JPH095812A - Optical logic element and optical logic circuit using the optical logic element - Google Patents

Optical logic element and optical logic circuit using the optical logic element

Info

Publication number
JPH095812A
JPH095812A JP17541495A JP17541495A JPH095812A JP H095812 A JPH095812 A JP H095812A JP 17541495 A JP17541495 A JP 17541495A JP 17541495 A JP17541495 A JP 17541495A JP H095812 A JPH095812 A JP H095812A
Authority
JP
Japan
Prior art keywords
incident
light
waveguide
optical
nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17541495A
Other languages
Japanese (ja)
Inventor
Masahito Morimoto
政仁 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP17541495A priority Critical patent/JPH095812A/en
Publication of JPH095812A publication Critical patent/JPH095812A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an optical logic element capable of executing the optical control operation similar to the control operation of an electric logic element with the light itself and the optical logic circuit. CONSTITUTION: Incident light incident waveguides 3a, 3b are connected to a nonlinear waveguide 6a and the exit end side is provided with an analyzer 9a to form an AND circuit optical element 13. Incident light incident waveguides 4a, 4b, are connected to a nonlinear waveguide 6b and the exist end side is provided with an analyzer 9b to form a NOT circuit optical element 14 which is directly connected to an optical element 13. The respective incident light incident waveguides 3a, 3b are provided with optically active substances which deviate the plane of polarization of incident polarized light (input light (a), (b)) by the same angle exclusive of 90 deg. from the speed axis of the nonlinear waveguide 6a and the incident light incident waveguides 4a, 4b are provided with the similar optically active substances. The optical NAND circuit which outputs the light rays from an output terminal 18 exclusive of the time when both of the input light lays (a), (b) are made incident by selectively outputting only the light rays subjected to phase transition at a prescribed angle among the propagated light rays of the respective nonlinear waveguides 6a, 6b are analyzers 9a, 9b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光を用いて情報処理等
を行う将来の光コンピュータに用いられる光論理素子お
よびその光論理素子を用いた光論理回路に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical logic element used in a future optical computer for processing information using light and an optical logic circuit using the optical logic element.

【0002】[0002]

【従来の技術】従来、光を制御する素子として、例え
ば、光導波路中に電極を設け、この電極に電圧をかける
ことにより光導波路の屈折率を変化させ、光導波路中を
伝搬する光の進路を変更する光スイッチの検討が行われ
ている。また、光導波路中に電極を設ける代わりに、光
導波路自体に有機又は無機物質をドープすることによ
り、その光導波路を通過する光がその光強度によって屈
折率が変化する非線形効果を利用して、光の進路変更、
スイッチングを行う素子の検討も行われている。
2. Description of the Related Art Conventionally, as an element for controlling light, for example, an electrode is provided in an optical waveguide, and a refractive index of the optical waveguide is changed by applying a voltage to the electrode, and a path of light propagating in the optical waveguide is changed. The optical switch to change is under study. Further, instead of providing an electrode in the optical waveguide, by doping the optical waveguide itself with an organic or inorganic substance, the nonlinear effect that the light passing through the optical waveguide changes its refractive index depending on its light intensity, Diversion of light,
An element that performs switching is also being studied.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特に、
超高速大容量の情報処理機器として用いることが検討さ
れている将来の光コンピュータにおいては、上記のよう
な光の進路変更やスイッチングに留まらず、さらに、電
気の論理素子および論理回路(例えばNAND回路やO
R回路等)による電気信号制御動作と同様に光信号制御
が行える光素子および光回路が必要となると考えられる
が、従来、このような光論理素子および光論理回路の提
案はなされていなかった。
However, in particular,
In future optical computers, which are being considered for use as ultra-high-speed and large-capacity information processing equipment, not only the above-mentioned light diversion and switching, but also electric logic elements and logic circuits (for example, NAND circuits) And O
It is considered that an optical element and an optical circuit capable of performing an optical signal control similar to the electric signal control operation by the R circuit) are required, but conventionally, such an optical logic element and an optical logic circuit have not been proposed.

【0004】本発明は上記課題を解決するためになされ
たものであり、その目的は、電気の論理素子および論理
回路による電気信号制御動作と同様の光信号制御動作
を、光自身で制御できる光論理素子およびその光論理素
子を用いた光論理回路を提供することにある。
The present invention has been made to solve the above problems, and an object thereof is an optical signal control operation similar to an electric signal control operation by an electrical logic element and a logic circuit, which can be controlled by the light itself. It is to provide a logic element and an optical logic circuit using the optical logic element.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は次のように構成されている。すなわち、本
発明の光論理素子は、2本の入射光入射導波路が合流点
を介して光の非線形偏波回転を行う1本の非線形導波路
に合流接続されており、該非線形導波路には該非線形導
波路の偏波分散に起因して、光の伝搬速度の遅い偏波成
分軸である遅軸と該遅軸よりも光の伝搬速度の速い速軸
とが互いに直交し、かつ、非線形導波路の光軸と直交し
て形成されており、前記2本の各入射光入射導波路には
それぞれ各入射光入射導波路から非線形導波路に入射す
る入射偏波光の偏波面を前記非線形導波路の速軸または
遅軸から90度以外の同じ角度ずつずらす偏波面調整手段
が設けられていることを特徴として構成されている。
In order to achieve the above object, the present invention is constructed as follows. That is, in the optical logic element of the present invention, two incident light incident waveguides are connected to one non-linear waveguide that performs non-linear polarization rotation of light via a confluence point, and the two non-linear waveguides are connected to each other. Due to the polarization dispersion of the nonlinear waveguide, a slow axis which is a polarization component axis having a slow light propagation speed and a fast axis having a light propagation speed faster than the slow axis are orthogonal to each other, and The two incident light incident waveguides are formed so as to be orthogonal to the optical axis of the nonlinear waveguide, and the polarization planes of the incident polarized light incident on the nonlinear waveguides from the respective incident light incident waveguides are set to the nonlinear plane. A polarization plane adjusting means for shifting the waveguide from the fast axis or the slow axis by the same angle other than 90 degrees is provided.

【0006】また、前記非線形導波路の非線形屈折率と
長さは、前記2本の入射光入射導波路のうちのいずれか
一方からのみの入射偏波光入射時に、該入射偏波光が非
線形導波路を伝搬するときの位相変化が出射端において
予め定められる角度で変化するように調整されているこ
と、前記非線形導波路の出射端側には該非線形導波路の
伝搬光のうち予め定められる角度で位相変化した伝搬光
のみを選択的に出力する出力選択手段が設けらているこ
とも本発明の光論理素子の特徴的な構成とされている。
Further, the nonlinear refractive index and the length of the nonlinear waveguide are such that when the incident polarized light is incident from only one of the two incident light incident waveguides, the incident polarized light is the nonlinear waveguide. Is adjusted so that the phase change when propagating through the output end changes at a predetermined angle at the output end, and the output end side of the nonlinear waveguide has a predetermined angle among the propagating light of the nonlinear waveguide. It is also a characteristic configuration of the optical logic element of the present invention that an output selection means for selectively outputting only the phase-changed propagating light is provided.

【0007】さらに、本発明の光論理素子を用いた光論
理回路は、前記構成の光論理素子を複数組み合わせて接
続したことを特徴として構成されている。
Further, an optical logic circuit using the optical logic element of the present invention is characterized in that a plurality of the optical logic elements having the above-mentioned configuration are combined and connected.

【0008】[0008]

【作用】上記構成の本発明において、2本の各入射光入
射導波路には、それぞれ、偏波面調整手段が設けられて
いるために、各入射光入射導波路から入射する入射偏波
光が非線形導波路に入射するときに、入射偏波光の偏波
面が非線形導波路の偏波成分軸である速軸又は遅軸から
90度以外の同じ角度ずつずらされて入射し、それによ
り、前記入射偏波光はその偏波面が回転しながら非線形
導波路を伝搬する。
In the present invention having the above-mentioned structure, since polarization plane adjusting means is provided for each of the two incident light incident waveguides, incident polarized light incident from each incident light incident waveguide is nonlinear. When entering the waveguide, the polarization plane of the incident polarized light is from the fast axis or slow axis, which is the polarization component axis of the nonlinear waveguide.
The incident polarized light is shifted by the same angle other than 90 degrees, and the incident polarized light propagates through the nonlinear waveguide while its polarization plane rotates.

