I have it. Further, a permanent magnet 9 is arranged below the anode 3.

【0023】このようなフォロカソード型イオンプレー
ティング装置1を用いたイオンプレーティング法による
透明導電膜の形成は以下のように行われる。まず、陽極
3に蒸発源11を配置し、また透明導電膜の被形成体で
ある基材12を基材ホルダー4に保持し、真空チャンバ
ー2内部を10-6〜10-5Torr程度の真空度にする。こ
の状態で、アルゴン(Ar)等のプラズマ用ガスをプラ
ズマガン5に導入する。そして、プラズマガン5で発生
したプラズマビーム15は、補助コイル8により形成さ
れる磁界によって真空チャンバー2内に引き出され、陽
極3下方の永久磁石9が作る磁界によって蒸発源11に
収束し、この蒸発源11を加熱する。その結果、加熱さ
れた部分の蒸発源11は蒸発し、プラズマビーム15の
領域を通過する際に一部電離し、基材ホルダー4に保持
されている基材12に到達して表面に膜を形成する。
The formation of the transparent conductive film by the ion plating method using the above-described cathode type ion plating apparatus 1 is performed as follows. First, the evaporation source 11 is arranged on the anode 3, the base material 12 which is a transparent conductive film forming object is held on the base material holder 4, and the inside of the vacuum chamber 2 is evacuated to about 10 −6 to 10 −5 Torr. Every time. In this state, a plasma gas such as argon (Ar) is introduced into the plasma gun 5. Then, the plasma beam 15 generated by the plasma gun 5 is drawn into the vacuum chamber 2 by the magnetic field formed by the auxiliary coil 8, and is converged on the evaporation source 11 by the magnetic field created by the permanent magnet 9 below the anode 3, and this evaporation is performed. Heat the source 11. As a result, the evaporation source 11 in the heated portion evaporates, partially ionizes when passing through the region of the plasma beam 15, reaches the base material 12 held by the base material holder 4, and forms a film on the surface. Form.

【0024】上述のような本発明の透明導電膜の製造方
法では、基材12はプラズマビーム15に曝されない位
置に配置されていることを特徴としている。これは、液
晶ディスプレイ用のカラーフィルタのような加熱により
熱分解を生じたり脱ガスを生じるような耐熱性および耐
プラズマ性の低い基材をプラズマに曝した場合、基材か
らの脱ガスが発生して、成膜したITO膜に結晶粒塊が
生じて粗密な膜となり低抵抗化が阻害されるという事実
を見いだしたことに起因している。すなわち、本発明の
透明導電膜の製造方法では、透明導電膜の被形成体であ
る基材の温度を、従来のスパッタリング法によるITO
膜の形成時に比べて大幅に低い温度に設定することがで
き、プラズマに基材を曝さない状態でイオンプレーティ
ング法により透明導電膜を形成するので、加熱による変
質、劣化、熱分解を生じたり脱ガスを生じるような耐熱
性の低い基材に対しても、この基材の耐熱性温度内で透
明導電膜を形成することが可能である。そして、本発明
では、基材の脱ガスを有効に阻止しながら透明導電膜を
形成するので、従来のガスバリアー性の薄膜上に透明導
電膜を形成する2層成膜のような煩雑な工程が不要とな
り、生産性が大幅に向上する。また、従来の2層成膜に
よる透明導電膜に比べてパターニング特性に優れた透明
導電膜が得られる。
The method of manufacturing the transparent conductive film of the present invention as described above is characterized in that the base material 12 is arranged at a position where it is not exposed to the plasma beam 15. This is because when a base material with low heat resistance and plasma resistance, such as a color filter for liquid crystal displays, which causes thermal decomposition or degassing when heated is exposed to plasma, degassing from the base material occurs. Then, it was due to the fact that crystal grains were generated in the formed ITO film to form a coarse and dense film, which hinders resistance reduction. That is, in the method for producing a transparent conductive film of the present invention, the temperature of the base material, which is an object on which the transparent conductive film is formed, is set to the ITO by the conventional sputtering method.
The temperature can be set significantly lower than when the film is formed, and because the transparent conductive film is formed by the ion plating method without exposing the substrate to plasma, alteration, deterioration, or thermal decomposition due to heating may occur. It is possible to form a transparent conductive film even on a base material having low heat resistance that causes outgassing, within the heat resistance temperature of the base material. In the present invention, since the transparent conductive film is formed while effectively preventing the degassing of the base material, a complicated process such as a two-layer film formation in which the transparent conductive film is formed on a conventional gas barrier thin film. Is unnecessary, and productivity is greatly improved. Moreover, a transparent conductive film having excellent patterning characteristics can be obtained as compared with the conventional transparent conductive film formed by two-layer film formation.

