JPH0961416A - Quantification of lead - Google Patents

Quantification of lead

Info

Publication number
JPH0961416A
JPH0961416A JP21337295A JP21337295A JPH0961416A JP H0961416 A JPH0961416 A JP H0961416A JP 21337295 A JP21337295 A JP 21337295A JP 21337295 A JP21337295 A JP 21337295A JP H0961416 A JPH0961416 A JP H0961416A
Authority
JP
Japan
Prior art keywords
lead
ion exchange
exchange resin
solution
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21337295A
Other languages
Japanese (ja)
Inventor
Yuji Kikuchi
雄二 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP21337295A priority Critical patent/JPH0961416A/en
Publication of JPH0961416A publication Critical patent/JPH0961416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To quantify lead while removing a destructing component by utilizing the complex forming capacity of a metal component and a complex forming agent and the difference between the complex forming capacity and the distribution with an ion exchange range in pretreatment. SOLUTION: A complex forming agent is added to a sample soln. and the pH of the sample soln. is adjusted to 5-9 by alkali or aid and this sample soln. is passed through an ion exchange resin to hold lead on the ion exchange resin. A washing soln. prepared by adding the complex forming agent to purified water and adjusted to pH5-9 is passed through an ion exchange resin to remove an obstructing component. Next, dilute sulfuric acid or nitric acid is passed through the ion exchange resin to elute lead. Lead in the obtained eluted soln. is measured. As the complex forming agent, citric acid or malonic acid is pref. and the concn. of citric acid or malonic acid in the soln. passed through the ion exchange resin depends on the amt. or flow velocity of the sample soln. through the ion exchange resin or ion exchange capacity of the resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、試料溶液中の鉛を
吸光光度計を用いて定量する、簡易な鉛の定量方法に関
する。
TECHNICAL FIELD The present invention relates to a simple lead quantification method for quantifying lead in a sample solution using an absorptiometer.

【0002】[0002]

【従来の技術】有害物質である鉛は、その排水基準が
0.1mg/lに規制されている。そのため、鉛を排出
する恐れのある施設を設置している工場又は事業場につ
いては、上記鉛の排水基準を越えないように排水を管理
する義務が課せられている。従って、これらの工場又は
事業所では、排水中の鉛を定量することが必要となる。
2. Description of the Related Art Lead, which is a harmful substance, has a drainage standard regulated to 0.1 mg / l. Therefore, for factories or business establishments that have facilities that may emit lead, it is obligatory to manage the drainage so as not to exceed the above lead discharge standards. Therefore, it is necessary to quantify lead in wastewater at these factories or business establishments.

【0003】鉛の定量方法は、公的機関への分析値の届
出を必要とする場合には、排水基準を定める総理府令の
規定に基づく環境庁長官が定める排水基準に係わる検定
方法、即ち公定法に従って行う必要がある。具体的に
は、フレーム原子吸光法、電気加熱原子吸光法、ICP
発光分析法、及びICP質量分析法のいずれかの方法に
より、鉛を定量する必要がある。
When it is necessary to report the analysis value to a public institution, the lead quantification method is a method of verification concerning the effluent standards established by the Director General of the Environment Agency based on the provisions of the Prime Minister's Ordinance which establishes the effluent standards, that is, the official approval. Must be done according to law. Specifically, flame atomic absorption spectrometry, electric heating atomic absorption spectrometry, ICP
It is necessary to quantify lead by either an emission spectrometry method or an ICP mass spectrometry method.

【0004】これらの公定法は、用いる分析装置が高価
であること、分析装置に局所排気設備を有する設置場所
を確保する必要があること、分析操作にある程度の経験
を有する人材を必要とすること等の理由により、その使
用が限定されるという問題がある。
These official methods require that the analyzer used is expensive, it is necessary to secure an installation place having a local exhaust facility in the analyzer, and human resources having some experience in analysis operation are required. Due to the above reasons, there is a problem that its use is limited.

【0005】一方、内部管理のための鉛の定量は、必ず
しも公定法で行う必要はなく、簡易な分析法であって良
い。その場合、採用した方法により得られた定量値と公
定法で得られた定量値との差が無いか、又は両者の差の
程度が把握できれば、簡易な分析法はむしろ迅速性及び
簡易性が優先され、更には分析装置等が安価であること
から、望ましい方法であると言える。
On the other hand, the lead determination for internal control does not necessarily have to be performed by the official method, and may be a simple analysis method. In that case, if there is no difference between the quantitative value obtained by the adopted method and the quantitative value obtained by the official method, or if the extent of the difference between them can be grasped, the simple analytical method is rather quick and simple. It can be said that this is a preferable method because it is prioritized and the analysis device and the like are inexpensive.

【0006】かかる簡易分析法の要件を満たすには、そ
の取り扱いが簡単で、しかも分析装置が安価である必要
がある。これらの要件を満たした簡易分析法として吸光
光度法、具体的にはJIS K 0102 54.1 シチ
ゾン吸光光度法、ポルフィリン吸光光度法、及び4−
(2−ピリジルアゾ)−レゾルシノール(PAR)吸光光
度法(以下PAR吸光光度法と称す)がある。
[0006] In order to meet the requirements of such a simple analysis method, it is necessary that the handling be simple and that the analyzer be inexpensive. As a simple analytical method satisfying these requirements, an absorptiometric method, specifically JIS K 0102 54.1 citizone absorptiometry, porphyrin absorptiometry, and 4-
There is a (2-pyridylazo) -resorcinol (PAR) absorptiometry (hereinafter referred to as PAR absorptiometry).