【0009】そして、この入射偏波光の偏波面回転の角
度変化、すなわち、位相変化は、次式(1)に示す角度
だけ変化する。
The angle change of the polarization plane rotation of the incident polarized light, that is, the phase change, changes by the angle shown in the following expression (1).

【0010】 φ=2πn2 |E|2 L/λ・・・・・(1)Φ = 2πn 2 | E | 2 L / λ (1)

【0011】なお、式(1)において、φは位相、λは
入射偏波光の波長、n2 は非線形導波路の非線形屈折
率、|E|2 は光の電界強度、Lは非線形導波路の長さ
である。
In the equation (1), φ is the phase, λ is the wavelength of the incident polarized light, n 2 is the nonlinear refractive index of the nonlinear waveguide, | E | 2 is the electric field intensity of light, and L is the nonlinear waveguide. Is the length.

【0012】そして、この式(1)から明らかなよう
に、非線形導波路を伝搬する光の電界強度が2倍となれ
ば前記位相変化の大きさも2倍となるために、例えば、
2本の入射光入射導波路のうち、いずれか一方から入射
偏波光を入射させて非線形導波路を伝搬させたときの非
線形導波路出射端における位相変化に対し、2本の各入
射光入射導波路の両方から、それぞれ前記入射偏波光と
同じ光強度で同じ波長の入射偏波光を入射させて非線形
導波路を伝搬させたときの非線形導波路出射端における
位相変化は2倍となる。
As is clear from the equation (1), if the electric field intensity of the light propagating through the nonlinear waveguide is doubled, the magnitude of the phase change is also doubled.
For each phase change at the exit end of the nonlinear waveguide when the incident polarized light is incident from one of the two incident light incident waveguides and propagated through the nonlinear waveguide, The phase change at the exit end of the nonlinear waveguide when the incident polarized light of the same wavelength and the same wavelength as that of the incident polarized light is propagated through the nonlinear waveguide from both of the waveguides is doubled.

【0013】このように、2本の入射光入射導波路のう
ちのいずれか一方から入射偏波光を入射させたときと、
両方から入射偏波光を入射させたときの非線形導波路出
射端における位相変化の違いを利用して、例えば、2本
の入射光入射導波路のうちのいずれか一方から入射偏波
光が入射して非線形導波路を伝搬するときの位相変化
が、非線形導波路の出射端において予め定められる例え
ば180 度といった角度で変化するように調整し、一方の
入射光入射導波路から直線偏波の入射偏波光を入射する
と、その入射偏波光は、前記位相変化により、直線偏光
→楕円偏光→円偏光→楕円偏光→直線偏光となって、非
線形導波路の出射端においては直線偏光となる。
In this way, when the incident polarized light is made incident from either one of the two incident light incident waveguides,
Taking advantage of the difference in phase change at the exit end of the nonlinear waveguide when incident polarized light is incident from both, for example, incident polarized light is incident from one of the two incident light incident waveguides. Adjust the phase change when propagating through the nonlinear waveguide so that it changes at a predetermined angle, such as 180 degrees, at the exit end of the nonlinear waveguide. Is incident, the incident polarized light becomes linearly polarized light → elliptically polarized light → circularly polarized light → elliptically polarized light → linearly polarized light due to the phase change, and becomes linearly polarized light at the exit end of the nonlinear waveguide.

【0014】また、2本の入射光入射導波路からそれぞ
れ、前記入射偏波光と同一波長同一強度の直線偏波の入
射偏波光を入射すると、その入射偏波光が非線形導波路
を伝搬するときの位相変化は、非線形導波路の出射端に
おいて360 度変化することになり、直線偏光→楕円偏光
→円偏光→楕円偏光→直線偏光→楕円偏光→円偏光→楕
円偏光→直線偏光となり、非線形導波路の出射端におい
ては直線偏光となる。
When incident polarized light of linear polarization having the same wavelength and the same intensity as the incident polarized light is incident from each of the two incident light incident waveguides, the incident polarized light propagates through the nonlinear waveguide. The phase change will change 360 degrees at the exit end of the nonlinear waveguide, and becomes linear polarization → elliptical polarization → circular polarization → elliptical polarization → linear polarization → elliptical polarization → circular polarization → elliptical polarization → linear polarization. The light is linearly polarized at the exit end of.

【0015】このように、一方の入射光入射導波路から
直線偏波の入射偏波光を入射させたときも、2本の入射
光入射導波路からそれぞれ直線偏波の入射偏波光を入射
させたときも、共に、非線形導波路の出射端においては
直線偏光となるが、180 度の位相変化を受けた偏波と36
0 度の位相変化を受けた偏波とは互いに直交するため
に、例えば、180 度の位相変化を受けた後の直線偏波の
偏光軸と光の透過方向が垂直になり、この直線偏波は通
さずに、360 度の位相変化を受けた伝搬光のみを選択的
に透過させる出力選択手段等を非線形導波路の出力端側
に設けると、360度の位相変化を受けた伝搬光のみが出
力され、180 度の位相変化を受けた伝搬光は出力されな
いことになる。
Thus, even when the incident polarized light of linear polarization is incident from one of the incident light incident waveguides, the incident polarized light of linear polarization is incident from each of the two incident light incident waveguides. At this time, both are linearly polarized light at the exit end of the nonlinear waveguide, but the
Since the polarized waves that have undergone a phase change of 0 degrees are orthogonal to each other, for example, the polarization axis of the linearly polarized light after being subjected to a phase change of 180 degrees and the light transmission direction are perpendicular. If an output selection means, etc., that selectively transmits only the propagating light that has undergone a 360-degree phase change, is provided on the output end side of the nonlinear waveguide, only the propagating light that has undergone a 360-degree phase change will be transmitted. The propagating light that has been output and has undergone a phase change of 180 degrees will not be output.

【0016】そうすると、以下に示す表1のように、2
本の入射光入射導波路のうち、2本の各入射光入射導波
路からそれぞれ入射偏波光(入力光a,bとする)を入
射したときのみ非線形導波路から光が出力され、入力光
a,bのいずれか一方又は両方が入射されないときには
非線形導波路から光が出力されないことになり、電気の
論理素子の1つであるAND回路と同様の制御動作が光
によって行われることになる。なお、以下の表における
符号1は入力又は出力のある状態を示し、符号0は入力
又は出力がない状態を示している。
Then, as shown in Table 1 below, 2
Of the two incident light incident waveguides, light is output from the nonlinear waveguide only when incident polarized light (referred to as input lights a and b) is incident from each of the two incident light incident waveguides. , B, no light is output from the nonlinear waveguide, and the same control operation as that of the AND circuit, which is one of the electrical logic elements, is performed by light. In the table below, reference numeral 1 indicates a state with input or output, and reference numeral 0 indicates a state without input or output.

【0017】[0017]

【表1】 [Table 1]

【0018】また、2本の入射入射導波路のうち、一方
側を入射偏波光としてのプローブ光の入射導波路とし、
プローブ光のみが入射したときに、このプローブ光が非
線形導波路を伝搬するときの位相変化が出射端において
予め定められる例えば180 度となるように非線形導波路
の長さを調整すると、他方側の入射光入射導波路からの
入射偏波光(入力光)を入射させたときには、その入射
偏波光とプローブ光との合波光の非線形導波路伝搬時の
位相変化は、前記角度(180 度)の2倍の角度(360
度)となる。
Of the two incident incident waveguides, one side is an incident waveguide of probe light as incident polarized light,
If the length of the nonlinear waveguide is adjusted so that the phase change when the probe light propagates through the nonlinear waveguide becomes a predetermined 180 ° at the exit end when only the probe light is incident, When incident polarized light (input light) from the incident light incident waveguide is incident, the phase change of the combined light of the incident polarized light and the probe light at the time of nonlinear waveguide propagation is 2 at the angle (180 degrees). Double angle (360
Degree).