【0025】尚、本発明の透明導電膜の製造方法におけ
る反応性蒸着法に用いるイオンプレーティング装置は、
蒸発源と基材との間に形成したプラズマに基材が曝され
ても、上述の条件を満足するような構成のイオンプレー
ティング装置であればよく、図1に示されるものに限定
されるものではない。
The ion plating apparatus used in the reactive vapor deposition method in the method for producing a transparent conductive film of the present invention is
The ion plating apparatus may be configured so that the above conditions are satisfied even when the substrate is exposed to the plasma formed between the evaporation source and the substrate, and is limited to that shown in FIG. Not a thing.

【0026】[0026]

【実施例】次に、実施例を挙げて本発明を更に詳細に説
明する。 (実施例1)厚み1.1mmのガラス基板(コーニング
社製 7059)と、このガラス基板の一方の面に顔料
分散法により液晶ディスプレイ用のカラーフィルタを形
成したカラーフィルタ基板とを準備した。
Next, the present invention will be described in more detail with reference to examples. Example 1 A glass substrate having a thickness of 1.1 mm (7059 manufactured by Corning Incorporated) and a color filter substrate having a color filter for a liquid crystal display formed on one surface of the glass substrate by a pigment dispersion method were prepared.

【0027】次に、図1に示されるようなフォロカソー
ド型イオンプレーティング装置の基材ホルダー上に上記
のカラーフィルタ基板あるいはガラス基板を保持した。
また、陽極(ハース)に蒸発源として蒸着材料(In2
3 −SnO2 燒結体(SnO2 5重量%))を載置し
た。その後、下記の成膜条件で成膜を行い、基材上に厚
さ1500Åの透明導電膜(試料1、比較試料1)を作
製した。
Next, the above color filter substrate or glass substrate was held on the base material holder of the foro cathode type ion plating apparatus as shown in FIG.
In addition, a vapor deposition material (In 2
O 3 -SnO 2 sintered body (SnO 2 5 wt%)) was placed. After that, a film was formed under the following film forming conditions to form a transparent conductive film (Sample 1, Comparative Sample 1) having a thickness of 1500Å on the substrate.

【0028】(成膜条件) ・成膜真空度 : 2.4×10-4 Torr ・導入ガス : Ar=30sccm、O2 =7sc
cm ・プラズマガン: 電圧=60V、電流=150A、ビ
ーム径=数10mm ・基材温度 : 190℃ ・成膜レート : 1500Å/分 また、比較として、基材温度を60℃とした他は、上記
の試料1と同様にして基材上に厚さ1500Åの透明導
電膜(比較試料2、3)を作製した。
(Deposition conditions) Deposition degree of vacuum: 2.4 × 10 −4 Torr Introduced gas: Ar = 30 sccm, O 2 = 7 sc
cm ・ Plasma gun: voltage = 60 V, current = 150 A, beam diameter = several 10 mm ・ Base material temperature: 190 ° C. ・ Film forming rate: 1500 Å / min For comparison, the base material temperature was 60 ° C. Transparent conductive films (Comparative Samples 2 and 3) having a thickness of 1500 Å were prepared on the base material in the same manner as in Sample 1.

【0029】さらに、比較として、上記と同様のガラス
板およびカラーフィルタ基板を用い、下記の成膜条件で
スパッタリング法により成膜を行って基材上に厚さ15
00Åの透明導電膜(比較試料4〜7)を作製した。
Further, for comparison, a glass plate and a color filter substrate similar to those described above were used, and a film was formed by a sputtering method under the following film forming conditions to give a thickness of 15 on the substrate.
00Å transparent conductive films (Comparative Samples 4 to 7) were prepared.