【0007】これらの吸光光度法では、その吸光光度計
と共に、発色試薬とpH緩衝剤とを組み合わせた簡易分
析用の水質測定キットも市販されている。その分析方法
は、PAR吸光光度法の場合、一回測定分の発色試薬と
pH緩衝剤とがポリ容器に封入されているので、それを
試料溶液に溶解して発色反応させ、吸光光度計を用いて
その吸光度の測定を行うものである。
[0007] In these absorptiometric methods, a water quality measuring kit for simple analysis, in which a coloring reagent and a pH buffer are combined together with the absorptiometer, is commercially available. In the case of PAR absorptiometry, the analysis method is that the color-developing reagent for one measurement and the pH buffer are enclosed in a poly container, so that they are dissolved in a sample solution to cause a color reaction, and an absorptiometer is used. It is used to measure the absorbance.

【0008】しかし、これらの吸光光度法は、鉛の選択
的発色試薬がなく、従って発色試薬と反応する鉛以外の
成分(妨害成分)の影響を受けるため、妨害成分を多量
に含む排水には直接適応できない。このような妨害成分
を含む排水に適用するためには、その前処理において、
妨害成分から鉛を分離するか、又は妨害成分をマスキン
グする必要がある。
[0008] However, these absorptiometric methods have no selective coloring reagent for lead, and therefore are affected by components (interfering components) other than lead that react with the coloring reagent, so that wastewater containing a large amount of interfering components is affected. It cannot be applied directly. In order to apply to wastewater containing such interfering components, in its pretreatment,
It is necessary to separate the lead from the interfering components or mask the interfering components.

【0009】そのため、ジチゾン吸光光度法では、シア
ン化カリウムを用いて妨害成分をマスキングし、鉛−ジ
チゾン錯体を四塩化炭素に抽出している。又、ポルフィ
リン吸光光度法及びPAR吸光光度法も、同様にシアン
化カリウムを用いる。即ち、これらの方法を行う場合
は、その前処理において、有害な物質である四塩化炭素
又はシアン化カリウムを用いるという問題がある。有害
物質を用いずに妨害成分から鉛を分離するには、イオン
クロマトグラフ装置を用いる方法もあるが、この分析装
置は高価であるという問題がある。
For this reason, in the dithizone absorptiometry, potassium cyanide is used to mask the interfering components and the lead-dithizone complex is extracted into carbon tetrachloride. Similarly, porphyrin absorptiometry and PAR absorptiometry also use potassium cyanide. That is, when these methods are carried out, there is a problem that carbon tetrachloride or potassium cyanide which is a harmful substance is used in the pretreatment. There is also a method of using an ion chromatograph to separate lead from interfering components without using harmful substances, but there is a problem that this analyzer is expensive.

【0010】更に、PAR吸光光度法は、その定量下限
が0.2mg/lであることから、鉛の排水基準0.1m
g/lを下回る鉛の定量方法として直接適応することが
できない。従って、鉛の濃度が低い排水の場合には、P
AR吸光光度法では、その前処理において排水中の鉛を
濃縮する必要がある。鉛の濃縮は、加熱濃縮法又は沈澱
分離による濃縮法など比較的簡単な方法で行うことが可
能であるが、鉛の濃縮に伴い妨害成分も同時に濃縮され
るという問題がある。
Furthermore, the PAR absorptiometry method has a lower limit of quantification of 0.2 mg / l, and therefore the lead drainage standard is 0.1 m.
It cannot be directly applied as a method for quantifying lead below g / l. Therefore, in the case of wastewater with low lead concentration, P
In the AR absorptiometry, it is necessary to concentrate lead in the waste water in its pretreatment. The lead can be concentrated by a relatively simple method such as a heating concentration method or a concentration method by precipitation separation, but there is a problem that the interfering components are simultaneously concentrated with the concentration of lead.

【0011】[0011]

【発明が解決しようとする課題】上記のごとく、排水中
の鉛の簡易な定量分析法として吸光光度法があるが、妨
害成分からの鉛の分離に有害物質を使用し、更には鉛の
濃縮を必要とする場合もあるため、吸光光度計を用いて
簡単に排水中の鉛を定量する方法は実用化されていない
現状である。
As described above, there is an absorptiometric method as a simple quantitative analysis method for lead in wastewater, but a harmful substance is used for separation of lead from interfering components, and further lead concentration. In some cases, the method for easily quantifying lead in wastewater using an absorptiometer has not been put into practical use.

【0012】本発明の目的は、かかる従来の事情に鑑
み、鉛の排水基準0.1mg/lを下回る試料溶液中の
鉛の定量を安価な吸光光度計を用いて行うにあたり、前
処理において有害物質等を用いずに妨害成分の除去がで
き、且つ必要な鉛の濃縮を行うことが可能な、吸光光度
法による鉛の定量方法を提供することを目的とする。
In view of the above conventional circumstances, an object of the present invention is to prevent harmfulness in pretreatment when quantifying lead in a sample solution below a lead discharge standard of 0.1 mg / l using an inexpensive absorptiometer. It is an object of the present invention to provide a method for quantifying lead by an absorptiometric method, which can remove interfering components without using a substance or the like and can perform necessary lead concentration.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する鉛の提供する方法は、吸光光度法
による鉛の定量方法において、試料溶液に錯形成剤を加
えると共にアルカリ又は酸を用いてpHを5〜9に調整
し、この試料溶液をイオン交換樹脂に通液して鉛をイオ
ン交換樹脂に保持させた後、精製した水に錯形成剤を加
えると共にアルカリ又は酸を用いてpHを5〜9に調整
した洗浄溶液を前記イオン交換樹脂に通液して妨害成分
を除去し、次に該イオン交換樹脂に希塩酸又は希硝酸を
通液して鉛を溶出させ、得られた溶出液中の鉛を測定す
ることを特徴とする。
In order to achieve the above object, a method of providing lead provided by the present invention is a method for determining lead by absorptiometry, in which a complexing agent is added to a sample solution and an alkali or an acid is added. PH is adjusted to 5 to 9 by using, and the sample solution is passed through an ion exchange resin to hold lead in the ion exchange resin, and then a complexing agent is added to purified water and an alkali or an acid is used. The washing solution whose pH is adjusted to 5 to 9 is passed through the ion exchange resin to remove interfering components, and then dilute hydrochloric acid or dilute nitric acid is passed through the ion exchange resin to elute lead. It is characterized by measuring lead in the eluate.

