JPH0964437A - Rare-earth element-doped optical fiber amplifier - Google Patents

Rare-earth element-doped optical fiber amplifier

Info

Publication number
JPH0964437A
JPH0964437A JP7237793A JP23779395A JPH0964437A JP H0964437 A JPH0964437 A JP H0964437A JP 7237793 A JP7237793 A JP 7237793A JP 23779395 A JP23779395 A JP 23779395A JP H0964437 A JPH0964437 A JP H0964437A
Authority
JP
Japan
Prior art keywords
optical
signal
light
earth element
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7237793A
Other languages
Japanese (ja)
Inventor
Haruo Yoshida
春雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP7237793A priority Critical patent/JPH0964437A/en
Publication of JPH0964437A publication Critical patent/JPH0964437A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a rare-earth element-doped optical fiber amplifier which is provided with a signal generation function and which reduces a noise accumulation effect in a multistage cascade connection at a time when light is amplified and relayed by a method wherein an original signal is self-extracted, the signal is processed in such a way that its waveform is shaped or that its timing is adjusted and exciting signal light is modulated so as to be amplified in synchronization with the injection of signal light to be amplified. SOLUTION: A part of a light signal is taken out by an optical branching filter 30, and it is received with high sensitivity by a light-signal reception means 4 so as to be photoelectrically converted. The received signal which has been converted into an electric signal is timing-regenerated or waveform-shaped through an input drive-type timing filter 33 so as to be returned to the original signal. Exciting light from an exciting light source is modulated by the original signal. The modulated exciting light is multiplexed with the light signal by an optical multiplexer 12, and their multiplexed light is amplified through a rare-earth element-doped optical fiber 15 in synchronization with the injection of the light signal. When the light signal is multiplexed by the optical multiplexer 12, the timing of both is different. As a result, an optical delay circuit 31 is inserted into a light signal line so as to make the timing agree.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば光通信網にお
ける光ファイバ通信幹線系や光加入者系などに用いられ
る稀土類元素添加光ファイバ増幅器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth element-doped optical fiber amplifier used in, for example, an optical fiber communication trunk system or an optical subscriber system in an optical communication network.

【0002】[0002]

【従来の技術】光通信網は、マルチメディア時代の情報
通信基盤整備として、広い伝送帯域をもつ光ファイバ通
信網の敷設が急がれている。図5に標準的な光ファイバ
通信幹線の例を示す。これは、505km の距離を 10Gbit
/s伝送で光増幅器を使用した場合の例であり、図5
(A)はその構成図であり、図5(B)はそのレベルダ
イアグラムである。光通信網において、光ファイバ通信
幹線系では伝送線路の損失を補償するために、また光加
入者系においても加入者への分岐数による光パワーの低
減を補償するために、光増幅器は必ず必要である。そこ
で約80km毎に光増幅器を設けて、それぞれ約20d
B増幅して伝送している。
2. Description of the Related Art As an optical communication network, an optical fiber communication network having a wide transmission band has been urgently laid as an information communication infrastructure for the multimedia age. FIG. 5 shows an example of a standard optical fiber communication trunk line. This is 10Gbit over a distance of 505km.
Fig. 5 is an example of using an optical amplifier in / s transmission.
5A is its configuration diagram, and FIG. 5B is its level diagram. In an optical communication network, an optical amplifier is indispensable in order to compensate for the loss of the transmission line in the optical fiber communication main line system and in the optical subscriber system to compensate for the reduction of the optical power due to the number of branches to the subscriber. Is. Therefore, an optical amplifier is installed every about 80 km, and each is about 20d.
B is amplified and transmitted.

【0003】光ファイバ通信網に用いるられる光ファイ
バ伝送線路は、本来受動的なものであり信号は減衰する
のみであったが、稀土類元素添加光ファイバ増幅器の出
現によって、光通信の実用性は大きく広がった。
Optical fiber transmission lines used in optical fiber communication networks are passive in nature and only attenuate signals. However, the advent of rare earth element-doped optical fiber amplifiers has made practical use of optical communication possible. It spread greatly.

【0004】この稀土類元素添加光ファイバ増幅器の動
作原理の説明図を図3に示す。そして、一般的な稀土類
元素、例えば、エルビウム(Er3+)、ネオジウム(N
d3+)、プラセオジウム(Pr3+)などの稀土類元素添加
光ファイバ増幅器の構成例を図4に示す。稀土類元素添
加光ファイバ増幅器の動作原理は光励起、つまり光ポン
ピングにより、添加した稀土類元素のレーザ媒質中のエ
ネルギーを反転分布させ、誘導放出により増幅動作をさ
せるものである。
FIG. 3 is an explanatory view of the operating principle of this rare earth element-doped optical fiber amplifier. And common rare earth elements such as erbium (Er 3+ ), neodymium (N
FIG. 4 shows a configuration example of an optical fiber amplifier doped with a rare earth element such as d 3+ ) or praseodymium (Pr 3+ ). The operation principle of the rare earth element-doped optical fiber amplifier is such that the energy of the added rare earth element in the laser medium is inverted due to optical pumping, that is, optical pumping, and the amplification operation is performed by stimulated emission.