【0019】そして、このとき、非線形導波路の出射端
に、180 度の位相変化を受けたプローブ光の偏光軸と光
の透過方向が平行になって、この光を選択的に出力する
ような出力選択手段を設ければ、表2に示すように、プ
ローブ光のみのときには非線形導波路から光が出力さ
れ、プローブ光に加えて入力光の入力があるときには非
線形導波路からの出力がないことになり、電気の論理素
子であるNOT回路の制御動作と同様の制御動作が光に
よって行われる。
At this time, at the exit end of the nonlinear waveguide, the polarization axis of the probe light that has undergone a phase change of 180 degrees is parallel to the light transmission direction, and this light is selectively output. If the output selection means is provided, as shown in Table 2, light is output from the nonlinear waveguide only when the probe light is present, and there is no output from the nonlinear waveguide when the input light is input in addition to the probe light. Then, the control operation similar to the control operation of the NOT circuit, which is an electric logic element, is performed by light.

【0020】[0020]

【表2】 [Table 2]

【0021】以上のように、本発明の光論理素子におい
ては、非線形導波路の非線形屈折率や長さ等を上記のよ
うに適切に形成することにより、電気のAND回路やN
OT回路のような制御動作を光によって行う光論理素子
が形成され、その光論理素子を複数組み合わせて接続し
た本発明の光論理回路においては、その組み合わせ接続
の仕方により、例えば電気のNAND回路やOR回路の
電気制御動作と同様に光制御を行う光論理回路が形成さ
れる。
As described above, in the optical logic device according to the present invention, by appropriately forming the nonlinear refractive index and the length of the nonlinear waveguide as described above, an electrical AND circuit and N
In the optical logic circuit of the present invention in which an optical logic element that performs a control operation by light such as an OT circuit is formed, and a plurality of the optical logic elements are combined and connected, depending on the combination connection method, for example, an electric NAND circuit or An optical logic circuit that performs optical control similar to the electrical control operation of the OR circuit is formed.

【0022】[0022]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1には、本発明に係る光論理素子の第1の実施
例の要部構成が示されている。本実施例の光論理回路
は、石英系基盤上に形成されており、図2に示す光論理
素子としてのAND回路光素子13の出射端側に、図3に
示す光論理素子としてのNOT回路光素子14を直列に接
続して形成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a main part configuration of a first embodiment of an optical logic device according to the present invention. The optical logic circuit of the present embodiment is formed on a quartz substrate, and the AND circuit as the optical logic element shown in FIG. 2 is provided on the emission end side of the optical element 13 and the NOT circuit as the optical logic element shown in FIG. It is formed by connecting the optical elements 14 in series.

【0023】AND回路光素子13は、2本の入射光入射
導波路3a,3bが合流点Aを介して、光の非線形偏波
回転を行う1本の非線形導波路6aに合流接続されてお
り、この非線形導波路6aには、非線形導波路の横断面
の互いに直角をなす軸方向、すなわち、非線形導波路6
aの光軸が、図6のZ軸方向に形成されているときにこ
のZ軸と直交するX軸方向とY軸方向の屈折率に差が生
じている。
In the AND circuit optical element 13, two incident light incident waveguides 3a and 3b are jointly connected via a confluence point A to one non-linear waveguide 6a which performs non-linear polarization rotation of light. In the non-linear waveguide 6a, the cross-sections of the non-linear waveguide in the axial directions perpendicular to each other, that is, the non-linear waveguide 6a,
When the optical axis of a is formed in the Z-axis direction of FIG. 6, there is a difference in the refractive index in the X-axis direction and the Y-axis direction orthogonal to the Z-axis.

【0024】そして、この屈折率の差により、非線形導
波路には前記X軸方向とY軸方向に異なる偏波分散が生
じており、この偏波分散に起因して、光の伝搬速度の遅
い偏波成分軸である遅軸とこの遅軸よりも光の伝搬速度
の速い速軸とが互いに直交し、かつ、非線形導波路6a
の光軸Zと直交して形成される。すなわち、非線形導波
路6aには、例えば速軸が図6のX方向に形成されてい
るとすると、図のY軸方向に遅軸が形成されている。
Due to this difference in refractive index, different polarization dispersion occurs in the non-linear waveguide in the X-axis direction and the Y-axis direction, and due to this polarization dispersion, the propagation speed of light is slow. The slow axis which is the polarization component axis and the fast axis whose light propagation speed is faster than this slow axis are orthogonal to each other, and the nonlinear waveguide 6a
Is formed orthogonal to the optical axis Z of. That is, assuming that the fast axis is formed in the X direction of FIG. 6, the slow axis is formed in the Y axis direction of the figure in the nonlinear waveguide 6a.

【0025】入射光入射導波路3a,3bの入射端側に
は、それぞれ、入射偏波光としての入力光入力端子が接
続されており、この入力端子から、非線形導波路6aの
速軸(図6のX軸)方向に直線偏光していて、強度およ
び波長が互いに等しい入力光a,bがそれぞれ入力され
るようになっている。なお、X軸方向に直線偏光してい
る光とは、図6に示すように、XZ平面上に偏波面が形
成された直線偏波光である。
Input light input terminals as incident polarized light are connected to the incident end sides of the incident light incident waveguides 3a and 3b, respectively, and the fast axis (see FIG. 6) of the nonlinear waveguide 6a is connected from these input terminals. Input lights a and b having the same intensity and the same wavelength are respectively input. The light linearly polarized in the X-axis direction is linearly polarized light having a plane of polarization formed on the XZ plane, as shown in FIG.

【0026】また、各入射光入射導波路3a,3bに
は、それぞれ、各入射光入射導波路3a,3bから入射
する入射偏波光の偏波面を非線形導波路6aの速軸(図
6のX軸方向に形成される)から90度以外の同じ角度ず
つずらす偏波面調整手段としての旋光性物質が設けられ
ている。この旋光性物質は、例えば、水晶、ブドウ糖、
しょ糖、酒石酸等の螺旋構造を有しているために旋光性
があり、入射光入射導波路3a,3bに入射する入射偏
波光の偏光ベクトルを回転させる機能を有するものであ
る。このような旋光性物質は、入射光入射導波路を形成
する石英等にドープされた状態で設けられている。
In addition, the polarization planes of the incident polarized light beams incident from the incident light incident waveguides 3a and 3b are respectively applied to the incident light incident waveguides 3a and 3b by the fast axis of the nonlinear waveguide 6a (X in FIG. 6). (Axial direction) is provided with an optical rotatory substance as a polarization plane adjusting means for shifting by the same angle other than 90 degrees. This optically active substance is, for example, crystal, glucose,
Since it has a helical structure such as sucrose or tartaric acid, it has optical rotatory power and has a function of rotating the polarization vector of the incident polarized light entering the incident light incident waveguides 3a and 3b. Such an optical rotatory substance is provided in a state of being doped in quartz or the like forming the incident light incident waveguide.

【0027】ところで、前記のような非線形導波路を偏
波光が伝搬するときに、この偏波光の偏波面が非線形導
波路の速軸および遅軸からずれているときには、非線形
導波路6aの偏波成分軸である速軸方向(X軸方向)の
電界成分と遅軸方向(Y軸方向)の電界成分との差によ
り、前記のように、位相が前記式(1)で表される量だ
けずれる非線形偏波回転と呼ばれる現象が生じるように
なっており、例えば、非線形導波路6aに入力される入
力光が1つだけの場合と2つの場合(この場合の光強度
は入力光が1つだけの場合の2倍であるとする)の各位
相変化を比較すると、2つの入力光を入力した場合の位
相変化(偏波面回転角)は2倍となるようになってい
る。
By the way, when the polarized light propagates through the above-mentioned nonlinear waveguide and the plane of polarization of this polarized light is deviated from the fast axis and the slow axis of the nonlinear waveguide, the polarized light in the nonlinear waveguide 6a. Due to the difference between the electric field component in the fast axis direction (X axis direction) and the electric field component in the slow axis direction (Y axis direction), which is the component axis, as described above, the phase is the amount represented by the formula (1). A phenomenon called non-linear polarization rotation that shifts is generated. For example, when there is only one input light input to the nonlinear waveguide 6a and when there are two input lights (the light intensity in this case is one input light). The phase change (polarization plane rotation angle) when two input lights are input is doubled.