【0014】[0014]

【発明の実施の態様】本発明では、吸光光度計を用いて
試料溶液中の鉛の定量を行うための前処理において、金
属成分と錯形成剤との錯形成能力、及びその錯形成能力
とイオン交換樹脂との分配の違いを利用して、妨害成分
から鉛を分離するものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, in a pretreatment for quantifying lead in a sample solution using an absorptiometer, the complex forming ability between a metal component and a complex forming agent and its complex forming ability are described. It utilizes the difference in distribution from ion-exchange resins to separate lead from interfering components.

【0015】試料溶液に錯形成剤を加えることにより、
試料溶液中の妨害成分の多くは錯体を形成し、その錯形
成能力とイオン交換樹脂との分配反応の違いを利用して
鉛をイオン交換樹脂に吸着保持させると同時に、妨害成
分の多くを錯体として流出させることができる。錯形成
剤は、金属成分と錯形成能力を有する物質であり、クエ
ン酸又はマロン酸が好適である。クエン酸及びマロン酸
は、その塩又はそのアルカリ塩であっても良く、それら
を水溶液として使用する。
By adding a complexing agent to the sample solution,
Many of the interfering components in the sample solution form a complex, and lead is adsorbed and held on the ion-exchange resin by utilizing the complex formation ability and the difference in partitioning reaction with the ion-exchange resin. Can be drained as. The complexing agent is a substance having a complexing ability with a metal component, and citric acid or malonic acid is suitable. Citric acid and malonic acid may be salts thereof or alkali salts thereof, and they are used as an aqueous solution.

【0016】イオン交換樹脂に通液する溶液中のクエン
酸又はマロン酸の濃度は、該樹脂に試料溶液を通液する
量又はその流速あるいは該樹脂のイオン交換容量などに
依存する。しかし、例えばイオン交換容量が350μe
q/gであるイオン交換樹脂の720mgを充填したカ
ラムに、試料溶液100mlを毎分10mlで通液する
場合のように、一般的な処理条件におけるその濃度は
0.1〜1g/lが好ましく、0.4〜0.6g/lが更
に好ましい。クエン酸又はマロン酸の濃度が0.1g/
l未満では錯形成能力が不十分なため、イオン交換樹脂
への妨害成分の保持量が多くなり、1g/lを越えると
イオン交換樹脂への鉛の保持が不十分となって鉛が漏出
するからである。
The concentration of citric acid or malonic acid in the solution passed through the ion exchange resin depends on the amount of the sample solution passed through the resin or the flow rate thereof, or the ion exchange capacity of the resin. However, for example, the ion exchange capacity is 350 μe
As in the case of passing 100 ml of the sample solution at 10 ml per minute through a column packed with 720 mg of ion exchange resin of q / g, its concentration under general processing conditions is preferably 0.1 to 1 g / l. , 0.4 to 0.6 g / l is more preferable. Concentration of citric acid or malonic acid is 0.1g /
If it is less than 1, since the complexing ability is insufficient, the amount of interfering components retained in the ion exchange resin is large, and if it exceeds 1 g / l, the lead is insufficiently retained in the ion exchange resin and lead leaks out. Because.

【0017】錯形成剤を加えた試料溶液のpHを5〜9
の範囲に調整する理由は、pHが5未満ではイオン交換
樹脂への鉛の保持が不十分となってその一部が漏出し、
pHが9を越えると試料溶液中の金属成分が水酸化物と
して沈澱するため、イオン交換樹脂への通液が困難とな
るからである。従って、試料溶液のpHを5〜9の範囲
に調整することは、イオン交換樹脂に鉛を保持するため
に必要不可欠な条件である。
The pH of the sample solution containing the complexing agent is adjusted to 5-9.
The reason for adjusting to the range of is that when the pH is less than 5, the retention of lead in the ion exchange resin becomes insufficient and a part of it leaks out.
This is because if the pH exceeds 9, the metal components in the sample solution will precipitate as hydroxides, making it difficult to pass through the ion exchange resin. Therefore, adjusting the pH of the sample solution to the range of 5 to 9 is an essential condition for holding lead in the ion exchange resin.

【0018】pHの調整にはアルカリ又は酸を用いる。
アルカリとしては、水溶性アルカリ塩を用いることがで
き、例えば水酸化ナトリウム又は水酸化カリウムが好適
である。更には、水酸化ナトリウム又は水酸化カリウム
を水に溶かした溶液を用いることが望ましい。又、酸と
しては、塩酸又は硝酸が好適である。
An alkali or an acid is used to adjust the pH.
As the alkali, a water-soluble alkali salt can be used, and for example, sodium hydroxide or potassium hydroxide is suitable. Furthermore, it is desirable to use a solution prepared by dissolving sodium hydroxide or potassium hydroxide in water. As the acid, hydrochloric acid or nitric acid is suitable.