【0005】先ず、図3を用いて稀土類元素添加光ファ
イバ増幅器の増幅作用動作原理を説明する。稀土類元素
添加ファイバに励起光を照射すると、その励起光のエネ
ルギー(hνpump)を添加したレーザ媒質が吸収して、
中間吸収準位にエネルギーの反転分布を形成する。その
後に誘導放出の上準位から下準位に遷移する誘導放出過
程においてエネルギー(hνsig)が放出されて増幅作
用が行われる。このエネルギー準位の遷移過程に、3準
位過程と4準位過程などがある。
First, the principle of amplification operation of the rare earth element-doped optical fiber amplifier will be described with reference to FIG. When the rare earth element-doped fiber is irradiated with excitation light, the laser medium added with the energy (hν pump ) of the excitation light absorbs it,
An inversion distribution of energy is formed in the intermediate absorption level. After that, energy (hν sig ) is released in the stimulated emission process of transition from the upper level to the lower level of the stimulated emission, and the amplifying action is performed. This energy level transition process includes a three-level process and a four-level process.

【0006】図3(A)は、エルビウムなどの3準位過
程の増幅作用の説明図であり、図3(B)は、ネオジウ
ムなどの4準位過程での説明図である。図中、iは中間
吸収準位を、uは誘導放出の上準位を、lは誘導放出の
下準位を、gは基底準位を表す。ここで誘導放出の上準
位uから励起光源波長に相当するだけ高いところにエネ
ルギー準位eがある場合には、ESA(Excited State
Absorption)と呼ばれる現象が生じて、励起光のエネル
ギーが消費され励起効率が低下する。このESAが起こ
らない励起光波長として、エルビウム添加光ファイバ増
幅器(以下[EDFA」という)の場合には、0.98μ
m、1.48μmもしくは1.54μmの波長を用いる。ネオジ
ウム添加光ファイバ(以下「NDFA」という)の場合
には、1.06μmもしくは1.32μmの波長を用いる。
FIG. 3A is an explanatory diagram of the amplifying action of the three-level process of erbium and the like, and FIG. 3B is an explanatory diagram of the four-level process of neodymium and the like. In the figure, i is the intermediate absorption level, u is the upper level of stimulated emission, l is the lower level of stimulated emission, and g is the ground level. Here, when the energy level e is higher than the stimulated emission upper level u by a wavelength corresponding to the excitation light source wavelength, ESA (Excited State)
A phenomenon called "absorption" occurs and the energy of the excitation light is consumed, and the excitation efficiency decreases. In the case of an erbium-doped optical fiber amplifier (hereinafter referred to as "EDFA"), the pumping light wavelength at which this ESA does not occur is 0.98μ
m, 1.48 μm or 1.54 μm wavelength is used. In the case of a neodymium-doped optical fiber (hereinafter referred to as “NDFA”), a wavelength of 1.06 μm or 1.32 μm is used.

【0007】図4は、これらの稀土類元素添加光ファイ
バ増幅器10を用いた光増幅器の構成例である。ここで
はEDFAを用いている。図4(A)は前方向励起型の
場合である。前方向励起型EDFA101 は、光入力端
子11から信号光を入力し、光合波器12で励起光源1
3からの励起光と合波する。信号光と励起光との光周波
数は相違しており、励起光の光波長の方が短い。つま
り、光周波数が高い。この合波光は光アイソレータ14
を通過の後にエルビウム添加光ファイバ15で励起光に
よる誘導放出により信号光周波数は増幅作用で増幅され
る。
FIG. 4 shows a configuration example of an optical amplifier using the rare earth element-doped optical fiber amplifier 10. Here, EDFA is used. FIG. 4A shows the case of the forward excitation type. The forward pumping type EDFA 10 1 inputs the signal light from the optical input terminal 11, and the optical multiplexer 12 drives the pumping light source 1
It is multiplexed with the excitation light from 3. The optical frequencies of the signal light and the excitation light are different, and the optical wavelength of the excitation light is shorter. That is, the optical frequency is high. This combined light is an optical isolator 14
After passing through, the signal light frequency is amplified by the amplification effect by the stimulated emission by the excitation light in the erbium-doped optical fiber 15.