【0030】(成膜条件) ・雰囲気ガス : Ar=100sccm,O2 =2s
ccm ・雰囲気圧力 : 6×10-3Torr ・導入パワー : DC2.5W/cm2 ・成膜レート : 720Å/分 ・基板温度 : 60℃、190℃ ・ターゲット材: In23 −SnO2 燒結体(Sn
2 10重量%) さらに、比較として、基材ホルダーをプラズマ放電内に
位置するようにした他は上記の試料1、2と同様(基材
温度190℃)にして、基材上に厚さ1500Åの透明
導電膜(比較試料8、9)を作製した。尚、この場合、
基材は質量分析計(四重極質量分析計(SKKバキュー
ムエンジニアリング(株)製 DAQ200/DX
M))でマスナンバー61,91(レジスト)、12
9,172(顔料)、190(開始剤)に該当する出力
(分圧比1×10-11 〜10×10-11Torrに相当)を
呈した。本実施例で用いた材料では、このような質量分
析計での出力となったが、使用する材料が変わればマス
ナンバーも当然変化する。但し、樹脂や顔料が用いられ
る基材は、マスナンバー68以上のものが検出される。
(Film forming conditions) Atmosphere gas: Ar = 100 sccm, O 2 = 2 s
ccm ・ Atmospheric pressure: 6 × 10 -3 Torr ・ Introduction power: DC 2.5 W / cm 2・ Film formation rate: 720 Å / min ・ Substrate temperature: 60 ° C, 190 ° C ・ Target material: In 2 O 3 -SnO 2 sintering Body (Sn
O 2 10% by weight) Further, as a comparison, the thickness on the substrate was the same as for Samples 1 and 2 above (substrate temperature 190 ° C.) except that the substrate holder was positioned in the plasma discharge. A transparent conductive film of 1500 Å (Comparative Samples 8 and 9) was prepared. In this case,
The substrate is a mass spectrometer (quadrupole mass spectrometer (SKK Vacuum Engineering Co., Ltd. DAQ200 / DX
M)) with mass numbers 61, 91 (resist), 12
The outputs (corresponding to a partial pressure ratio of 1 × 10 −11 to 10 × 10 −11 Torr) corresponding to 9,172 (pigment) and 190 (initiator) were exhibited. The material used in this example has an output from such a mass spectrometer, but if the material used changes, the mass number naturally changes. However, as the base material in which the resin or pigment is used, a material having a mass number of 68 or higher is detected.

【0031】上記のように作製した透明導電膜(試料1
および比較試料1〜9)について、結晶構造、比抵抗、
移動度、透過率および配向膜適性を測定、評価して結果
を下記の表1に示した。
The transparent conductive film prepared as described above (Sample 1)
And the comparative samples 1 to 9), the crystal structure, the specific resistance,
The mobility, transmittance and suitability for the alignment film were measured and evaluated, and the results are shown in Table 1 below.

【0032】(結晶構造の評価)X線回折法により、結
晶性を示す2θ=30.08°(222)の回折ピーク
強度I1 および2θ=35.12°(400)の回折ピ
ーク強度I2 の比I1 /I2 を算出した。
[0032] The (crystal Evaluation of structures) X-ray diffraction method, the diffraction peak intensity I 2 of the diffraction peak intensity I 1 and the 2 [Theta] = 35.12 ° of 2θ = 30.08 ° (222) showing a crystalline (400) The ratio I 1 / I 2 of was calculated.

【0033】X線回折測定条件 ・測定装置 :粉末X線回折装置(理学電気(株)
製)(広角ゴニオメータ使用、CuKα線、2θ/θス
キャン) ・管電圧 :40Kv ・管電流 :200mA ・サンプリング幅:0.020° ・走査速度 :4°/分 ・発散スリット :1° ・散乱スリット :1° ・受光スリット :0.30nm (比抵抗値の測定)三菱油化(株)製表面抵抗計LOR
ESTA−FPを用いてシート抵抗Rs (Ω/□)を測
定し、式(1)に示すように透明導電膜の厚みd(Å)
をかけて比抵抗ρ(Ω・cm)を求めた。
X-ray Diffraction Measuring Conditions / Measuring Equipment: Powder X-ray diffractometer (Rigaku Denki Co., Ltd.)
(Made by wide angle goniometer, CuKα ray, 2θ / θ scan) ・ Tube voltage: 40Kv ・ Tube current: 200mA ・ Sampling width: 0.020 ° ・ Scanning speed: 4 ° / min ・ Diffusion slit: 1 ° ・ Scattering slit : 1 ° ・ Light-receiving slit: 0.30 nm (Measurement of specific resistance) Surface resistance meter LOR manufactured by Mitsubishi Petrochemical Co., Ltd.
The sheet resistance R s (Ω / □) was measured using ESTA-FP, and the thickness d (Å) of the transparent conductive film was calculated as shown in formula (1).
The specific resistance ρ (Ω · cm) was calculated by multiplying by.

【0034】ρ=d×Rs …(1) (移動度の測定)Van der Pauw法によって作製して算出
した。
Ρ = d × R s (1) (Measurement of mobility) It was calculated by the Van der Pauw method.