【0019】錯形成剤を加え且つpHを5〜9に調整し
た試料溶液をイオン交換樹脂に通液することにより、上
記のごとく該樹脂に鉛が保持される。試料溶液をイオン
交換樹脂に通液するときの流速は、例えば一般的な処理
条件としてクエン酸又はマロン酸の濃度が0.5g/l
である試料溶液100mlを通液する場合、毎分1〜2
0mlの範囲が好適であり、毎分8〜12mlであるこ
とが更に望ましい。イオン交換樹脂に通液する流速が毎
分20mlを越えると、該樹脂への鉛の保持が不十分と
なって鉛が漏出し、逆に流速が遅いとその処理に長時間
を要するためである。
By adding a complexing agent and adjusting the pH of the sample solution to 5 to 9 and passing it through an ion exchange resin, lead is retained in the resin as described above. The flow rate at which the sample solution is passed through the ion-exchange resin is, for example, 0.5 g / l of the concentration of citric acid or malonic acid as a general processing condition.
When passing 100 ml of sample solution, which is 1 to 2 per minute
A range of 0 ml is suitable, more preferably 8-12 ml per minute. This is because if the flow rate of the liquid passing through the ion-exchange resin exceeds 20 ml / min, the lead is insufficiently retained in the resin and lead leaks out. On the contrary, if the flow rate is slow, the treatment takes a long time. .

【0020】この処理により鉛がイオン交換樹脂に保持
されるが、妨害成分の一部も同時に該樹脂に保持され
る。そこで本発明方法では、次に、精製した水に錯形成
剤を加え且つpH調整した洗浄溶液をイオン交換樹脂に
通液することにより、該樹脂に保持された妨害成分を溶
出する。この洗浄操作を行うことによって、イオン交換
樹脂に保持されている成分は鉛のみとなり、妨害成分か
ら鉛を分離することが可能となる。尚、洗浄溶液の調
整、即ち錯形成剤の種類や濃度、pH調整に用いるアリ
カリや酸並びにpHの調整範囲等は、前記した試料溶液
における場合と同様である。
By this treatment, lead is retained in the ion exchange resin, but some of the interfering components are also retained in the resin at the same time. Therefore, in the method of the present invention, the interfering component retained in the resin is eluted by passing the pH-adjusted cleaning solution by adding a complexing agent to purified water. By performing this washing operation, the only component retained in the ion exchange resin is lead, and it becomes possible to separate lead from interfering components. The adjustment of the washing solution, that is, the type and concentration of the complex-forming agent, the potash and acid used for pH adjustment, the adjustment range of pH, and the like are the same as in the case of the sample solution described above.

【0021】イオン交換樹脂から妨害成分を溶出するた
めに必要な洗浄溶液の量は、試料溶液に含まれる金属成
分の種類又はその濃度等に依存する。例えば、比較的き
れいな試料溶液を通液したカラムの場合、クエン酸又は
マロン酸の濃度が0.5g/lの洗浄溶液を毎分10m
lの流速で通液して洗浄するときの洗浄液の量は少量で
よい。しかし、1ml/lの銅又はマンガン等の妨害成
分を含む試料溶液の場合、同じ通液条件では150〜2
00mlの洗浄溶液が必要となる。
The amount of the washing solution necessary for eluting the interfering component from the ion exchange resin depends on the kind of the metal component contained in the sample solution or the concentration thereof. For example, in the case of a column in which a relatively clean sample solution has been passed, a washing solution with a concentration of citric acid or malonic acid of 0.5 g / l is used at 10 m / min.
A small amount of the washing solution may be used when the washing is performed by passing the solution at a flow rate of l. However, in the case of a sample solution containing 1 ml / l of an interfering component such as copper or manganese, it is 150 to 2 under the same flow conditions.
00 ml of wash solution is required.

【0022】上記の試料溶液及び洗浄溶液をイオン交換
樹脂に通液する方法としては、例えば、試料溶液又は洗
浄溶液を一定量送液するポンプとイオン交換樹脂を充填
したカラムとを、耐食性チューブで接続したものを用い
て行う。又、試料溶液中に浮遊物質がある場合には、予
めそれを取り除くことが望ましい。
As a method of passing the sample solution and the washing solution through the ion-exchange resin, for example, a pump for feeding a fixed amount of the sample solution or the washing solution and a column filled with the ion-exchange resin are provided with a corrosion-resistant tube. Use the connected one. In addition, if there are floating substances in the sample solution, it is desirable to remove them in advance.

【0023】イオン交換樹脂に保持した鉛は、希塩酸又
は希硝酸で簡単に溶出する。即ち、イオン交換樹脂に希
塩酸又は希硝酸を通液することにより、保持されている
鉛が溶出される。特に、イオン交換樹脂に通液させた鉛
を含む試料溶液の液量よりも少ない量の希塩酸又は希硝
酸を用いて鉛を溶出することによって、溶出液中の鉛濃
度が元の試料溶液の鉛濃度よりも高くなり、例えば4〜
10倍程度の鉛の濃縮が可能である。
The lead retained on the ion exchange resin is easily eluted with diluted hydrochloric acid or diluted nitric acid. That is, the retained lead is eluted by passing dilute hydrochloric acid or dilute nitric acid through the ion exchange resin. In particular, by eluting lead with a dilute hydrochloric acid or dilute nitric acid in an amount smaller than the volume of the sample solution containing lead passed through the ion exchange resin, the lead concentration in the eluate is the same as that of the original sample solution. Higher than the concentration, for example 4 ~
It is possible to concentrate lead about 10 times.