【0028】なお、この位相変化は、非線形導波路6a
の非線形屈折率n2 および非線形導波路6aの長さLに
も比例するために、位相変化をある大きさに定めるとき
に、非線形導波路6aの非線形屈折率n2 を大きくする
ことにより、非線形導波路6aの長さLを短くして光論
理素子の長さを短くすることができる。
The phase change is caused by the nonlinear waveguide 6a.
Is proportional to the non-linear refractive index n 2 of the non-linear waveguide 6a and the length L of the non-linear waveguide 6a, the non-linear refractive index n 2 of the non-linear waveguide 6a is increased when the phase change is set to a certain magnitude. The length L of the waveguide 6a can be shortened to shorten the length of the optical logic element.

【0029】本実施例では、前記2本の入射光入射導波
路3a,3bのうちのいずれか一方からのみの入射偏波
光入射時(入力光入力時)に、この入射偏波光が非線形
導波路6aを伝搬するときの位相変化が非線形導波路6
aの出射端において予め定められる180 度の角度で変化
するように、非線形導波路6aの非線形屈折率と長さL
1 とが調整されており、また、それにより、入射光入射
導波路3a,3bの両方から入射偏波光が入射されたと
きには、これらの入射偏波光の合波光が伝搬するとき
に、360 度の角度で位相変化するようになっている。な
お、前記のように、直線偏光した入射偏波光が非線形導
波路を伝搬して180 度および360 度の位相変化を受ける
と、それらの伝搬光は、いずれも非線形導波路の出射端
において直線偏波となり、その偏波面は互いに直交する
角度に形成される。
In the present embodiment, when the incident polarized light is incident from only one of the two incident light incident waveguides 3a and 3b (when the input light is input), the incident polarized light is reflected by the nonlinear waveguide. The phase change when propagating through 6a
The nonlinear refractive index and the length L of the nonlinear waveguide 6a are changed so as to change at a predetermined 180 degree angle at the exit end of a.
1 is adjusted so that when incident polarized light is incident from both of the incident light incident waveguides 3a and 3b, when the combined light of these incident polarized lights propagates, The phase changes according to the angle. As described above, when the linearly polarized incident polarized light propagates through the nonlinear waveguide and undergoes a phase change of 180 degrees and 360 degrees, both of the propagated light are linearly polarized at the exit end of the nonlinear waveguide. Waves are formed, and their polarization planes are formed at angles orthogonal to each other.

【0030】図1,2に示すように、非線形導波路6a
の出射端側には、検光子9aが設けられている。この検
光子9aは、その光の透過方向が、180 度の位相変化を
受けた後の直線偏波の偏光軸と垂直になるように形成さ
れており、言い換えれば、検光子9aは、180 度の位相
変化を受けた光と直交する直線偏波、すなわち、360度
の位相変化を受けた後の直線偏波のみを選択的に出力す
るようになっており、このように、検光子9aは、非線
形導波路6aの伝搬光のうち予め定められる角度(360
度)で位相変化した伝搬光のみを選択的に出力する出力
選択手段として機能するようになっている。
As shown in FIGS. 1 and 2, the nonlinear waveguide 6a
An analyzer 9a is provided on the emission end side of. The analyzer 9a is formed so that its light transmission direction is perpendicular to the polarization axis of linearly polarized light after undergoing a phase change of 180 degrees. In other words, the analyzer 9a is 180 degrees. The linearly polarized light that is orthogonal to the light that has undergone the phase change, that is, only the linearly polarized light that has undergone the 360 ° phase change, is selectively output. In this way, the analyzer 9a , A predetermined angle (360 degrees) of the propagation light of the nonlinear waveguide 6a.
The output selection means selectively outputs only the propagating light whose phase is changed by (degrees).

【0031】なお、本実施例では、図4に示すように、
AND回路光素子13の非線形導波路6aの両端側に電極
8を設け、この電極8に電圧をかけることにより、非線
形導波路6aを通る偏波光の非線形偏波回転量を論理動
作に最適なように微調整できるようになっており、ま
た、非線形導波路6aと検光子9aとの接続点には、検
光子9aによって反射する反射光伝搬用の光導波路(図
示せず)が形成されている。
In this embodiment, as shown in FIG.
Electrodes 8 are provided at both ends of the non-linear waveguide 6a of the AND circuit optical element 13, and a voltage is applied to the electrodes 8 so that the non-linear polarization rotation amount of the polarized light passing through the non-linear waveguide 6a is optimized for logical operation. The optical waveguide (not shown) for propagating the reflected light reflected by the analyzer 9a is formed at the connection point between the nonlinear waveguide 6a and the analyzer 9a. .

【0032】AND回路光素子13は以上のように構成さ
れており、次に図3のNOT回路光素子14の構成につい
て説明する。NOT回路光素子14も、前記AND回路光
素子13と同様に、2本の入射光入射導波路4a,4bが
合流点Bを介して1本の非線形導波路6bに合流接続さ
れており、非線形導波路6bの出射端側には検光子9b
が設けられている。
The AND circuit optical element 13 is configured as described above. Next, the configuration of the NOT circuit optical element 14 of FIG. 3 will be described. Similarly to the AND circuit optical element 13, the NOT circuit optical element 14 has two incident light incidence waveguides 4a and 4b which are connected to one non-linear waveguide 6b via a confluence point B, and thus the non-linear An analyzer 9b is provided on the exit end side of the waveguide 6b.
Is provided.

【0033】NOT回路光素子14における入射光入射導
波路4a,4bは、それぞれ、AND回路光素子13にお
ける入射光入射導波路3a,3bと同様に構成されてい
るが、NOT回路光素子14においては、入射光入射導波
路4aの入射端側にはプローブ端子が接続されており、
この端子には、デジタル動作の場合には回路の動作クロ
ックに同期した光パルス列が入力され、アナログ動作の
場合にはCW(連続)光がプローブ光として入力される
ようになっている。このプローブ光は非線形導波路6b
の速軸(図6のX軸)方向に直線偏光している入射偏波
光であり、その光強度は入力光と同じである。
The incident light incident waveguides 4a and 4b in the NOT circuit optical element 14 are configured similarly to the incident light incident waveguides 3a and 3b in the AND circuit optical element 13, respectively. Is a probe terminal connected to the incident end side of the incident light incident waveguide 4a,
An optical pulse train synchronized with the operation clock of the circuit is input to this terminal in the case of digital operation, and CW (continuous) light is input as probe light in the case of analog operation. This probe light is transmitted through the nonlinear waveguide 6b.
The incident polarized light is linearly polarized in the direction of the fast axis (X axis in FIG. 6), and its light intensity is the same as the input light.

【0034】また、NOT回路光素子14における非線形
導波路6bはAND回路光素子13における非線形導波路
6aとほぼ同様に構成されており、このNOT回路光素
子14の非線形導波路6bの非線形屈折率および長さL2
は、プローブ光のみが入射したときに、このプローブ光
が非線形導波路6bを伝搬するときの位相変化が出射端
において180 度となるように調整されている。
The non-linear waveguide 6b in the NOT circuit optical element 14 is constructed in substantially the same manner as the non-linear waveguide 6a in the AND circuit optical element 13, and the non-linear refractive index of the non-linear waveguide 6b in the NOT circuit optical element 14 is set. And length L 2
Is adjusted such that when only the probe light is incident, the phase change when the probe light propagates through the nonlinear waveguide 6b is 180 degrees at the exit end.

【0035】検光子9bは、AND回路光素子13におけ
る検光子9aとは異なり、その光の透過方向が、180 度
の位相変化を受けた直線偏光の偏光軸と平行になるよう
に形成されており、それにより、検光子9bは、非線形
導波路6bの伝搬光のうち180 度で位相変化した伝搬光
(プローブ光のみが伝搬されたときの伝搬光)を選択的
に出力する出力選択手段として機能するようになってい
る。
Unlike the analyzer 9a in the AND circuit optical element 13, the analyzer 9b is formed such that its light transmission direction is parallel to the polarization axis of linearly polarized light that has undergone a phase change of 180 degrees. As a result, the analyzer 9b serves as an output selection unit that selectively outputs the propagation light (propagation light when only the probe light is propagated) whose phase is changed by 180 degrees among the propagation light of the nonlinear waveguide 6b. It is supposed to work.