【0035】(透過率の測定)ガラス基板上に形成した
透明導電膜について、波長550nmでの透過率を測定
した。
(Measurement of Transmittance) The transparent conductive film formed on the glass substrate was measured for transmittance at a wavelength of 550 nm.

【0036】(配向膜適性の評価)ポリイミド塗布用の
溶剤であるn−メチルプロテイド(NMP)を滴下して
カラーフィルタの色材が流出するか否か評価した。
(Evaluation of Alignment Film Suitability) It was evaluated whether or not the coloring material of the color filter would flow out by dropping n-methylproteide (NMP), which is a solvent for polyimide coating.

【0037】評価基準 ○:色材の流出が生じない △:色材の流出がややみられる ×:色材の流出が顕著にみられるEvaluation Criteria ◯: No outflow of color material occurs Δ: Some outflow of color material appears ×: Outflow of color material is noticeable

【0038】[0038]

【表1】 表1に示されるように、カラーフィルタ基板上に形成し
た透明導電膜(試料1)は、ガラス板上に形成した透明
導電膜(比較試料1)と同様にX線回折ピーク強度比I
1 /I2 が5以上であり、結晶性の良好な透明導電膜で
あった。そして、この本発明の透明導電膜は、比抵抗が
3.5×10-4Ω・cm以下、移動度が30cm2 /V
sec以上であり、かつ、波長550nmにおける透過
率が80%以上(比較試料1において)であり、電気的
特性および透明性ともに優れた透明導電膜であることが
確認された。さらに、配向膜特性も良好であり、液晶デ
ィスプレイ用の透明導電膜として実用に供し得るもので
あった。
[Table 1] As shown in Table 1, the transparent conductive film (Sample 1) formed on the color filter substrate had the same X-ray diffraction peak intensity ratio I as the transparent conductive film (Comparative Sample 1) formed on the glass plate.
1 / I 2 was 5 or more, and the transparent conductive film had good crystallinity. The transparent conductive film of the present invention has a specific resistance of 3.5 × 10 −4 Ω · cm or less and a mobility of 30 cm 2 / V.
It was confirmed to be a transparent conductive film having excellent electrical characteristics and transparency, which is not less than sec and the transmittance at a wavelength of 550 nm is not less than 80% (in Comparative Sample 1). Furthermore, the alignment film characteristics were good, and it could be put to practical use as a transparent conductive film for liquid crystal displays.

【0039】これに対して、イオンプレーティング法や
従来のスパッタリング法により比較的低い基材温度で形
成された透明導電膜(比較試料2、3、4、6)は、X
線回折ピーク強度I1 、I2 が極めて小さく非結晶性に
近いものであり、比抵抗、移動度は不十分なものであっ
た。また、比較的高い基材温度で形成された透明導電膜
(比較試料5、7)のうち、カラーフィルタ基板上に形
成された透明導電膜(比較試料8)は、X線回折ピーク
強度比I1 /I2 が5未満で結晶配向度が違い構造の異
なるものであり、このため比抵抗が3.5×10-4Ω・
cmを上回り、移動度が30cm2 /Vsec未満で、
電気的特性に劣り、かつ、配向膜特性も悪く、液晶ディ
スプレイ用の透明導電膜として実用に供し得ないもので
あった。 (実施例2)実施例1と同様にして、本発明の透明導電
膜の製造方法により下記の条件で基材上に厚さ1500
Åの透明導電膜(試料I、比較試料I)を作製した。
尚、この透明導電膜(試料I、比較試料I)は、実施例
1の透明導電膜(試料1、比較試料1)に相当する。
On the other hand, the transparent conductive film (Comparative Samples 2, 3, 4, 6) formed at a comparatively low base material temperature by the ion plating method or the conventional sputtering method has X
The line diffraction peak intensities I 1 and I 2 were extremely small and were close to amorphous, and the specific resistance and mobility were insufficient. Further, among the transparent conductive films (comparative samples 5 and 7) formed at a relatively high base material temperature, the transparent conductive film (comparative sample 8) formed on the color filter substrate has an X-ray diffraction peak intensity ratio I. When 1 / I 2 is less than 5, the crystal orientation is different and the structure is different. Therefore, the specific resistance is 3.5 × 10 −4 Ω.
cm, mobility of less than 30 cm 2 / Vsec,
The electrical properties were poor and the alignment film properties were also poor, so that it could not be put to practical use as a transparent conductive film for liquid crystal displays. (Example 2) In the same manner as in Example 1, a thickness of 1500 was formed on a substrate under the following conditions by the method for producing a transparent conductive film of the present invention.
Å transparent conductive film (Sample I, Comparative Sample I) was prepared.
The transparent conductive film (Sample I, Comparative Sample I) corresponds to the transparent conductive film of Example 1 (Sample 1, Comparative Sample 1).