【0024】このようにしてイオン交換樹脂から溶出し
た鉛を含む溶出液は、もはや妨害成分を殆ど含んでいな
いので、通常のごとくポルフィリン吸光光度法又はPA
R吸光光度法等の吸光光度法により、それぞれの発光試
薬を用いて鉛の定量分析を行うことができる。
Since the lead-containing eluate eluted from the ion-exchange resin in this manner contains almost no interfering components, the porphyrin absorptiometry or PA is used as usual.
Quantitative analysis of lead can be performed using each luminescent reagent by an absorptiometric method such as R absorptiometry.

【0025】[0025]

【実施例】実施例1 鉛の濃度が1g/lの標準溶液を用いて、下記表1に示
す組成の溶液A及び溶液Bを調整した。尚、これらの溶
液A及びB中には、表1の成分以外に、標準溶液を調整
するときに鉛その他の金属成分を溶解した塩酸、硝酸、
及び硫酸等が含まれている。
Example 1 Using a standard solution having a lead concentration of 1 g / l, Solution A and Solution B having the compositions shown in Table 1 below were prepared. In these solutions A and B, in addition to the components shown in Table 1, hydrochloric acid, nitric acid, in which lead and other metal components were dissolved when a standard solution was prepared,
And sulfuric acid, etc. are included.

【0026】[0026]

【表1】成分 溶液A(mg/l) 溶液B(mg/l) Pb 0.1 0.07 Zn 1 1 Ni 1 1 Co 1 1 Mn 1 1 Fe 1 1 Cu 1 1 Mg 5 5 Na 400 400 K 50 50 Ca 200 200[Table 1] Component solution A (mg / l) Solution B (mg / l) Pb 0.1 0.07 Zn 1 1 Ni 1 1 Co 1 1 Mn 1 1 Fe 1 1 Cu 1 1 Mg 5 5 Na 400 400 400 K 50 50 Ca 200 200

【0027】上記表1に示す溶液Aの100mlに、5
5g/lのクエン酸溶液1mlを加え、更に水酸化ナト
リウム溶液を用いてpHをそれぞれ2、4、5、6、
7、9及び10に調整した。これらの各試料溶液中のク
エン酸濃度は、希釈されることにより0.5g/lとな
っている。
To 100 ml of the solution A shown in Table 1 above, 5
1 ml of 5 g / l citric acid solution was added, and the pH was adjusted to 2, 4, 5, 6, using sodium hydroxide solution.
Adjusted to 7, 9 and 10. The concentration of citric acid in each of these sample solutions becomes 0.5 g / l by being diluted.

【0028】これらの各試料溶液を、各々送液ポンプに
より毎分10mlの流速で、ウオーターズ社製の弱酸性
陽イオン交換樹脂(商品名 Accell CM)を充填
したセップパックプラスを直接2個接続したものに、そ
れぞれ通液した。
Two of these sample solutions were directly connected to each other by a liquid-sending pump at a flow rate of 10 ml / min and a weak acid cation exchange resin (trade name: Accell CM) manufactured by Waters Co. The solution was passed through each.

【0029】その後、各セップパックプラスに塩酸(1
+120)3mlと水6mlとを通液し、得られた溶出
液に水を加えて10mlの測定液とし、それぞれ鉛の定
量に供した。又、検量線用の標準溶液は、同様の塩酸を
加えて調整した。鉛の測定には、セイコー電子工業社製
のICP発光分光分析装置(SPS120OVR)を用
いた。
Then, add hydrochloric acid (1
+120) 3 ml and 6 ml of water were passed through, and water was added to the obtained eluate to give 10 ml of a measurement liquid, which was used for quantification of lead. The standard solution for the calibration curve was prepared by adding the same hydrochloric acid. An ICP emission spectroscopic analyzer (SPS120OVR) manufactured by Seiko Instruments Inc. was used for the measurement of lead.

【0030】得られた測定値は、試料溶液100mlを
測定液10mlへ10倍に濃縮した値であるため、この
測定値を10で除した値をもって定量値とした。得られ
た定量結果を表2に示した。これらの結果から、試料溶
液のpHが5〜9の範囲において、鉛の定量値が溶液A
の鉛の濃度とよく一致した。
Since the obtained measured value is a value obtained by concentrating 100 ml of the sample solution into 10 ml of the measuring solution 10 times, the value obtained by dividing this measured value by 10 was taken as a quantitative value. The quantitative results obtained are shown in Table 2. From these results, when the pH of the sample solution was in the range of 5 to 9, the lead quantitative value was
It was in good agreement with the lead concentration of.

【0031】[0031]

【表2】pH 定量値(mg/l) 2 <0.05 4 0.07 5 0.1 6 0.1 7 0.1 9 0.1 10 0.08Table 2 pH quantitative value (mg / l) 2 <0.05 4 0.07 5 0.1 6 0.1 0.1 7 0.1 0.1 9 0.1 10 0.08

【0032】実施例2 前記表1に示す溶液Aの100mlに、55g/lのク
エン酸溶液1mlを加え、更に水酸化ナトリウム溶液を
用いてpHを5.5に調整した。この試料溶液を、実施
例1と同一の条件でセップパックプラスに通液した。
Example 2 1 ml of a 55 g / l citric acid solution was added to 100 ml of the solution A shown in Table 1 above, and the pH was adjusted to 5.5 using a sodium hydroxide solution. This sample solution was passed through Seppack Plus under the same conditions as in Example 1.

【0033】続いて、精製した水に55g/lのクエン
酸溶液20mlを加え、水酸化ナトリウム溶液を用いて
pHを5.5に調整し、更に精製した水を加えて全量2
lの洗浄溶液とした。この洗浄溶液を、上記のごとく試
料溶液を通液した後のセップパックプラスに、それぞれ
通液量50、100、150、200、250及び30
0mlにて通液し、イオン交換樹脂を洗浄した。
Subsequently, 20 ml of a 55 g / l citric acid solution was added to the purified water, the pH was adjusted to 5.5 using a sodium hydroxide solution, and further purified water was added to bring the total amount to 2
l of washing solution. The wash solution was passed through the sample solution as described above, and then the solution was passed through the Seppak-plus 50, 50, 100, 150, 200, 250 and 30 respectively.
The solution was passed through 0 ml to wash the ion exchange resin.