【0008】稀土類元素添加光ファイバ増幅器10で
は、信号光、励起光が長尺にわたって小さなコアに閉じ
込められるため、比較的小さな利得係数でも添加光ファ
イバの長さLを長くすることにより大きな利得を得るこ
とができる。増幅された信号光は光アイソレータ16と
光バンドパスフィルタ17を通過して光出力端子20に
導かれる。図4(A)は、励起光源13を入力側に設け
た前方向励起型であるが、この他に励起光源を出力側に
設けた後方励起型があり、更に励起光源13を入力側と
出力側に設けた双方向励起型もある。
In the rare earth element-doped optical fiber amplifier 10, since the signal light and the pumping light are confined in a small core over a long length, a large gain can be obtained by increasing the length L of the doped optical fiber even with a relatively small gain coefficient. Obtainable. The amplified signal light passes through the optical isolator 16 and the optical bandpass filter 17 and is guided to the optical output terminal 20. FIG. 4A shows a forward pumping type in which a pumping light source 13 is provided on the input side, but there is also a backward pumping type in which a pumping light source is provided on the output side. There is also a bidirectional excitation type provided on the side.

【0009】更に、図4(B)に示すような反射型励起
型EDFA102 もある。これは、光サーキュレータ1
8と反射鏡19とを用いたもので、光入力端子11から
の信号光を光サーキュレータ18で増幅側に導き、信号
光と励起光源13からの励起光とを光合波器12で合波
してエルビウム添加光ファイバ15で増幅し、反射鏡1
9で全反射させ再びエルビウム添加光ファイバ15で増
幅し、光サーキュレータ18で光出力端子20に増幅さ
れた信号光を導くものである。
Further, there is also a reflection type excitation type EDFA 10 2 as shown in FIG. 4 (B). This is an optical circulator 1
8 and a reflecting mirror 19, the signal light from the optical input terminal 11 is guided to the amplification side by the optical circulator 18, and the signal light and the pumping light from the pumping light source 13 are combined by the optical multiplexer 12. Amplifying with erbium-doped optical fiber 15 and reflecting mirror 1
The signal light is totally reflected at 9 and again amplified by the erbium-doped optical fiber 15, and the amplified signal light is guided to the optical output terminal 20 by the optical circulator 18.

【0010】[0010]

【発明が解決しようとする課題】上述したように、いず
れの構成でも信号光の増幅は行うが、信号波形の再生中
継機能が無い。よって、雑音は光増幅器を多段に従属接
続することにより累積されるので、この雑音が通信の制
約条件になっていた。つまり、光増幅作用は有るが、波
形またはタイミング再生作用が無いという問題点があっ
た。
As described above, in any of the configurations, the signal light is amplified, but there is no function of regenerating and repeating the signal waveform. Therefore, noise is accumulated by connecting the optical amplifiers in multiple stages, and this noise has been a constraint condition for communication. In other words, there is a problem that there is no waveform or timing reproduction action, although there is an optical amplification action.

【0011】同じ通信網であっても電気通信網の長距離
伝送においては、伝送線路の雑音によるパルス波形の位
相のゆらぎやタイミングの乱れを除去するために、原信
号を復元しながら増幅して長距離伝送する信号再生中継
技術が有り、これにより信号伝送品質の低下を防止して
いる。
Even in the same communication network, in long-distance transmission of a telecommunication network, in order to eliminate the fluctuation of the phase of the pulse waveform and the disturbance of the timing due to the noise of the transmission line, the original signal is restored and amplified. There is a signal regeneration relay technology for long-distance transmission, which prevents deterioration of signal transmission quality.

【0012】この発明は電気通信方式と同様に、光増幅
器にも信号再生機能を持たせ、光増幅中継における多段
の従属接続時の雑音累積効果を低減することにある。
Similar to the telecommunication system, the present invention is to provide the optical amplifier with a signal reproducing function to reduce the noise accumulation effect at the multistage cascade connection in the optical amplification relay.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、この発明は稀土類元素添加光ファイバ増幅器におい
て、原信号で変調した光搬送波の一部を分波して、その
中から原信号を自己抽出して波形整形やタイミング調整
などの信号処理を施した後に、その処理した信号でポン
ピング光となる励起信号光を変調し、この変調された励
起光を増幅すべき信号光に注入同期して稀土類元素添加
光ファイバで増幅する。つまり、増幅機能および信号再
生機能を持った稀土類元素添加光ファイバ増幅器であ
る。
In order to achieve the above object, the present invention is a rare earth element-doped optical fiber amplifier, in which a part of an optical carrier modulated with an original signal is demultiplexed, and the original signal is extracted from it. After self-extracting and performing signal processing such as waveform shaping and timing adjustment, the pumped signal light that is the pumping light is modulated by the processed signal, and this modulated pumping light is injection-locked to the signal light to be amplified. Then, it is amplified with an optical fiber doped with a rare earth element. That is, it is a rare earth element-doped optical fiber amplifier having an amplification function and a signal reproduction function.