【0040】(成膜条件) ・到達真空度 : 1.0×10-5 Torr 以下 ・成膜真空度 : 2.4×10-4 Torr ・導入ガス : Ar=30sccm、O2 =7sc
cm ・プラズマガン: 電圧=60V、電流=150A、ビ
ーム径=数10mm ・基材温度 : 190℃ ・成膜レート : 1500Å/分 比較として、実施例1と同様のガラス板およびカラーフ
ィルタ基板を用い、下記の成膜条件でスパッタリング法
により成膜を行い、基材上に厚さ1500Åの透明導電
膜(比較試料II、III )を作製した。
(Deposition conditions) ・ Achieved vacuum degree: 1.0 × 10 -5 Torr or less ・ Deposition vacuum degree: 2.4 × 10 -4 Torr ・ Introduced gas: Ar = 30 sccm, O 2 = 7 sc
cm ・ Plasma gun: voltage = 60 V, current = 150 A, beam diameter = several 10 mm ・ Base material temperature: 190 ° C. ・ Film formation rate: 1500 Å / min For comparison, the same glass plate and color filter substrate as in Example 1 were used. A transparent conductive film (Comparative Samples II and III) having a thickness of 1500 Å was formed on the base material by the sputtering method under the following film forming conditions.

【0041】(成膜条件) ・雰囲気ガス : Ar=100sccm,O2 =2s
ccm ・雰囲気圧力 : 6×10-3Torr ・導入パワー : DC2.5W/cm2 ・成膜レート : 720Å/分 ・基板温度 : 165℃ ・ターゲット材: In23 −SnO2 燒結体(Sn
2 10重量%) さらに、比較として、実施例1と同様のカラーフィルタ
基板を用い、下記の成膜条件でスパッタリング法により
成膜を行い、その後、熱処理(200℃、30分間)を
行って基材上に厚さ2400Åの透明導電膜(比較試料
IV)を作製した。
(Film forming conditions) Atmosphere gas: Ar = 100 sccm, O 2 = 2 s
ccm ・ Atmospheric pressure: 6 × 10 -3 Torr ・ Introduction power: DC 2.5 W / cm 2・ Film formation rate: 720 Å / min ・ Substrate temperature: 165 ° C. ・ Target material: In 2 O 3 -SnO 2 sintered body (Sn)
O 2 10% by weight) Further, as a comparison, using a similar color filter substrate as in Example 1, performed by a sputtering method at a film formation under the following conditions, then subjected to heat treatment (200 ° C., 30 minutes) A transparent conductive film with a thickness of 2400Å on the substrate (comparative sample
IV) was prepared.

【0042】(成膜条件) ・雰囲気ガス : Ar=100sccm,O2 =2s
ccm ・雰囲気圧力 : 6×10-3Torr ・導入パワー : DC2.5W/cm2 ・成膜レート : 720Å/分 ・基板温度 : 60℃ ・ターゲット材: In23 −SnO2 燒結体(Sn
2 10重量%) 上記のように作製した透明導電膜(試料Iおよび比較試
料I〜IV)について、表面を走査型電子顕微鏡(SE
M)を用いて表面状態を撮影(倍率10万倍)し、結果
を図2乃至図6に示した。また、実施例1と同様にして
比抵抗、透過率および配向膜適性を測定、評価して結果
を下記の表2に示した。
(Film forming conditions) Atmosphere gas: Ar = 100 sccm, O 2 = 2 s
ccm ・ Atmospheric pressure: 6 × 10 -3 Torr ・ Introduction power: DC 2.5 W / cm 2・ Film formation rate: 720 Å / min ・ Substrate temperature: 60 ° C ・ Target material: In 2 O 3 -SnO 2 sintered body (Sn)
O 2 10% by weight) The surfaces of the transparent conductive films (Sample I and Comparative Samples I to IV) produced as described above were observed with a scanning electron microscope (SE).
M) was used to photograph the surface state (magnification: 100,000 times), and the results are shown in FIGS. 2 to 6. Further, the specific resistance, the transmittance and the suitability for the alignment film were measured and evaluated in the same manner as in Example 1, and the results are shown in Table 2 below.