【0034】上記のごとく洗浄した各セップパックプラ
スと、洗浄を行わないセップパックプラスに、塩酸(1
+120)3mlと水6mlとを通液し、得られた各溶
出液に水を加えて10mlとして測定液とした。又、検
量線用の標準溶液は、同様の塩酸を加えて調整した。各
測定液中のPb、並びに妨害成分であるZn、Ni、C
o、Mn、Fe、Cu及びMgをICP発光分光分析装
置を用いて測定した。得られた測定値は、実施例1と同
様の理由により、10で除した値をもって定量値とし
た。
Hydrochloric acid (1%) was added to each Sepp Plus that was washed as described above and Sepp Plus that was not washed.
+120) 3 ml and 6 ml of water were passed through, and water was added to each of the obtained eluates to make 10 ml to be a measurement liquid. The standard solution for the calibration curve was prepared by adding the same hydrochloric acid. Pb in each measurement solution and Zn, Ni, C which are interfering components
O, Mn, Fe, Cu and Mg were measured using an ICP emission spectrophotometer. For the same reason as in Example 1, the obtained measured value was divided by 10 to give a quantitative value.

【0035】その定量結果を表3に示した。洗浄溶液の
通液量が150〜200mlの範囲で妨害成分は殆ど溶
出し、また鉛の定量値は溶液Aの鉛の濃度とよく一致し
ており、鉛を妨害成分からほぼ完全に分離できたことが
判る。
The quantitative results are shown in Table 3. Most of the interfering components were eluted in the range of the washing solution flow rate of 150 to 200 ml, and the quantitative value of lead was in good agreement with the concentration of lead in solution A, and lead was almost completely separated from the interfering components. I understand.

【0036】[0036]

【表3】 洗浄溶液 Pb 妨 害 成 分(μg/l) 通液量(ml) (mg/l) Zn Ni Co Mn Fe Cu Mg 0 0.1 82 16 31 180 4 370 550 50 0.1 3 2 <1 65 <1 140 69 100 0.1 1 <1 <1 4 <1 5 4 150 0.1 <1 <1 <1 <1 <1 <1 <1 200 0.1 <1 <1 <1 <1 <1 <1 <1 250 0.09 <1 <1 <1 <1 <1 <1 <1 300 0.08 <1 <1 <1 <1 <1 <1 <1[Table 3] Cleaning solution Pb interference component (μg / l) Flow rate (ml) (mg / l) Zn Ni Co Mn Fe Cu Cu Mg 0 0.1 82 16 31 31 180 4 370 550 50 0.13 2 <1 65 <1 140 69 100 0.1 1 <1 <1 4 <1 5 4 150 0.1 <1 <1 <1 <1 <1 <1 <1 200 0.1 <1 <1 <1 <1 <1 <1 <1 250 0.09 <1 <1 <1 <1 <1 <1 <1 <1 300 0.08 <1 <1 <1 <1 <1 <1 <1

【0037】実施例3 上記の実施例1及び実施例2により、表1に示す妨害成
分から鉛のみを分離できることが確認できた。そこで、
表1に示す各溶液A及びBを、本発明方法によりPAR
吸光光度法に適用して鉛の定量を行った。
Example 3 It was confirmed by the above Examples 1 and 2 that only lead can be separated from the interfering components shown in Table 1. Therefore,
Each solution A and B shown in Table 1 was PAR-treated by the method of the present invention.
It was applied to an absorptiometry to quantify lead.

【0038】即ち、表1に示す溶液A及びB、並びに工
場排水の各100mlに、各々55g/lのクエン酸溶
液1mlを加え、更に水酸化ナトリウム溶液を用いてp
Hをそれぞれ5.5に調整し、試料溶液A及びB並びに
試料工場排水とした。これらの各試料溶液A、Bと試料
工場排水は、実施例1と同様の条件で各々セップパック
プラスに通液した。
That is, 1 ml of a citric acid solution of 55 g / l was added to 100 ml of each of the solutions A and B shown in Table 1 and the waste water of a factory, and sodium hydroxide solution was used to add p.
Each H was adjusted to 5.5, and used as sample solutions A and B and sample factory wastewater. These sample solutions A and B and the sample factory wastewater were passed through Seppak Plus under the same conditions as in Example 1.

【0039】続いて、実施例2で調整した洗浄溶液の2
00mlを各セップパックプラスに通液し、イオン交換
樹脂を洗浄した。その後、この各セップパックプラスに
塩酸(1+120)3mlと水6mlとを通液し、得られ
た各溶出液に水を加えて25mlとし、それぞれPAR
吸光光度計による鉛の定量に供した。
Subsequently, 2 of the cleaning solution prepared in Example 2 was used.
00 ml was passed through each Seppakplus to wash the ion exchange resin. After that, 3 ml of hydrochloric acid (1 + 120) and 6 ml of water were passed through each of these Seppakplus, and water was added to each of the obtained eluates to make 25 ml.
It was used for the determination of lead by an absorptiometer.