【0036】なお、NOT回路光素子14の非線形導波路
6bの両側にも、AND回路光素子14の非線形導波路と
同様に、電極を設けてあり(図示せず)、同様の非線形
偏波回転量微調整ができるようになっており、また、非
線形導波路6bと検光子9bとの接続点には、検光子に
よって反射する反射光伝搬用の光導波路(図示せず)が
形成されている。
Similar to the non-linear waveguide of the AND circuit optical element 14, electrodes are provided on both sides of the non-linear waveguide 6b of the NOT circuit optical element 14 (not shown), and the same non-linear polarization rotation is performed. The amount can be finely adjusted, and an optical waveguide (not shown) for propagating reflected light reflected by the analyzer is formed at the connection point between the nonlinear waveguide 6b and the analyzer 9b. .

【0037】また、本実施例では、AND回路光素子13
の出射端(AND回路光素子13とNOT回路光素子14と
の接続部出入力端C)に、入射光入射導波路3a,3b
に設けた旋光性物質の旋光と同じ量だけ逆方向に旋光さ
せる逆旋光物質と、AND回路光素子13からの出力光に
3dBの減衰を与えるアッテネータ素子(図示せず)が
設けられている。
In this embodiment, the AND circuit optical element 13
Of the incident light incident waveguides 3a and 3b at the output end (the input / output end C of the connection between the AND circuit optical element 13 and the NOT circuit optical element 14)
A reverse optical rotatory substance for rotating the optical rotatory substance in the opposite direction by the same amount as the optical rotatory substance and an attenuator element (not shown) for attenuating the output light from the AND circuit optical element 13 by 3 dB are provided.

【0038】本実施例は以上のように構成されており、
次に、その動作について説明する。例えば、AND回路
光素子13の入射光入射導波路3aと3bのうち、いずれ
か一方からその入射端でX軸方向(非線形導波路のX軸
方向)に直線偏波した光が入力されると、この光は、入
射光入射導波路に設けられている旋光性物質によってそ
の偏波面がX軸方向から90度以外の角度だけずれた直線
偏光となる。言い換えれば、例えば、入力光の偏波面が
図6のXa方向ずれたとすると、この直線偏光はXaZ
平面に沿ってZ軸方向に進む直線偏光となる。
The present embodiment is constructed as described above,
Next, the operation will be described. For example, when the light linearly polarized in the X-axis direction (X-axis direction of the nonlinear waveguide) at the incident end is input from either one of the incident light incident waveguides 3a and 3b of the AND circuit optical element 13. This light becomes linearly polarized light whose polarization plane is deviated by an angle other than 90 degrees from the X-axis direction due to the optical rotatory substance provided in the incident light incident waveguide. In other words, for example, if the plane of polarization of the input light is displaced in the Xa direction in FIG. 6, this linearly polarized light is XaZ.
It becomes linearly polarized light that advances in the Z-axis direction along a plane.

【0039】そして、この光が合流点Aにおいて非線形
導波路6aに入射すると、非線形導波路6aによって非
線形偏波回転が行われて偏波が回転し、直線偏光→楕円
偏光→円偏光→楕円偏光→直線偏光→楕円偏光→円偏光
→・・・・・というように偏波が変わる。そして、この
ような偏波回転は、その位相変化が前記式(1)に示し
た関係に従って変化し、本実施例のように、非線形導波
路6aの長さを、入射光入射導波路3a,3bのうちの
いずれか一方からのみの入射偏波光入射時に、その入射
偏波光が非線形導波路6aを伝搬するときの位相変化が
非線形導波路6aの出射端において180 度で変化するよ
うに調整されているときには、非線形導波路6aに入射
した直線偏波は、180 度の位相変化により、直線偏光→
楕円偏光→円偏光→楕円偏光→直線偏光となる。
When this light enters the nonlinear waveguide 6a at the confluence A, nonlinear polarization rotation is performed by the nonlinear waveguide 6a to rotate the polarized light, and linearly polarized light → elliptically polarized light → circularly polarized light → elliptically polarized light. → Linearly polarized light → Elliptical polarized light → Circularly polarized light → Polarization changes. In such polarization rotation, the phase change thereof changes according to the relationship shown in the equation (1), and the length of the nonlinear waveguide 6a is changed to the incident light incident waveguide 3a, as in the present embodiment. It is adjusted so that the phase change when the incident polarized light propagates through the nonlinear waveguide 6a changes by 180 degrees at the exit end of the nonlinear waveguide 6a when the incident polarized light enters from only one of 3b. The linearly polarized light incident on the nonlinear waveguide 6a is changed to a linearly polarized light by a phase change of 180 degrees.
It becomes elliptically polarized light → circularly polarized light → elliptically polarized light → linearly polarized light.

【0040】一方、入射光入射導波路3a,3bの両方
から入力光を入射すると、これらの入力光はいずれも入
射光入射導波路3a,3bの旋光性物質によって偏波面
がX軸方向から90度以外の同じ角度ずつ、例えばXa方
向にずれた直線偏光となって、合流点Aにおいて合波さ
れて非線形導波路6aに入射する。この光の電界強度
は、入射光入射導波路のうちのいずれか一方からのみ入
力光が入射されたときの2倍となるために、前記式
(1)から、非線形導波路6aを伝搬する合波光の位相
変化は360 度となり、直線偏光→楕円偏光→円偏光→楕
円偏光→直線偏光→楕円偏光→円偏光→楕円偏光→直線
偏光となる。
On the other hand, when input light is made incident from both the incident light incident waveguides 3a and 3b, the polarization planes of these input lights are 90 degrees from the X-axis direction due to the optical rotatory substance of the incident light incident waveguides 3a and 3b. The linearly polarized light is shifted by the same angle other than degrees, for example, in the Xa direction, is combined at the confluence A, and is incident on the nonlinear waveguide 6a. Since the electric field intensity of this light is twice as high as that when the input light is incident only from one of the incident light incident waveguides, it is calculated from the above formula (1) that the light propagates through the nonlinear waveguide 6a. The phase change of wave light becomes 360 degrees, and becomes linear polarization → elliptical polarization → circular polarization → elliptical polarization → linear polarization → elliptical polarization → circular polarization → elliptical polarization → linear polarization.

【0041】そして、これらの180 度の位相変化を受け
た後の偏波と360 度の位相変化を受けた偏波は共に直線
偏光となるが、この直線偏光は互いに直交しており、本
実施例では、360 度の位相変化を受けた光のみが検光子
9aから出力されるために、出入力端Cにおいては、前
記表1に示したように、入力がない、又は1方からだけ
の場合には出力が0、2入力の場合には出力は1とな
る。そして、この出力光は、非線形導波路6aの出射端
に設けられた逆旋光物質により、前記旋光物質によって
旋光されたと同じ量だけ逆方向に旋光させられ、また、
非線形導波路6aの出射端に設けられたアッテネータ素
子によって3dBの減衰が与えられて入力光と同じパワ
ーの光となって出力され、NOT回路光素子14の入射光
入射導波路4bに入射される。
The polarized light after undergoing the phase change of 180 degrees and the polarized light after undergoing the phase change of 360 degrees are both linearly polarized light, and the linearly polarized light is orthogonal to each other. In the example, since only the light that has undergone the phase change of 360 degrees is output from the analyzer 9a, as shown in Table 1 above, at the input / output terminal C, there is no input or only one input. In the case, the output is 0, and in the case of 2 inputs, the output is 1. Then, this output light is rotatively rotated in the opposite direction by the same amount as that rotated by the optical rotatory substance, by the optical rotatory substance provided at the exit end of the nonlinear waveguide 6a, and
An attenuator element provided at the exit end of the nonlinear waveguide 6a gives 3 dB of attenuation, outputs light of the same power as the input light, and makes it incident on the incident light incident waveguide 4b of the NOT circuit optical element 14. .