【0014】請求項1の発明は、光信号の一部を光分波
器で取り出し、これを光信号受信手段で高感度に受信し
た後に光電変換する。光信号レベルがハイレベルである
場合には直接光電変換してもよいが、光信号レベルが低
い場合にはヘテロダイン方式やホモダイン方式を用い
る。電気信号に変換された受信信号をナイキストフィル
タやガウシアンフィルタのような入力駆動型タイミング
フィルタに通してタイミング再生や波形整形を行い、原
信号に復帰させる。この原信号で励起光源からの励起光
に変調を掛ける。変調された励起光を光信号と光合波器
で合波して注入同期させ、その合波光を稀土類元素添加
光ファイバに通して増幅するものである。
According to the first aspect of the present invention, a part of the optical signal is taken out by the optical demultiplexer, and the optical signal is received by the optical signal receiving means with high sensitivity and photoelectrically converted. Direct photoelectric conversion may be performed when the optical signal level is high, but a heterodyne system or a homodyne system is used when the optical signal level is low. The received signal converted into an electric signal is passed through an input drive type timing filter such as a Nyquist filter or a Gaussian filter to perform timing reproduction and waveform shaping to restore the original signal. This original signal modulates the excitation light from the excitation light source. The modulated pumping light is multiplexed with an optical signal by an optical multiplexer, injection-locked, and the multiplexed light is passed through a rare earth element-doped optical fiber to be amplified.

【0015】ここで、一部の入力信号を原信号に復帰さ
せる電気的信号処理は若干の時間を要する。そこで光合
波器で光信号と合波するとき、両者のタイミングが相違
するので光信号ラインに光遅延回路を挿入してタイミン
グの一致を図る。電気的信号処理時間は一定にすること
ができるから、遅延時間は一定でよい。
Here, the electrical signal processing for returning a part of the input signals to the original signals requires some time. Therefore, when the optical signal is multiplexed with the optical multiplexer, the timings of the two differ from each other. Therefore, an optical delay circuit is inserted in the optical signal line so as to match the timing. Since the electrical signal processing time can be constant, the delay time can be constant.

【0016】請求項2の発明は、励起光源が半導体レー
ザの場合の変調の一形式である。つまり、半導体レーザ
に原信号電流を注入して励起光に変調を掛けた構成であ
る。請求項3の発明は、請求項1または2記載の稀土類
元素添加光ファイバ増幅器において、光信号受信手段の
感度を高めるために光学的ヘテロダイン検出手段を用い
たものである。請求項4の発明も、請求項1または2記
載の稀土類元素添加光ファイバ増幅器において、光信号
受信手段の感度を高めるために光学的ホモダイン検出手
段を用いたものである。以下実施例について説明する。
The invention of claim 2 is a form of modulation when the pumping light source is a semiconductor laser. That is, the original signal current is injected into the semiconductor laser to modulate the excitation light. According to a third aspect of the present invention, in the rare earth element-doped optical fiber amplifier according to the first or second aspect, an optical heterodyne detecting means is used to enhance the sensitivity of the optical signal receiving means. The invention of claim 4 also uses the optical homodyne detecting means in the rare earth element-doped optical fiber amplifier according to claim 1 or 2 in order to enhance the sensitivity of the optical signal receiving means. Examples will be described below.

【0017】[0017]

【実施例】図1に本発明の一実施例の構成図を、図2に
他の実施例の構成図を示す。ここで、図4の部分と対応
する部分には同一符号を付す。この発明は、従来技術を
説明した図4におけるどのタイプにでも適用できる。つ
まり、前方向励起型、後方向励起型、双方向励起型ある
いは反射形励起型のいずれにでも適用できるものである
が、この実施例では前方向励起型で説明する。また、稀
土類元素添加光ファイバのどの種類の稀土類元素添加光
ファイバ増幅器でも適用できるが、ここではEDFAに
ついて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a block diagram of one embodiment of the present invention, and FIG. 2 shows a block diagram of another embodiment. Here, parts corresponding to those of FIG. 4 are designated by the same reference numerals. The present invention can be applied to any of the types shown in FIG. That is, it can be applied to any of the forward pumping type, the backward pumping type, the bidirectional pumping type, and the reflective pumping type, but in this embodiment, the forward pumping type will be described. Further, although any kind of rare earth element-doped optical fiber amplifier of the rare earth element-doped optical fiber can be applied, the EDFA will be described here.