【0043】[0043]

【表2】 図2に示されるカラーフィルタ基板上に形成した透明導
電膜(試料I)は、図3に示されるガラス板上に形成し
た透明導電膜(比較試料I)と同様に、結晶粒が密に存
在して表面が平坦であり、結晶粒の配向方法がある領域
ごとに異なるようなドメインが存在せず、かつ、表2に
示されるようにX線回折ピーク強度比I1 /I2 が5以
上であり、結晶性の良好な透明導電膜であった。そし
て、これらの本発明の透明導電膜は、比抵抗が4.0×
10-4Ω・cm以下、波長550nmにおける透過率が
80%以上であり、電気的特性および透明性ともに優れ
た透明導電膜であることが確認された。さらに、配向膜
特性も良好であり、液晶ディスプレイ用の透明導電膜と
して実用に供し得るものであった。
[Table 2] The transparent conductive film (Sample I) formed on the color filter substrate shown in FIG. 2 has dense crystal grains like the transparent conductive film (Comparative Sample I) formed on the glass plate shown in FIG. The surface is flat, there are no domains that are different in each region where the crystal grain orientation method is present, and as shown in Table 2, the X-ray diffraction peak intensity ratio I 1 / I 2 is 5 or more. It was a transparent conductive film having good crystallinity. The transparent conductive film of the present invention has a specific resistance of 4.0 ×.
It was confirmed that the transparent conductive film had excellent electrical characteristics and transparency, having a transmittance of 10 −4 Ω · cm or less and a wavelength of 550 nm of 80% or more. Furthermore, the alignment film characteristics were good, and it could be put to practical use as a transparent conductive film for liquid crystal displays.

【0044】これに対して、従来のスパッタリング法に
よりカラーフィルタ基板上に形成された透明導電膜(比
較試料III )は、成膜時にカラーフィルタから発生した
ガスの影響により図5に示されるように結晶粒塊が生じ
て粗密な膜となり、このため、X線回折ピーク強度比I
1 /I2 が極めて小さく、比抵抗は不十分なものであっ
た。
On the other hand, the transparent conductive film (Comparative Sample III) formed on the color filter substrate by the conventional sputtering method has the effect of the gas generated from the color filter during film formation as shown in FIG. Grain lumps are formed and a dense film is formed. Therefore, the X-ray diffraction peak intensity ratio I
1 / I 2 was extremely small and the specific resistance was insufficient.

【0045】一方、比較的低い基材温度でカラーフィル
タ基板上に形成された後、熱処理を施した透明導電膜
(比較試料IV)は、成膜時の脱ガスの発生がなく、図6
に示されるように結晶粒塊が生じて粗密な膜ではあるも
のの、熱処理により比抵抗および透過率が大幅に向上し
ている。しかし、この透明導電膜(比較試料IV)は配向
膜特性が悪く、液晶ディスプレイ用の透明導電膜として
実用に供し得ないものであった。
On the other hand, the transparent conductive film (Comparative Sample IV) which was heat-treated after being formed on the color filter substrate at a relatively low base material temperature did not generate degassing during film formation, and therefore, FIG.
As shown in (3), although it is a dense film due to crystal grain agglomeration, the specific resistance and the transmittance are greatly improved by the heat treatment. However, this transparent conductive film (Comparative Sample IV) had poor alignment film characteristics and could not be put to practical use as a transparent conductive film for liquid crystal displays.

【0046】[0046]