【0042】NOT回路光素子14の入射光入射導波路4
bに入力光(AND回路光素子13からの出力光)が入射
されると、この光は入射光入射導波路4bの旋光性物質
によってその偏波面がX軸方向からずれて非線形導波路
6bに入射される。なお、NOT回路光素子14において
は、入射光入射導波路4aからプローブ光が入射された
ときも、同様に、旋光性物質によってプローブ光の偏波
面がX軸方向からずらされて非線形導波路6bに入射す
る。そして、NOT回路光素子14にプローブ光のみが入
射されたときには、このプローブ光が非線形導波路6b
を伝搬して、180 度の位相変化を受けた後に直線偏光と
なり、また、プローブ光と入力光とが共に入射されたと
き(AND回路光素子13からの出力が行われたとき)
は、その入力光とプローブ光とが合波され、その合波光
は、非線形導波路6bを伝搬して360 度の位相変化を受
けて直線偏光となる。
Incident light incident waveguide 4 of NOT circuit optical element 14
When the input light (the output light from the AND circuit optical element 13) is incident on b, the polarization plane of this light is shifted from the X-axis direction by the optical rotatory substance of the incident light incident waveguide 4b to the nonlinear waveguide 6b. It is incident. In the NOT circuit optical element 14, even when the probe light is incident from the incident light incident waveguide 4a, the polarization plane of the probe light is similarly shifted by the optical rotatory substance from the X-axis direction, and the nonlinear waveguide 6b. Incident on. When only the probe light is incident on the NOT circuit optical element 14, the probe light is emitted from the nonlinear waveguide 6b.
When the probe light and the input light are both incident (when the output from the AND circuit optical element 13 is performed)
Of the input light and the probe light are combined, and the combined light propagates through the nonlinear waveguide 6b and undergoes a phase change of 360 degrees to become linearly polarized light.

【0043】そして、NOT回路光素子14に設けられた
検光子9bは、180 度の位相変化を受けた直線偏光を出
力するように構成されていることから、前記表2に示し
たように、NOT回路光素子14にプローブ光のみが入射
されたとき(表2の入力0のとき)には検光子9bから
光が出力され、一方、NOT回路光素子14にプローブ光
と入力光とが共に入射されたとき(表2の入力1のと
き)には出力が行われないことになる。
Since the analyzer 9b provided in the NOT circuit optical element 14 is configured to output linearly polarized light that has undergone a phase change of 180 degrees, as shown in Table 2 above, When only the probe light is incident on the NOT circuit optical element 14 (when the input is 0 in Table 2), light is output from the analyzer 9b, while both the probe light and the input light are incident on the NOT circuit optical element 14. When incident (input 1 in Table 2), no output is performed.

【0044】そのため、本実施例では、表3に示すよう
に、AND回路光素子13の入射光入射導波路3a,3b
の両方からそれぞれ入力光が入力されたときを除いて
は、光論理回路の出力端18から光の出力が行われること
になり、電気のNAND回路の電気制御動作と同様の光
制御動作が行われる。
Therefore, in this embodiment, as shown in Table 3, the incident light incident waveguides 3a and 3b of the AND circuit optical element 13 are provided.
Light is output from the output end 18 of the optical logic circuit except when the input light is input from both of them, and the same optical control operation as the electrical control operation of the electrical NAND circuit is performed. Be seen.

【0045】[0045]

【表3】 [Table 3]

【0046】本実施例によれば、上記のように、各入射
光入射導波路3a,3b,4a,4bにそれぞれ偏波面
調整手段としての旋光物質を設けて、入射偏波光の偏波
面を非線形導波路6a,6bの速軸から90度以外の同じ
角度ずつずらして非線形導波路6a,6bに入射させ、
この非線形導波路6a,6bを伝搬する光の位相偏波が
調整できるように各非線形導波路6a,6bの非線形屈
折率と長さを形成し、その出射端に設けた検光子9a,
9bによって、予め定められる角度で位相変化した伝搬
光のみを選択的に出力することにより、電気の論理素子
であるAND回路と同様に光の制御動作を行えるAND
回路光素子13と、電気のNOT回路と同様に光の制御動
作を行えるNOT回路光素子14とを形成することができ
る。そして、このAND回路光素子13とNOT回路光素
子14とを組み合わせ接続して電気のNAND回路と同様
に光の制御動作を行える光論理回路を形成することがで
きる。
According to the present embodiment, as described above, the incident light incident waveguides 3a, 3b, 4a, 4b are provided with optical rotatory substances as polarization plane adjusting means, respectively, so that the polarization plane of the incident polarized light is nonlinear. The waveguides 6a, 6b are made to enter the nonlinear waveguides 6a, 6b by shifting from the fast axis by the same angle other than 90 degrees,
The nonlinear refractive index and the length of each of the nonlinear waveguides 6a and 6b are formed so that the phase polarization of the light propagating through the nonlinear waveguides 6a and 6b can be adjusted, and an analyzer 9a provided at the emission end thereof,
9b selectively outputs only the propagating light whose phase is changed at a predetermined angle, thereby performing an optical control operation similarly to an AND circuit which is an electric logic element.
It is possible to form the circuit optical element 13 and the NOT circuit optical element 14 that can control the light similarly to the electric NOT circuit. Then, the AND circuit optical element 13 and the NOT circuit optical element 14 can be combined and connected to form an optical logic circuit that can perform a light control operation like an electric NAND circuit.

【0047】また、本実施例によれば、光論理回路を形
成する光導波路等の構成部品は全て石英系基盤上に形成
されており、非線形導波路6a,6bの非線形屈折率を
大きくすることにより、非線形導波路6a,6bの長さ
を短くすることが可能となり、非常に小型の回路とする
ことができる。
Further, according to the present embodiment, all the components such as the optical waveguide forming the optical logic circuit are formed on the quartz base, and the nonlinear refractive index of the nonlinear waveguides 6a and 6b should be increased. As a result, the length of the nonlinear waveguides 6a and 6b can be shortened, and a very small circuit can be obtained.

【0048】なお、本発明は上記実施例に限定されるこ
とはなく、様々な実施の態様を採り得る。例えば、上記
実施例では、入射光入射導波路3a,3b,4a,4b
に旋光性物質をドープして偏波面調整手段を形成した
が、この偏波面調整手段は必ずしも旋光性物質により構
成するとは限らず、例えば、偏光子やファラデー効果等
によって、入射偏波光の偏光ベクトルを回転させること
により、入射偏波光の偏波面を非線形導波路の速軸又は
遅軸から90度以外の同じ角度ずつずらすものにより構成
してもよい。
The present invention is not limited to the above-mentioned embodiments, and various embodiments can be adopted. For example, in the above embodiment, the incident light incident waveguides 3a, 3b, 4a, 4b are used.
Although the polarization plane adjusting means is formed by doping the optical polarization substance in the above, the polarization plane adjusting means is not always constituted by the optical rotation substance, and for example, the polarization vector of the incident polarized light is caused by the polarizer or the Faraday effect. May be rotated to shift the plane of polarization of the incident polarized light by the same angle other than 90 degrees from the fast axis or the slow axis of the nonlinear waveguide.

【0049】また、上記実施例では、旋光性物質によっ
て、各入射光入射導波路から入射する入射偏波光の偏波
面を非線形導波路の速軸から90度以外の同じ角度ずつず
らすようにしたが、旋光性物質等の偏波面調整手段によ
り、入射光の偏波面を非線形導波路6a,6bの遅軸か
ら90度以外の同じ角度ずつずらすようにしてもよい。
Further, in the above-mentioned embodiment, the polarization plane of the incident polarized light incident from each incident light incident waveguide is shifted by the same angle other than 90 degrees from the fast axis of the nonlinear waveguide by the optical rotatory substance. The polarization plane adjusting means such as an optical rotatory substance may shift the polarization plane of the incident light from the slow axis of the nonlinear waveguides 6a and 6b by the same angle other than 90 degrees.

【0050】さらに、上記実施例では、非線形導波路6
a,6bの両側に電極8を設けて非線形導波路6a,6
bによる非線形偏波回転量の微調整を行うようにした
が、非線形導波路6a,6bによって非線形偏波回転量
を最適にできれば、電極8は省略することもできる。
Further, in the above embodiment, the nonlinear waveguide 6
Electrodes 8 are provided on both sides of a and 6b to provide nonlinear waveguides 6a and 6a.
Although the amount of nonlinear polarization rotation is finely adjusted by b, the electrode 8 can be omitted if the amount of nonlinear polarization rotation can be optimized by the nonlinear waveguides 6a and 6b.