【0018】図1の全体図面が前方向励起型EDFA1
0の構成図である。光信号は光入力端子11から入力
し、光遅延回路31、そして励起光と合波させるする光
合波器12、光アイソレータ14を通り、エルビウム添
加光ファイバ15で増幅されて、光アイソレータ16お
よび光バンドパスフィルタ17を通過して光出力端子2
0に達する。ここで光アイソレータ14および16を用
いるのは光信号の逆進を防ぐためであり、光バンドパス
フィルタ17の挿入はESA等の光周波数を除去するた
めである。
The whole drawing of FIG. 1 is a forward excitation type EDFA1.
FIG. The optical signal is input from the optical input terminal 11, passes through the optical delay circuit 31, the optical multiplexer 12 that combines with the pumping light, and the optical isolator 14, is amplified by the erbium-doped optical fiber 15, and then the optical isolator 16 and the optical signal. Light output terminal 2 after passing through bandpass filter 17
Reaches 0. The optical isolators 14 and 16 are used here to prevent the optical signal from moving backward, and the optical bandpass filter 17 is inserted to remove optical frequencies such as ESA.

【0019】上記の主線路に対して、この発明による別
に設けた回路により、励起光に原信号で変調を掛けて光
合波器12で主線路の光信号と合波し、光信号に注入同
期させる。このために別回路として主線路の光信号の一
部を光分波器30で取り出し、光信号受信手段40で高
感度に受信させる。図1では高感度検出のためにヘテロ
ダイン検出手段を示している。光信号レベルがハイレベ
ルのときには、直接光電変換して電気信号に変換しても
よい。
With respect to the above-mentioned main line, by a circuit separately provided according to the present invention, the pumping light is modulated with the original signal, multiplexed by the optical multiplexer 12 with the optical signal of the main line, and injection-locked to the optical signal. Let Therefore, as a separate circuit, a part of the optical signal on the main line is taken out by the optical demultiplexer 30 and received by the optical signal receiving means 40 with high sensitivity. In FIG. 1, the heterodyne detection means is shown for high sensitivity detection. When the optical signal level is high, it may be directly photoelectrically converted into an electric signal.

【0020】ヘテロダイン検出手段は光信号をビームス
プリッタ41で2分岐し、一方の光波は光周波数シフタ
45で若干周波数をシフトし光反射板44を通してビー
ムスプリッタ42に導く。光周波数シフタ45は音響光
学素子を用いると容易に構成できる。他方の光波は光反
射板43を通してビームスプリッタ42に導き、ここで
シフトした光波と合波する。その合波光のビート信号を
バンドパスフィルタ付き増幅器で取り出し増幅し、変換
器46で電気信号に変換する。
The heterodyne detecting means splits the optical signal into two beams by the beam splitter 41, and one light wave is slightly shifted in frequency by the optical frequency shifter 45 and guided to the beam splitter 42 through the light reflecting plate 44. The optical frequency shifter 45 can be easily constructed by using an acoustooptic device. The other light wave is guided to the beam splitter 42 through the light reflection plate 43, and is combined with the light wave shifted here. The beat signal of the combined light is taken out and amplified by an amplifier with a bandpass filter, and converted by a converter 46 into an electric signal.

【0021】光信号から取り出した電気信号はジッター
を含んだ信号であるため、ナイキストフィルタやガウシ
アンフィルタのような入力駆動型タイミングフィルタ3
3を用いてタイミングを再生し、波形を整形して原信号
を再現する。原信号に再現された電気信号でもって励起
信号源131からの励起光を光変調器36で変調する。
変調された励起光が光合波器12で主線路の光信号と合
波する。変調された励起光の変調タイミングは、主線路
光信号の信号タイミングと若干の相違がある。電気信号
処理時間に一定の時間を要し、遅れるからである。そこ
で、この遅延時間に合わせるように光遅延回路31を設
けて、合致するよう遅延時間を調整する。
Since the electric signal extracted from the optical signal is a signal containing jitter, the input drive type timing filter 3 such as Nyquist filter or Gaussian filter is used.
3, the timing is reproduced, the waveform is shaped, and the original signal is reproduced. The pumping light from the pumping signal source 13 1 is modulated by the optical modulator 36 with the electric signal reproduced as the original signal.
The modulated pumping light is multiplexed by the optical multiplexer 12 with the optical signal on the main line. The modulation timing of the modulated pumping light is slightly different from the signal timing of the main line optical signal. This is because the electric signal processing time requires a certain time and is delayed. Therefore, the optical delay circuit 31 is provided so as to match this delay time, and the delay time is adjusted so as to match.