【発明の効果】以上詳述したように、本発明によれば基
材が加熱やプラズマの影響により変質、劣化、熱分解を
生じたり脱ガスを生じるような耐熱性の低い基材であっ
ても、この基材がプラズマに曝されることなく透明導電
膜がフォロカソード型イオンプレーティング法によって
成膜されるので、基材の変質、劣化、熱分解等、および
基材からの脱ガスが防止され、成膜された透明導電膜
は、結晶粒を有しX線回折法における(222)面のピ
ーク強度I1 と(400)面のピーク強度I2 との比I
1 /I2 が5以上である緻密で表面平坦性に優れ膜構造
中に空孔がほとんどない透明導電膜であるため、比抵抗
が0.8×10-4〜3.5×10-4Ω・cmと極めて低
いものとなる。また、本発明の透明導電膜は単層構造で
あり1種のエッチング剤によるパターニングが可能であ
り、パターニング特性に優れた透明導電膜が得られる。
さらに、本発明の透明導電膜は、表面平坦性が優れるた
め、液晶ディスプレイ等における配向膜適性を具備する
ものである。
As described above in detail, according to the present invention, the base material has a low heat resistance such that the base material is deteriorated, deteriorated, pyrolyzed or degassed by the influence of heating or plasma. However, since the transparent conductive film is formed by the foro-cathode ion plating method without exposing the base material to plasma, alteration, deterioration, thermal decomposition, etc. of the base material and degassing from the base material are prevented. is prevented, the formed transparent conductive film, the ratio I of the X-ray diffraction method has a crystal grain (222) plane peak intensity I 1 and (400) peak of the plane intensity I 2
1 / I 2 is 5 or more, which is dense and has excellent surface flatness, and is a transparent conductive film having few pores in the film structure, and therefore has a specific resistance of 0.8 × 10 −4 to 3.5 × 10 −4. Ω · cm, which is extremely low. Further, the transparent conductive film of the present invention has a single-layer structure and can be patterned by one kind of etching agent, and a transparent conductive film having excellent patterning characteristics can be obtained.
Furthermore, since the transparent conductive film of the present invention has excellent surface flatness, it is suitable for an alignment film in a liquid crystal display or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の透明導電膜の製造方法に使用できる横
形フォロカソード型イオンプレーティング装置の一例を
示す構成図である。
FIG. 1 is a configuration diagram showing an example of a horizontal forocathode type ion plating apparatus that can be used in the method for producing a transparent conductive film of the present invention.

【図2】本発明の透明導電膜を走査型電子顕微鏡で観察
した図面代用写真である。
FIG. 2 is a drawing-substitute photograph in which the transparent conductive film of the present invention is observed with a scanning electron microscope.

【図3】ガラス基板上に形成した透明導電膜を走査型電
子顕微鏡で観察した図面代用写真である。
FIG. 3 is a drawing-substitute photograph in which a transparent conductive film formed on a glass substrate is observed with a scanning electron microscope.

【図4】従来の透明導電膜を走査型電子顕微鏡で観察し
た図面代用写真である。
FIG. 4 is a drawing-substitute photograph observing a conventional transparent conductive film with a scanning electron microscope.

【図5】従来の透明導電膜を走査型電子顕微鏡で観察し
た図面代用写真である。
FIG. 5 is a drawing-substitute photograph obtained by observing a conventional transparent conductive film with a scanning electron microscope.

【図6】従来の透明導電膜を走査型電子顕微鏡で観察し
た図面代用写真である。
FIG. 6 is a drawing-substitute photograph of a conventional transparent conductive film observed with a scanning electron microscope.

【符号の説明】[Explanation of symbols]

1…フォロカソード型イオンプレーティング装置 2…真空チャンバー 3…陽極(ハース) 4…基材ホルダー 5…プラズマガン 6…陰極 7…中間電極 8…補助コイル 11…蒸発源 12…基材 15…プラズマビーム DESCRIPTION OF SYMBOLS 1 ... Foro cathode type ion plating apparatus 2 ... Vacuum chamber 3 ... Anode (haas) 4 ... Base material holder 5 ... Plasma gun 6 ... Cathode 7 ... Intermediate electrode 8 ... Auxiliary coil 11 ... Evaporation source 12 ... Substrate 15 ... Plasma beam