【0051】さらに、上記実施例では、1つのAND回
路光素子13の出射端側に1つのNOT回路光素子14を接
続してNAND回路のように光制御を行う光論理回路を
形成したが、AND回路光素子13やNOT回路光素子14
を様々に組み合わせ接続することにより、様々に光動作
制御を行う光論理回路、フィリップフロップ等を形成す
ることができる。
Further, in the above embodiment, one NOT circuit optical element 14 is connected to the emission end side of one AND circuit optical element 13 to form an optical logic circuit for performing optical control like a NAND circuit. AND circuit optical element 13 and NOT circuit optical element 14
It is possible to form an optical logic circuit, a flip-flop, and the like that perform various optical operation control by connecting various combinations of.

【0052】例えば、図5には、3つのNOT回路光素
子14と1つのAND回路光素子13とを組み合わせ接続し
てOR回路型光論理回路を形成した例が示されており、
この回路によれば、AND回路光素子13および各NOT
回路光素子14がそれぞれ上記実施例と同様の動作を行う
ことにより、表4に示すように、図5の各出入力端D,
E,Fにおける出入力が、入力光a,bの入力の有無に
よって決定される。そして、このOR回路型光論理回路
においては、入力光a,bのうちの少なくとも一方側が
入力されたときには出力端18からの出力が行われること
になり、電気のOR回路と同様に光の動作制御が行われ
る。
For example, FIG. 5 shows an example in which three NOT circuit optical elements 14 and one AND circuit optical element 13 are combined and connected to form an OR circuit type optical logic circuit.
According to this circuit, the AND circuit optical element 13 and each NOT
When the circuit light element 14 performs the same operation as that of the above-described embodiment, as shown in Table 4, the output / input terminals D, D of FIG.
The input and output at E and F are determined by the presence or absence of input of the input light a and b. In this OR circuit type optical logic circuit, when at least one side of the input lights a and b is input, the output from the output terminal 18 is performed, and the optical operation is performed similarly to the electric OR circuit. Control is performed.

【0053】[0053]

【表4】 [Table 4]

【0054】さらに、導波路を分岐させたときに生じる
光強度の低下を補償できるアンプ等の増幅部を導波路の
分岐部に形成することができれば、導波路分岐部を含む
構成とした光論理素子および光論理回路を形成すること
もできる。
Furthermore, if an amplification section such as an amplifier capable of compensating for the decrease in light intensity caused when the waveguide is branched can be formed in the branching section of the waveguide, the optical logic including the waveguide branching section can be formed. Devices and optical logic circuits can also be formed.

【0055】[0055]

【発明の効果】本発明によれば、偏波面調整手段によっ
て、入射光入射導波路から非線形導波路に入射する入射
偏波光の偏波面を非線形導波路の速軸又は遅軸から90度
以外の同じ角度ずつずらして入射させることにより、非
線形導波路を入射偏波光が伝搬するときにその偏波面が
回転するようにし、その伝搬光の偏波面回転の位相変化
が伝搬光の光強度に依存することを利用して、一方の入
射光入射導波路からのみ入射偏波光を入射させるときと
両方から入射させるときとで非線形導波路を伝搬する伝
搬光の位相変化を異なる角度に決定することができる。
According to the present invention, the polarization plane of the incident polarized light incident on the nonlinear waveguide from the incident light incident waveguide is set to other than 90 degrees from the fast axis or the slow axis of the nonlinear waveguide by the polarization plane adjusting means. By making the incident light shift by the same angle, the polarization plane of the incident polarized light is rotated when the incident polarized light propagates, and the phase change of the polarization plane rotation of the propagated light depends on the light intensity of the propagated light. By utilizing this, it is possible to determine the phase change of the propagating light propagating through the nonlinear waveguide at different angles depending on whether the incident polarized light is incident from only one incident light incident waveguide or both incident light. .

【0056】そして、非線形導波路の非線形屈折率と長
さ等を調整することによって、例えば、一方の入射光入
射導波路からのみ入射偏波光を入射させたときに、非線
形導波路の伝搬光の位相変化が出射端において予め定め
られる角度とするようにし、かつ、非線形導波路の伝搬
光のうち予め定められる角度で位相変化した伝搬光のみ
を選択的に出力することにより、2本の入射光入射導波
路のうちのいずれか一方からのみ入射偏波光を入射した
ときと、両方から入射偏波光を入射したときと、入射偏
波光を入射させないときとで、選択的に出力の有無を論
理的に決定することが可能となる。そのため、このよう
にして光の入出力を行うことにより、電気の論理素子に
よる電気制御動作と同様に光自身で光制御動作を行うこ
とができる光論理素子を構築することができる。
By adjusting the nonlinear refractive index and the length of the nonlinear waveguide, for example, when the incident polarized light is incident from only one incident light incident waveguide, the propagation light of the nonlinear waveguide is By setting the phase change to a predetermined angle at the exit end and selectively outputting only the propagation light whose phase is changed at the predetermined angle among the propagation lights of the nonlinear waveguide, two incident light beams can be obtained. The presence or absence of output can be logically selected depending on whether the incident polarized light is incident from only one of the incident waveguides, the incident polarized light is incident from both of them, or the incident polarized light is not incident. It becomes possible to decide. Therefore, by inputting and outputting light in this way, it is possible to construct an optical logic element that can perform the optical control operation by the light itself as in the electrical control operation by the electrical logic element.

【0057】また、本発明によれば、この光論理素子
は、入射光入射導波路に入射する入射偏波光の光強度を
一定としたまま、入射の有無のみで出力の有無を決定す
ることが可能であり、電気的な入出力を全く必要とせ
ず、光を光自身で制御するため、超高速の処理速度を発
揮することが可能となり、この処理速度を用いることに
より、超高速大容量の情報処理機器として期待される将
来の光コンピュータに適用して非常に優れた効果を発揮
することができる。
Further, according to the present invention, this optical logic element can determine the presence / absence of the output only by the presence / absence of the incident light while keeping the light intensity of the incident polarized light incident on the incident light incident waveguide constant. It is possible, because it does not require any electrical input / output, and the light is controlled by the light itself, so that it is possible to exhibit an ultra-high-speed processing speed. It can be applied to a future optical computer expected as an information processing device and can exert a very excellent effect.

【0058】さらに、本発明によれば、光論理素子は、
入射光入射導波路や非線形導波路等の光導波路を用いて
構成されており、例えば、これらの光導波路を石英系基
盤上に形成し、さらに、非線形導波路の出射端側に設け
る出力選択手段等も石英系基盤上に形成することも可能
となるために、素子を非常に小型化することも可能とな
る。
Further, according to the present invention, the optical logic element is
It is configured by using an optical waveguide such as an incident light incident waveguide or a nonlinear waveguide. For example, these optical waveguides are formed on a silica-based substrate, and output selecting means provided on the emission end side of the nonlinear waveguide. Since it is also possible to form the above elements on a quartz-based substrate, it is possible to make the device very small.

【0059】そして、以上のように、小型で非常に処理
速度の高い優れた光論理素子を用いて形成される光論理
回路は、光論理素子の優れた効果を利用して非常に優れ
た光論理回路とすることが可能となり、光論理素子の組
み合わせ接続の仕方によって、様々に光制御動作を行う
ことができる優れた光論理回路とすることができる。
As described above, an optical logic circuit formed by using an excellent optical logic element which is small in size and has a very high processing speed makes use of an excellent effect of the optical logic element. A logic circuit can be provided, and an excellent optical logic circuit that can perform various optical control operations depending on how to combine and connect optical logic elements can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光論理素子を用いた光論理回路の
一実施例を示す要部構成図である。
FIG. 1 is a main part configuration diagram showing an embodiment of an optical logic circuit using an optical logic element according to the present invention.

【図2】上記実施例の光論理回路を形成するAND回路
光素子を示す構成図である。
FIG. 2 is a configuration diagram showing an AND circuit optical element forming the optical logic circuit of the above embodiment.

【図3】上記実施例の光論理回路を形成するNOT回路
光素子を示す構成図である。
FIG. 3 is a configuration diagram showing a NOT circuit optical element forming the optical logic circuit of the embodiment.