【0022】原信号に変調された励起光は、光合波器1
2で主線路の光信号と合波する。この合波光は光アイソ
レータ14を通してエルビウム添加光ファイバ15で増
幅される。増幅された光信号は光アイソレータ16およ
び光バンドパスフィルタ17を通って光出力端子20に
導かれ出力する。
The pumping light modulated into the original signal is supplied to the optical multiplexer 1
At 2, it combines with the optical signal of the main line. This combined light is amplified by the erbium-doped optical fiber 15 through the optical isolator 14. The amplified optical signal is guided to the optical output terminal 20 through the optical isolator 16 and the optical bandpass filter 17, and is output.

【0023】(他の実施例)図2に他の実施例を示す。
これは励起光源132 が半導体レーザの場合の例であ
る。半導体レーザは電流を注入させて発振させ、注入電
流により変調を掛けることができる。そこで再現された
原信号の電流を半導体レーザの励起光源132に注入し
て発振させ、変調励起光をうる。この変調励起光を光合
波器12で、光信号と合波させて増幅を行う。その他の
構成は図1と同じである。
(Other Embodiments) FIG. 2 shows another embodiment.
This is an example when the excitation light source 13 2 is a semiconductor laser. A semiconductor laser can be injected with a current to oscillate and can be modulated by the injected current. Then, the reproduced current of the original signal is injected into the pumping light source 13 2 of the semiconductor laser and oscillated to obtain modulated pumping light. The modulated pumping light is multiplexed by the optical multiplexer 12 with the optical signal to be amplified. Other configurations are the same as those in FIG.

【0024】[0024]

【発明の効果】以上詳細に説明したように、この発明は
光ファイバ通信網において用いる稀土類元素添加光ファ
イバ増幅器において、増幅作用はもとより信号波形の再
生、タイミングの再生を行える。つまり、信号再生機能
の有る稀土類元素添加光ファイバ増幅器であるので、信
号経路などによる雑音、外乱などを除去することができ
る。よってより以上の超遠距離の光信号伝送を行えるよ
うになり、その実用的価値は大である。
As described above in detail, according to the present invention, in the rare earth element-doped optical fiber amplifier used in the optical fiber communication network, not only the amplification action but also the reproduction of the signal waveform and the reproduction of the timing can be performed. That is, since it is a rare earth element-doped optical fiber amplifier having a signal reproducing function, it is possible to remove noise and disturbance due to the signal path and the like. Therefore, it becomes possible to carry out optical signal transmission over an extremely long distance, and its practical value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の他の実施例の構成図である。FIG. 2 is a configuration diagram of another embodiment of the present invention.

【図3】稀土類元素添加光ファイバ増幅器の増幅作用の
動作原理説明図である。図3(A)は3準位過程の増幅
作用であり、図3(B)は4準位過程の増幅作用であ
る。
FIG. 3 is an explanatory diagram of an operating principle of amplification action of a rare earth element-doped optical fiber amplifier. FIG. 3A shows the amplifying action of the three-level process, and FIG. 3B shows the amplifying action of the four-level process.

【図4】従来の光ファイバ増幅器例の構成図である。図
4(A)は前方向励起型EDFAであり、図4(B)は
反射形励起型EDFAである。
FIG. 4 is a block diagram of an example of a conventional optical fiber amplifier. FIG. 4A is a forward excitation EDFA, and FIG. 4B is a reflection excitation EDFA.

【図5】従来からの標準的な光ファイバ通信幹線の構成
図である。図5(A)はその構成図であり、図5(B)
はそのレベルダイアグラムである。
FIG. 5 is a configuration diagram of a conventional standard optical fiber communication trunk line. FIG. 5 (A) is its configuration diagram, and FIG. 5 (B).
Is the level diagram.

【符号の説明】[Explanation of symbols]

10 稀土類元素添加光ファイバ増幅器 101 前方向励起型EDFA 102 反射形励起型EDFA 11 光入力端子 12 光分波器 13、131 、132 励起光源 14、16 光アイソレータ 15 稀土類元素添加光ファイバ 17 光バンドパスフィルタ 18 光サーキュレータ 19 反射鏡 20 光出力端子 30 光分波器 31 光遅延回路 32 光電変換器 33 入力駆動型タイミングフィルタ 34 電気信号増幅器 35 光変調器 40 光信号受信手段 41、42 ビームスプリッタ 42、43 光反射板 45 光周波数シフタ 46 選択増幅器10 rare earth element-doped optical fiber amplifier 10 1 forward pumping EDFA 10 2 reflection pumping EDFA 11 optical input terminal 12 optical demultiplexer 13, 13 1 , 13 2 pumping light source 14, 16 optical isolator 15 rare earth element doping Optical fiber 17 Optical bandpass filter 18 Optical circulator 19 Reflector 20 Optical output terminal 30 Optical demultiplexer 31 Optical delay circuit 32 Photoelectric converter 33 Input drive timing filter 34 Electric signal amplifier 35 Optical modulator 40 Optical signal receiving means 41 , 42 Beam splitter 42, 43 Optical reflector 45 Optical frequency shifter 46 Selective amplifier