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性および耐プラズマ性の低い基材上
に設けられる透明導電膜において、 結晶粒を有し、X線回折法における(222)面のピー
ク強度I1 と(400)面のピーク強度I2 との比I1
/I2 が5以上であるとともに、比抵抗が0.8×10
-4〜3.5×10-4Ω・cmの範囲であることを特徴と
する透明導電膜。
1. A transparent conductive film provided on a substrate having low heat resistance and plasma resistance, which has crystal grains and has a peak intensity I 1 of (222) plane and an intensity of (400) plane of X-ray diffraction method. Ratio of peak intensity I 2 to I 1
/ I 2 is 5 or more and the specific resistance is 0.8 × 10.
-4 to 3.5 × 10 -4 Ω · cm in range, a transparent conductive film.
【請求項2】 移動度が30〜50cm2 /Vsecの
範囲であることを特徴とする請求項1に記載の透明導電
膜。
2. The transparent conductive film according to claim 1, having a mobility of 30 to 50 cm 2 / Vsec.
【請求項3】 波長550nmの光に対する透過率が8
0〜100%であることを特徴とする請求項1または請
求項2に記載の透明導電膜。
3. The transmittance for light having a wavelength of 550 nm is 8
It is 0 to 100%, The transparent conductive film of Claim 1 or Claim 2 characterized by the above-mentioned.
【請求項4】 透明導電膜の表面における100Å以上
の大きさの溝の面積占有率は、15%以下であることを
特徴とする請求項1乃至請求項3のいずれかに記載の透
明導電膜。
4. The transparent conductive film according to claim 1, wherein an area occupancy rate of a groove having a size of 100 Å or more on the surface of the transparent conductive film is 15% or less. .
【請求項5】 反応性蒸着法を用い、蒸着源と基材との
間にプラズマを形成し、かつ、該プラズマに曝される前
記基材に悪影響が生じないような条件で前記基材上に透
明導電膜を成膜することを特徴とする透明導電膜の製造
方法。
5. A reactive vapor deposition method is used to form plasma between a vapor deposition source and a base material, and the base material exposed to the plasma is not adversely affected on the base material. A method for producing a transparent conductive film, which comprises forming a transparent conductive film on the substrate.
【請求項6】 前記条件は、前記基材をプラズマ雰囲気
中あるいは加熱雰囲気中に曝したとき、質量分析計でマ
スナンバー68以上に該当する出力の分圧比が1×10
-11 Torr未満を呈するような条件であることを特徴とす
る請求項5に記載の透明導電膜の製造方法。
6. The condition is that when the substrate is exposed to a plasma atmosphere or a heating atmosphere, the partial pressure ratio of the output corresponding to a mass number of 68 or higher in the mass spectrometer is 1 × 10.
The method for producing a transparent conductive film according to claim 5, wherein the condition is such that it is less than -11 Torr.
JP25024795A 1995-09-04 1995-09-04 Transparent conductive film and method for producing the same Expired - Fee Related JP3831433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25024795A JP3831433B2 (en) 1995-09-04 1995-09-04 Transparent conductive film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25024795A JP3831433B2 (en) 1995-09-04 1995-09-04 Transparent conductive film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0971857A true JPH0971857A (en) 1997-03-18
JP3831433B2 JP3831433B2 (en) 2006-10-11

Family

ID=17205042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25024795A Expired - Fee Related JP3831433B2 (en) 1995-09-04 1995-09-04 Transparent conductive film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3831433B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269338A (en) * 2005-03-25 2006-10-05 Dainippon Printing Co Ltd Flexible transparent electrode substrate and organic el display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269338A (en) * 2005-03-25 2006-10-05 Dainippon Printing Co Ltd Flexible transparent electrode substrate and organic el display device

Also Published As

Publication number Publication date
JP3831433B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US5458753A (en) Transparent conductive film consisting of zinc oxide and gallium
US4170662A (en) Plasma plating
US4673475A (en) Dual ion beam deposition of dense films
US4336277A (en) Transparent electrical conducting films by activated reactive evaporation
EP0385475A2 (en) Method of forming a transparent conductive film
JPH06158308A (en) Target for sputtering for indium-tin oxide film and its production
KR20020048372A (en) Method of forming indum tin oxide thin film using magnetron negative ion sputter source
JP2003520296A (en) Electron beam evaporation method of transparent indium tin oxide
JP3766453B2 (en) Transparent conductive film and method for producing the same
KR20010083477A (en) Method of depositing an io or ito thin film on polymer substrate
JPWO2003106732A1 (en) Article coated with titanium compound film, method for producing the article, and sputtering target used for coating the film
US3418229A (en) Method of forming films of compounds having at least two anions by cathode sputtering
CN1966758A (en) Process for preparing vanadium oxide film
KR100732498B1 (en) Silver selenide film stoichiometry and morphology control in sputter deposition
US3879278A (en) Composite cermet thin films
JP3723366B2 (en) Substrate with ITO transparent conductive film and method for forming ITO transparent conductive film
Qin et al. Indium oxide film formation by O2 cluster ion-assisted deposition
JP3831433B2 (en) Transparent conductive film and method for producing the same
KR100192228B1 (en) Coating method of tin-oxide
EP0631332B1 (en) Method of manufacturing Y-Ba-Cu-O superconducting thin film
Ishibashi et al. Large area deposition of ITO films by cluster type sputtering system
JP2996922B2 (en) Tin oxide thin film sensor for sensing hydrogen and method of manufacturing the same
KR101812947B1 (en) Method of manufacturing resistive film for bolometer, resistive film for bolometer by the same and method of manufacturing bolometer
Miyagawa et al. Growth of epitaxial TiN films on MgO (100) by high current discharge plasma
JP3095232B2 (en) Method for producing transparent conductive film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Effective date: 20060302

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20060328

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100721

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120721

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120721

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130721

LAPS Cancellation because of no payment of annual fees