【0040】即ち、上記の各測定液に、共立理科学研究
所製の水質検査用試薬セットのPAR(発光試薬等)を
溶かし、この溶液の吸光度を日立製作所製の吸光光度計
(U−2000)を用いて測定した。得られた吸光度
は、鉛の検量線からその濃度を算出した。又、この鉛の
濃度は、各試料溶液100mlに対して測定液25ml
と4倍に濃縮した値であるため、これを4で除した値を
定量値とした。尚、吸光度の測定は、波長515.6n
mで、測定セル10mmを用いて行った。
That is, PAR (a luminescent reagent or the like) of a water quality test reagent set manufactured by Kyoritsu Institute of Science was dissolved in each of the above-described measurement solutions, and the absorbance of this solution was measured by an absorptiometer (U-2000 manufactured by Hitachi Ltd.). ) Was used for the measurement. The concentration of the obtained absorbance was calculated from the lead calibration curve. The lead concentration is 25 ml of the measurement solution for 100 ml of each sample solution.
The value obtained by dividing this by 4 was used as the quantitative value. The absorbance is measured at a wavelength of 515.6n.
m with a measuring cell of 10 mm.

【0041】得られた定量結果を表4に示した。表4の
結果から判るように、試料溶液A及びBの鉛の定量で
は、表1に示すそれらの濃度に対して良く一致した値が
得られた。又、試料工場排水の鉛の定量値は、吸光光度
法の定量下限である0.05mg/l以下であった(I
CP質量分析法での定量値は0.01mg/l)。
The quantitative results obtained are shown in Table 4. As can be seen from the results in Table 4, in the quantification of lead in the sample solutions A and B, values in good agreement with those concentrations shown in Table 1 were obtained. The quantitative value of lead in the sample factory wastewater was 0.05 mg / l or less, which is the lower limit of quantitative determination by the absorptiometry (I
Quantitative value by CP mass spectrometry is 0.01 mg / l).

【0042】[0042]

【表4】 [Table 4]

【0043】尚、上記実施例3において、クエン酸溶液
の代わりに同じ濃度のマロン酸溶液を用いて同様に各試
料溶液を調整した場合にも、本発明方法に従って吸光光
度法により測定した鉛の定量値は表1に示す濃度に良く
一致していた。
Even when each sample solution was prepared in the same manner as in Example 3 using a malonic acid solution having the same concentration instead of the citric acid solution, the lead content measured by the absorptiometric method according to the method of the present invention was measured. The quantitative values were in good agreement with the concentrations shown in Table 1.

【0044】[0044]

【発明の効果】本発明によれば、鉛の排水基準0.1m
g/lを下回る試料溶液中の鉛の定量を、安価な吸光光
度計を用いて、簡易に行うことができる。即ち、前処理
において有害物質等を用いずに鉛を妨害成分から分離す
ることができ、且つ鉛の濃縮を行うことが可能であるた
め、発光試薬を用いる通常の吸光光度法により、簡易な
方法で鉛の定量を行うことができる。
According to the present invention, the lead drainage standard is 0.1 m.
Quantitation of lead in the sample solution below g / l can be easily performed using an inexpensive absorptiometer. That is, since lead can be separated from interfering components without using harmful substances in the pretreatment and lead can be concentrated, a simple method using a normal absorptiometric method using a luminescent reagent can be used. Can be used to quantify lead.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 吸光光度法による鉛の定量方法におい
て、試料溶液に錯形成剤を加えると共にアルカリ又は酸
を用いてpHを5〜9に調整し、この試料溶液をイオン
交換樹脂に通液して鉛をイオン交換樹脂に保持させた
後、精製した水に錯形成剤を加えると共にアルカリ又は
酸を用いてpHを5〜9に調整した洗浄溶液を前記イオ
ン交換樹脂に通液して妨害成分を除去し、次に該イオン
交換樹脂に希塩酸又は希硝酸を通液して鉛を溶出させ、
得られた溶出液中の鉛を測定することを特徴とする前記
鉛の定量方法。
1. In a method for quantifying lead by absorptiometry, a complexing agent is added to a sample solution and the pH is adjusted to 5 to 9 with an alkali or an acid, and the sample solution is passed through an ion exchange resin. After the lead is held on the ion exchange resin, a complexing agent is added to the purified water, and a cleaning solution whose pH is adjusted to 5 to 9 with an alkali or an acid is passed through the ion exchange resin to disturb the components. And then dilute hydrochloric acid or nitric acid is passed through the ion exchange resin to elute lead,
The lead quantification method characterized by measuring lead in the obtained eluate.
【請求項2】 錯形成剤がクエン酸又はマロン酸である
ことを特徴とする、請求項1に記載の鉛の定量方法。
2. The method for quantifying lead according to claim 1, wherein the complexing agent is citric acid or malonic acid.
【請求項3】 試料溶液中又は洗浄溶液中のクエン酸又
はマロン酸の濃度が0.1〜1g/lであることを特徴
とする、請求項2に記載の鉛の定量方法。
3. The method for quantifying lead according to claim 2, wherein the concentration of citric acid or malonic acid in the sample solution or the washing solution is 0.1 to 1 g / l.
【請求項4】 イオン交換樹脂に通液する試料溶液の流
速が1〜20ml/分であることを特徴とする、請求項
1〜3のいずれかに記載の鉛の定量方法。
4. The lead quantification method according to claim 1, wherein the flow rate of the sample solution passed through the ion exchange resin is 1 to 20 ml / min.
【請求項5】 イオン交換樹脂に通液する洗浄溶液の量
が150〜200mlであることを特徴とする、請求項
1〜4のいずれかに記載の鉛の定量方法。
5. The lead quantification method according to claim 1, wherein the amount of the washing solution passed through the ion exchange resin is 150 to 200 ml.
【請求項6】 イオン交換樹脂が弱酸性陽イオン交換樹
脂であることを特徴とする、請求項1〜5のいずれかに
記載の鉛の定量方法。
6. The lead quantification method according to claim 1, wherein the ion exchange resin is a weakly acidic cation exchange resin.
JP21337295A 1995-08-22 1995-08-22 Quantification of lead Pending JPH0961416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21337295A JPH0961416A (en) 1995-08-22 1995-08-22 Quantification of lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21337295A JPH0961416A (en) 1995-08-22 1995-08-22 Quantification of lead