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光信号を励起光と共に稀土類元素添加光
ファイバに通過させて増幅させる稀土類元素添加光ファ
イバ増幅器において、 光入力端子(11)に入力する光信号の一部を取り出す
光分波器(30)と、 上記光分波器(30)からの光信号を受信する光信号受
信手段(40)と、 上記光信号受信手段(40)からの光信号を電気信号に
変換する光電変換器(32)と、 上記光電変換器(32)からの電気信号を入力して波形
整形する入力駆動型タイミングフィルタ(33)と、 波形整形された電気信号で励起光源(131 )からの励
起光を変調する光変調器(35)と、 上記光入力端子(11)から入力する光信号を一定時間
遅延させる光遅延回路(31)と、 上記光遅延回路(31)からの光信号と上記光変調器
(35)で変調された励起光とを合波する光合波器(1
2)と、 上記光合波器(12)で合波された光合波信号を稀土類
元素添加光ファイバ(15)で増幅し出力する光出力端
子(20)と、 を具備することを特徴とする稀土類元素添加光ファイバ
増幅器。
1. In a rare earth element-doped optical fiber amplifier for amplifying an optical signal by passing it through a rare earth element-doped optical fiber together with pumping light, an optical component for extracting a part of the optical signal input to an optical input terminal (11). Wave device (30), optical signal receiving means (40) for receiving the optical signal from the optical demultiplexer (30), and photoelectric converter for converting the optical signal from the optical signal receiving means (40) into an electrical signal A converter (32), an input drive type timing filter (33) for inputting an electric signal from the photoelectric converter (32) and shaping the waveform, and a waveform shaped electric signal from an excitation light source (13 1 ). An optical modulator (35) for modulating pumping light, an optical delay circuit (31) for delaying an optical signal input from the optical input terminal (11) for a certain time, and an optical signal from the optical delay circuit (31). Change with the above optical modulator (35) Optical multiplexer for multiplexing the excitation light (1
2) and an optical output terminal (20) for amplifying and outputting the optical multiplexed signal multiplexed by the optical multiplexer (12) with the rare earth element-doped optical fiber (15). Rare earth element doped optical fiber amplifier.
【請求項2】 光信号を励起光と共に稀土類元素添加光
ファイバに通過させて増幅させる光ファイバ増幅器にお
いて、 光入力端子(11)に入力する光信号の一部を取り出す
光分波器(30)と、 上記光分波器(30)からの光信号を受信する光信号受
信手段(40)と、 上記光信号受信手段(40)からの光信号を電気信号に
変換する光電変換器(32)と、 上記光電変換器(32)からの電気信号を入力して波形
整形する入力駆動型タイミングフィルタ(33)と、 波形整形された電気信号を励起光源に電流注入して変調
された励起光を発振する励起光源(132 )と、 上記光入力端子(11)から入力する光信号を一定時間
遅延させる光遅延回路(31)と、 上記光遅延回路(31)からの光信号と上記光変調器
(35)で変調された励起光とを合波する光合波器(1
2)と、 上記光合波器(12)で合波された光合波信号を稀土類
元素添加光ファイバ(15)で増幅し出力する光出力端
子(20)と、 を具備することを特徴とする稀土類元素添加光ファイバ
増幅器。
2. An optical demultiplexer (30) for extracting a part of an optical signal input to an optical input terminal (11) in an optical fiber amplifier for amplifying an optical signal by passing it through a rare earth element-doped optical fiber together with pumping light. ), An optical signal receiving means (40) for receiving the optical signal from the optical demultiplexer (30), and a photoelectric converter (32 for converting the optical signal from the optical signal receiving means (40) into an electric signal. ), An input drive type timing filter (33) for inputting an electric signal from the photoelectric converter (32) to shape the waveform, and an excitation light modulated by injecting a current into the excitation light source. A pumping light source (13 2 ), an optical delay circuit (31) that delays an optical signal input from the optical input terminal (11) for a certain time, an optical signal from the optical delay circuit (31) and the optical signal. Modulated by modulator (35) Optical multiplexer for multiplexing the excitation light (1
2) and an optical output terminal (20) for amplifying and outputting the optical multiplexed signal multiplexed by the optical multiplexer (12) with the rare earth element-doped optical fiber (15). Rare earth element doped optical fiber amplifier.
【請求項3】 光信号受信手段(40)は光学的ヘテロ
ダイン検出手段であることを特徴とする請求項1または
2記載の稀土類元素添加光ファイバ増幅器。
3. A rare earth element-doped optical fiber amplifier according to claim 1, wherein the optical signal receiving means (40) is an optical heterodyne detecting means.
【請求項4】 光信号受信手段(40)は、光学的ホモ
ダイン検出手段であることを特徴とする請求項1または
2記載の稀土類元素添加光ファイバ増幅器。
4. The rare earth element-doped optical fiber amplifier according to claim 1 or 2, wherein the optical signal receiving means (40) is an optical homodyne detecting means.
JP7237793A 1995-08-22 1995-08-22 Rare-earth element-doped optical fiber amplifier Withdrawn JPH0964437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7237793A JPH0964437A (en) 1995-08-22 1995-08-22 Rare-earth element-doped optical fiber amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7237793A JPH0964437A (en) 1995-08-22 1995-08-22 Rare-earth element-doped optical fiber amplifier