【図4】上記実施例の光論理回路に用いられるAND回
路光素子に電極8を形成した状態を示す説明図である。
FIG. 4 is an explanatory diagram showing a state in which an electrode 8 is formed on an AND circuit optical element used in the optical logic circuit of the above embodiment.

【図5】本発明に係る光論理素子を用いた光論理回路の
他の実施例を示す要部構成図である。
FIG. 5 is a main part configuration diagram showing another embodiment of an optical logic circuit using an optical logic element according to the present invention.

【図6】非線形導波路の光軸と非線形導波路に形成され
る偏波成分軸の説明図である。
FIG. 6 is an explanatory diagram of an optical axis of a nonlinear waveguide and a polarization component axis formed in the nonlinear waveguide.

【符号の説明】[Explanation of symbols]

3a,3b,4a,4b 入射光入射導波路 6a,6b 非線形導波路 9a,9b 検光子 13 AND回路光素子 14 NOT回路光素子 3a, 3b, 4a, 4b Incident light incident waveguide 6a, 6b Non-linear waveguide 9a, 9b Analyzer 13 AND circuit optical element 14 NOT circuit optical element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 2本の入射光入射導波路が合流点を介し
て光の非線形偏波回転を行う1本の非線形導波路に合流
接続されており、該非線形導波路には該非線形導波路の
偏波分散に起因して、光の伝搬速度の遅い偏波成分軸で
ある遅軸と該遅軸よりも光の伝搬速度の速い速軸とが互
いに直交し、かつ、非線形導波路の光軸と直交して形成
されており、前記2本の各入射光入射導波路にはそれぞ
れ各入射光入射導波路から非線形導波路に入射する入射
偏波光の偏波面を前記非線形導波路の速軸または遅軸か
ら90度以外の同じ角度ずつずらす偏波面調整手段が設け
られていることを特徴とする光論理素子。
1. Two incident light incident waveguides are merged and connected to one non-linear waveguide that performs non-linear polarization rotation of light via a confluence point, and the non-linear waveguide is connected to the non-linear waveguide. Due to the polarization dispersion of, the slow axis, which is the polarization component axis having a slow propagation speed of light, and the fast axis having a faster propagation speed of light than the slow axis are orthogonal to each other, and The two incident light incident waveguides are formed so as to be orthogonal to the axis, and the polarization plane of the incident polarized light incident on the nonlinear waveguide from each of the incident light incident waveguides is set to the fast axis of the nonlinear waveguide. Alternatively, an optical logic element is provided with polarization plane adjusting means for shifting from the slow axis by the same angle other than 90 degrees.
【請求項2】 非線形導波路の非線形屈折率と長さは、
前記2本の入射光入射導波路のうちのいずれか一方から
のみの入射偏波光入射時に、該入射偏波光が非線形導波
路を伝搬するときの位相変化が出射端において予め定め
られる角度で変化するように調整されていることを特徴
とする請求項1記載の光論理素子。
2. The nonlinear refractive index and the length of the nonlinear waveguide are
When incident polarized light enters from only one of the two incident light incident waveguides, the phase change when the incident polarized light propagates through the nonlinear waveguide changes at the exit end at a predetermined angle. The optical logic element according to claim 1, wherein the optical logic element is adjusted as follows.
【請求項3】 非線形導波路の出射端側には該非線形導
波路の伝搬光のうち予め定められる角度で位相変化した
伝搬光のみを選択的に出力する出力選択手段が設けらて
いることを特徴とする請求項1又は請求項2記載の光論
理素子。
3. An output selection means is provided on the exit end side of the nonlinear waveguide for selectively outputting only the propagated light of the nonlinear waveguide whose phase is changed at a predetermined angle. The optical logic device according to claim 1 or 2, which is characterized in that.
【請求項4】 請求項1乃至請求項3のいずれかに記載
の光論理素子を複数組み合わせて接続したことを特徴と
する光論理回路。
4. An optical logic circuit comprising a plurality of optical logic elements according to claim 1 connected in combination.
JP17541495A 1995-06-19 1995-06-19 Optical logic element and optical logic circuit using the optical logic element Pending JPH095812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17541495A JPH095812A (en) 1995-06-19 1995-06-19 Optical logic element and optical logic circuit using the optical logic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17541495A JPH095812A (en) 1995-06-19 1995-06-19 Optical logic element and optical logic circuit using the optical logic element

Publications (1)

Publication Number Publication Date
JPH095812A true JPH095812A (en) 1997-01-10

Family

ID=15995686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17541495A Pending JPH095812A (en) 1995-06-19 1995-06-19 Optical logic element and optical logic circuit using the optical logic element

Country Status (1)

Country Link
JP (1) JPH095812A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008250168A (en) * 2007-03-30 2008-10-16 National Institute Of Advanced Industrial & Technology Optical logic circuit
JP2009104210A (en) * 2006-02-14 2009-05-14 Coveytech Llc All-optical and gate and all-optical nand gate
CN106468843A (en) * 2015-08-18 2017-03-01 邱富春 Specific binary light signal realizes basic logic doors light path
US9703172B2 (en) 2006-02-14 2017-07-11 John Luther Covey All-optical logic gates using nonlinear elements—claim set V

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104210A (en) * 2006-02-14 2009-05-14 Coveytech Llc All-optical and gate and all-optical nand gate
JP2009104212A (en) * 2006-02-14 2009-05-14 Coveytech Llc All-optical memory latch
JP2009104213A (en) * 2006-02-14 2009-05-14 Coveytech Llc All-optical and gate and all-optical nand gate
JP2009104211A (en) * 2006-02-14 2009-05-14 Coveytech Llc Method for manufacturing optical circuit
JP2009527020A (en) * 2006-02-14 2009-07-23 コービーテック,リミティド ライアビリティ カンパニー All-optical logic gate using nonlinear elements
JP4685947B2 (en) * 2006-02-14 2011-05-18 コービーテック,リミティド ライアビリティ カンパニー All optical memory latch
JP2011103008A (en) * 2006-02-14 2011-05-26 Coveytech Llc Method for manufacturing optical circuit
JP2014006548A (en) * 2006-02-14 2014-01-16 Coveytech Llc Method for manufacturing optical circuit
US9703172B2 (en) 2006-02-14 2017-07-11 John Luther Covey All-optical logic gates using nonlinear elements—claim set V
JP2008250168A (en) * 2007-03-30 2008-10-16 National Institute Of Advanced Industrial & Technology Optical logic circuit
CN106468843A (en) * 2015-08-18 2017-03-01 邱富春 Specific binary light signal realizes basic logic doors light path

Similar Documents

Publication Publication Date Title
EP1370900B1 (en) Fiber optical attenuator
US5933555A (en) Optical recirculation depolarizer and method of depolarizing light
US6175668B1 (en) Wideband polarization splitter, combiner, isolator and controller
TW295634B (en)
WO1990005282A1 (en) Interferometer
JP2724098B2 (en) Optical wavelength filter device
US6891674B2 (en) Methods and apparatus for frequency shifting polarization mode dispersion spectra
US8314988B2 (en) Polarization insensitive optical circuit
JPS6068321A (en) Optical switch
JPH095812A (en) Optical logic element and optical logic circuit using the optical logic element
US7206466B2 (en) Polarization dependent loss loop
JPH0283523A (en) Optical isolator
CA2293029C (en) Method and device for controlling the polarization of a beam of light
US3957340A (en) Electrooptical amplitude modulator
JPS58215632A (en) Multichannel optical switch and its driving method
US6373617B1 (en) Optical system having optical control beam
JPH04156423A (en) Light waveguide path type polarizer, light waveguide path device provided with such polarizer and manufacture of such device
JP4109514B2 (en) Optical waveguide device for polarization control
JP2812974B2 (en) Polarization independent optical switch
EP4317993A1 (en) Current measurement device
JP2002257887A (en) Reflection-type electric field sensor head and reflection-type electric field sensor
JP3036610B2 (en) Polarization direction switch
JPH0460511A (en) Active optical isolator
JPH0727807A (en) Reflection-type electric field sensor head and reflection-type electric field sensor
JPS61171225A (en) Optical fiber logical operating element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106