Publications (1)

Publication Number Publication Date
JPH0961416A true JPH0961416A (en) 1997-03-07

Family

ID=16638103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21337295A Pending JPH0961416A (en) 1995-08-22 1995-08-22 Quantification of lead

Country Status (1)

Country Link
JP (1) JPH0961416A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011549A1 (en) * 2004-07-29 2006-02-02 Kowa Co., Ltd. Reagent for lead assay
WO2008026313A1 (en) 2006-08-28 2008-03-06 Kowa Co., Ltd. Reagent for lead concentration determination and method of determining lead concentration
JP2012511710A (en) * 2008-12-11 2012-05-24 セントレ ナショナル デ ラ ルシェルシェ サイエンティフィック−シーエヌアールエス Determination of lead
CN109387411A (en) * 2018-10-12 2019-02-26 吉林大学 The detection method of biologically effective state lead in a kind of soil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011549A1 (en) * 2004-07-29 2006-02-02 Kowa Co., Ltd. Reagent for lead assay
JPWO2006011549A1 (en) * 2004-07-29 2008-05-01 興和株式会社 Reagent for lead measurement
JP4728960B2 (en) * 2004-07-29 2011-07-20 興和株式会社 Reagent for lead measurement
WO2008026313A1 (en) 2006-08-28 2008-03-06 Kowa Co., Ltd. Reagent for lead concentration determination and method of determining lead concentration
JPWO2008026313A1 (en) * 2006-08-28 2010-01-14 興和株式会社 Reagent for measuring lead concentration and method for measuring lead concentration
JP2012511710A (en) * 2008-12-11 2012-05-24 セントレ ナショナル デ ラ ルシェルシェ サイエンティフィック−シーエヌアールエス Determination of lead
US9366629B2 (en) 2008-12-11 2016-06-14 Centre National de la Recherche Scientifique—CNRS Lead assay
CN109387411A (en) * 2018-10-12 2019-02-26 吉林大学 The detection method of biologically effective state lead in a kind of soil

Similar Documents

Publication Publication Date Title
Soylak et al. Trace enrichment and atomic absorption spectrometric determination of lead, copper, cadmium and nickel in drinking water samples by use of an activated carbon column
Katarina et al. Synthesis of a chitosan-based chelating resin and its application to the selective concentration and ultratrace determination of silver in environmental water samples
Yalçin et al. Speciation of arsenic using solid phase extraction cartridgesPresented at the Whistler 2000 Speciation Symposium, Whistler Resort, BC, Canada, June 25–July 1, 2000.
US5126272A (en) System for detecting transition and rare earth elements in a matrix
CA2488940A1 (en) Analysis of mercury containing samples
Carvalho et al. Multi-element determination of copper, iron, nickel, manganese, lead and zinc in environmental water samples by ICP OES after solid phase extraction with a C18 cartridge loaded with 1-(2-pyridylazo)-2-naphthol
Manzoori et al. Atomic absorption determination of cobalt after preconcentration by 1-(2-pyridylazo)-2-naphthol immobilized on surfactant-coated alumina
Vassileva et al. Application of iminodiacetate chelating resin muromac A-1 in on-line preconcentration and inductively coupled plasma optical emission spectroscopy determination of trace elements in natural waters
Knežević et al. ETAAS determination of aluminium and copper in dialysis concentrates after microcolumn chelating ion-exchange preconcentration
Tyson High-performance, flow-based, sample pre-treatment and introduction procedures for analytical atomic spectrometry. Plenary Lecture
Hassanien et al. A novel method for speciation of Cr (III) and Cr (VI) and individual determination using Duolite C20 modified with active hydrazone
Jimmy et al. Separation and determination of Cr (III) by titanium dioxide-filled column and inductively coupled plasma mass spectrometry
Nickson et al. Behaviour of matrix cations (Ca2+, K+, Mg2+ and Na+) during on-line preconcentration and atomic spectrometric detection of trace metals in natural waters
Dadfarnia et al. Determination of lead in different samples by atomic absorption spectrometry after preconcentration with dithizone immobilized on surfactant-coated alumina
Shahida et al. Flow injection on-line determination of uranium after preconcentration on XAD-4 resin impregnated with dibenzoylmethane
Zheng et al. Speciation of antimony by preconcentration of Sb (III) and Sb (V) in water samples onto nanometer-size titanium dioxide and selective determination by flow injection-hydride generation-atomic absorption spectrometry
JPH0961416A (en) Quantification of lead
Guéguen et al. Use of chelating resins and inductively coupled plasma mass spectrometry for simultaneous determination of trace and major elements in small volumes of saline water samples
Nakashima et al. Determination of uranium (VI) in seawater by ion-exchanger phase absorptiometry with arsenazo III
Chandio et al. Online preconcentration of nickel (II) in textile effluent and soil samples by SDS coated alumina modified with dithizone mini-column coupled with FAAS
Oliveira et al. Automated solid-phase spectrophotometric system for optosensing of bromate in drinking waters
Sato et al. Determination of gold by graphite furnace atomic absorption spectrometry after coprecipitation with nickel diethyldithiocarbamate
JP3422219B2 (en) Selenium analysis method and selenium analyzer
Tuzen et al. Cadmium and lead contamination in tap water samples from Tokat, Turkey.
Miwa et al. Speciation of copper in fresh waters