Publications (1)

Publication Number Publication Date
JPH0964437A true JPH0964437A (en) 1997-03-07

Family

ID=17020516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7237793A Withdrawn JPH0964437A (en) 1995-08-22 1995-08-22 Rare-earth element-doped optical fiber amplifier

Country Status (1)

Country Link
JP (1) JPH0964437A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396625B1 (en) * 2000-12-26 2002-05-28 Sumitomo Electric Industries, Ltd. Optical amplifier and optical fiber module included in the same
EP1220382A2 (en) * 2000-12-26 2002-07-03 Sumitomo Electric Industries, Ltd. Optical amplifier, optical communication system including the same, and optical fiber module included in the same
US6661570B2 (en) 2000-12-26 2003-12-09 Sumitomo Electric Industries, Ltd. Optical amplifier, optical communication system including the same, and optical fiber module included in the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396625B1 (en) * 2000-12-26 2002-05-28 Sumitomo Electric Industries, Ltd. Optical amplifier and optical fiber module included in the same
EP1220382A2 (en) * 2000-12-26 2002-07-03 Sumitomo Electric Industries, Ltd. Optical amplifier, optical communication system including the same, and optical fiber module included in the same
EP1221746A2 (en) * 2000-12-26 2002-07-10 Sumitomo Electric Industries, Ltd. Optical amplifier and optical fiber module
EP1220382A3 (en) * 2000-12-26 2002-08-07 Sumitomo Electric Industries, Ltd. Optical amplifier, optical communication system including the same, and optical fiber module included in the same
EP1221746A3 (en) * 2000-12-26 2002-08-07 Sumitomo Electric Industries, Ltd. Optical amplifier and optical fiber module
JP2002261364A (en) * 2000-12-26 2002-09-13 Sumitomo Electric Ind Ltd Optical amplifier, optical communication system including the same, and optical fiber module included therein
US6661570B2 (en) 2000-12-26 2003-12-09 Sumitomo Electric Industries, Ltd. Optical amplifier, optical communication system including the same, and optical fiber module included in the same

Similar Documents

Publication Publication Date Title
US5140456A (en) Low noise high power optical fiber amplifier
US5546213A (en) Optical amplifier and optical communication system provided with the optical amplifier
US6288834B1 (en) Optical amplifier for amplifying light in a long wavelength band
US5898716A (en) Structure of a passively mode-locked optical fiber laser
WO1997026688A2 (en) Optical amplifiers providing high peak powers with high energy levels
US5392153A (en) Optical amplifier
JP2001069080A (en) Method for optical fiber transmission, optical device and system
JPH11331094A (en) Wide band optical amplifier
US20020181090A1 (en) Wide band erbium-doped fiber amplifier (EDFA)
EP0901245A1 (en) Optical decision circuit and use thereof
US20090147350A1 (en) Amplified spontaneous emission reflector-based gain-clamped fiber amplifier
US6031646A (en) Optical fiber telecommunication system
Johnson et al. Multiwavelength all-optical clock recovery
JP3217037B2 (en) Multi-stage optical fiber amplifier
US7379233B2 (en) Raman amplifier utilizing pump modulation for expanding gain band width
US6570701B1 (en) Long-band light source for testing optical elements using feedback loop
JPH10178226A (en) Method and apparatus for suppression of q-switching in light amplifier
JPH05268166A (en) Optical amplifier relay circuit
KR20090007356A (en) System and method for implementing a boosterless optical communication system
JPH0964437A (en) Rare-earth element-doped optical fiber amplifier
JP2713395B2 (en) Optical fiber amplifier and optical fiber transmission device
US6268955B1 (en) Optical amplifier and wave length division multiplexed light transmission system
JPH08160475A (en) Superhigh-speed optical solinton pulse generating device
JPH06265945A (en) Optical repeater
US6498671B1 (en) Regenerator with reconstitution of an optical signal carrier wave

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105